faults.cc revision 12572:749b07984c79
1/*
2 * Copyright (c) 2003-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 *          Kevin Lim
30 */
31
32#include "arch/sparc/faults.hh"
33
34#include <algorithm>
35
36#include "arch/sparc/isa_traits.hh"
37#include "arch/sparc/process.hh"
38#include "arch/sparc/tlb.hh"
39#include "arch/sparc/types.hh"
40#include "base/bitfield.hh"
41#include "base/trace.hh"
42#include "cpu/base.hh"
43#include "cpu/thread_context.hh"
44#include "mem/page_table.hh"
45#include "sim/full_system.hh"
46#include "sim/process.hh"
47
48using namespace std;
49
50namespace SparcISA
51{
52
53template<> SparcFaultBase::FaultVals
54    SparcFault<PowerOnReset>::vals
55("power_on_reset", 0x001, 0, {{H, H, H}});
56
57template<> SparcFaultBase::FaultVals
58    SparcFault<WatchDogReset>::vals
59("watch_dog_reset", 0x002, 120, {{H, H, H}});
60
61template<> SparcFaultBase::FaultVals
62    SparcFault<ExternallyInitiatedReset>::vals
63("externally_initiated_reset", 0x003, 110, {{H, H, H}});
64
65template<> SparcFaultBase::FaultVals
66    SparcFault<SoftwareInitiatedReset>::vals
67("software_initiated_reset", 0x004, 130, {{SH, SH, H}});
68
69template<> SparcFaultBase::FaultVals
70    SparcFault<REDStateException>::vals
71("RED_state_exception", 0x005, 1, {{H, H, H}});
72
73template<> SparcFaultBase::FaultVals
74    SparcFault<StoreError>::vals
75("store_error", 0x007, 201, {{H, H, H}});
76
77template<> SparcFaultBase::FaultVals
78    SparcFault<InstructionAccessException>::vals
79("instruction_access_exception", 0x008, 300, {{H, H, H}});
80
81//XXX This trap is apparently dropped from ua2005
82/*template<> SparcFaultBase::FaultVals
83    SparcFault<InstructionAccessMMUMiss>::vals
84    ("inst_mmu", 0x009, 2, {{H, H, H}});*/
85
86template<> SparcFaultBase::FaultVals
87    SparcFault<InstructionAccessError>::vals
88("instruction_access_error", 0x00A, 400, {{H, H, H}});
89
90template<> SparcFaultBase::FaultVals
91    SparcFault<IllegalInstruction>::vals
92("illegal_instruction", 0x010, 620, {{H, H, H}});
93
94template<> SparcFaultBase::FaultVals
95    SparcFault<PrivilegedOpcode>::vals
96("privileged_opcode", 0x011, 700, {{P, SH, SH}});
97
98//XXX This trap is apparently dropped from ua2005
99/*template<> SparcFaultBase::FaultVals
100    SparcFault<UnimplementedLDD>::vals
101    ("unimp_ldd", 0x012, 6, {{H, H, H}});*/
102
103//XXX This trap is apparently dropped from ua2005
104/*template<> SparcFaultBase::FaultVals
105    SparcFault<UnimplementedSTD>::vals
106    ("unimp_std", 0x013, 6, {{H, H, H}});*/
107
108template<> SparcFaultBase::FaultVals
109    SparcFault<FpDisabled>::vals
110("fp_disabled", 0x020, 800, {{P, P, H}});
111
112/* SPARCv8 and SPARCv9 define just fp_disabled trap. SIMD is not contemplated
113 * as a separate part. Therefore, we use the same code and TT */
114template<> SparcFaultBase::FaultVals
115    SparcFault<VecDisabled>::vals
116("fp_disabled", 0x020, 800, {{P, P, H}});
117
118template<> SparcFaultBase::FaultVals
119    SparcFault<FpExceptionIEEE754>::vals
120("fp_exception_ieee_754", 0x021, 1110, {{P, P, H}});
121
122template<> SparcFaultBase::FaultVals
123    SparcFault<FpExceptionOther>::vals
124("fp_exception_other", 0x022, 1110, {{P, P, H}});
125
126template<> SparcFaultBase::FaultVals
127    SparcFault<TagOverflow>::vals
128("tag_overflow", 0x023, 1400, {{P, P, H}});
129
130template<> SparcFaultBase::FaultVals
131    SparcFault<CleanWindow>::vals
132("clean_window", 0x024, 1010, {{P, P, H}});
133
134template<> SparcFaultBase::FaultVals
135    SparcFault<DivisionByZero>::vals
136("division_by_zero", 0x028, 1500, {{P, P, H}});
137
138template<> SparcFaultBase::FaultVals
139    SparcFault<InternalProcessorError>::vals
140("internal_processor_error", 0x029, 4, {{H, H, H}});
141
142template<> SparcFaultBase::FaultVals
143    SparcFault<InstructionInvalidTSBEntry>::vals
144("instruction_invalid_tsb_entry", 0x02A, 210, {{H, H, SH}});
145
146template<> SparcFaultBase::FaultVals
147    SparcFault<DataInvalidTSBEntry>::vals
148("data_invalid_tsb_entry", 0x02B, 1203, {{H, H, H}});
149
150template<> SparcFaultBase::FaultVals
151    SparcFault<DataAccessException>::vals
152("data_access_exception", 0x030, 1201, {{H, H, H}});
153
154//XXX This trap is apparently dropped from ua2005
155/*template<> SparcFaultBase::FaultVals
156    SparcFault<DataAccessMMUMiss>::vals
157    ("data_mmu", 0x031, 12, {{H, H, H}});*/
158
159template<> SparcFaultBase::FaultVals
160    SparcFault<DataAccessError>::vals
161("data_access_error", 0x032, 1210, {{H, H, H}});
162
163template<> SparcFaultBase::FaultVals
164    SparcFault<DataAccessProtection>::vals
165("data_access_protection", 0x033, 1207, {{H, H, H}});
166
167template<> SparcFaultBase::FaultVals
168    SparcFault<MemAddressNotAligned>::vals
169("mem_address_not_aligned", 0x034, 1020, {{H, H, H}});
170
171template<> SparcFaultBase::FaultVals
172    SparcFault<LDDFMemAddressNotAligned>::vals
173("LDDF_mem_address_not_aligned", 0x035, 1010, {{H, H, H}});
174
175template<> SparcFaultBase::FaultVals
176    SparcFault<STDFMemAddressNotAligned>::vals
177("STDF_mem_address_not_aligned", 0x036, 1010, {{H, H, H}});
178
179template<> SparcFaultBase::FaultVals
180    SparcFault<PrivilegedAction>::vals
181("privileged_action", 0x037, 1110, {{H, H, SH}});
182
183template<> SparcFaultBase::FaultVals
184    SparcFault<LDQFMemAddressNotAligned>::vals
185("LDQF_mem_address_not_aligned", 0x038, 1010, {{H, H, H}});
186
187template<> SparcFaultBase::FaultVals
188    SparcFault<STQFMemAddressNotAligned>::vals
189("STQF_mem_address_not_aligned", 0x039, 1010, {{H, H, H}});
190
191template<> SparcFaultBase::FaultVals
192    SparcFault<InstructionRealTranslationMiss>::vals
193("instruction_real_translation_miss", 0x03E, 208, {{H, H, SH}});
194
195template<> SparcFaultBase::FaultVals
196    SparcFault<DataRealTranslationMiss>::vals
197("data_real_translation_miss", 0x03F, 1203, {{H, H, H}});
198
199//XXX This trap is apparently dropped from ua2005
200/*template<> SparcFaultBase::FaultVals
201    SparcFault<AsyncDataError>::vals
202    ("async_data", 0x040, 2, {{H, H, H}});*/
203
204template<> SparcFaultBase::FaultVals
205    SparcFault<InterruptLevelN>::vals
206("interrupt_level_n", 0x040, 0, {{P, P, SH}});
207
208template<> SparcFaultBase::FaultVals
209    SparcFault<HstickMatch>::vals
210("hstick_match", 0x05E, 1601, {{H, H, H}});
211
212template<> SparcFaultBase::FaultVals
213    SparcFault<TrapLevelZero>::vals
214("trap_level_zero", 0x05F, 202, {{H, H, SH}});
215
216template<> SparcFaultBase::FaultVals
217    SparcFault<InterruptVector>::vals
218("interrupt_vector", 0x060, 2630, {{H, H, H}});
219
220template<> SparcFaultBase::FaultVals
221    SparcFault<PAWatchpoint>::vals
222("PA_watchpoint", 0x061, 1209, {{H, H, H}});
223
224template<> SparcFaultBase::FaultVals
225    SparcFault<VAWatchpoint>::vals
226("VA_watchpoint", 0x062, 1120, {{P, P, SH}});
227
228template<> SparcFaultBase::FaultVals
229    SparcFault<FastInstructionAccessMMUMiss>::vals
230("fast_instruction_access_MMU_miss", 0x064, 208, {{H, H, SH}});
231
232template<> SparcFaultBase::FaultVals
233    SparcFault<FastDataAccessMMUMiss>::vals
234("fast_data_access_MMU_miss", 0x068, 1203, {{H, H, H}});
235
236template<> SparcFaultBase::FaultVals
237    SparcFault<FastDataAccessProtection>::vals
238("fast_data_access_protection", 0x06C, 1207, {{H, H, H}});
239
240template<> SparcFaultBase::FaultVals
241    SparcFault<InstructionBreakpoint>::vals
242("instruction_break", 0x076, 610, {{H, H, H}});
243
244template<> SparcFaultBase::FaultVals
245    SparcFault<CpuMondo>::vals
246("cpu_mondo", 0x07C, 1608, {{P, P, SH}});
247
248template<> SparcFaultBase::FaultVals
249    SparcFault<DevMondo>::vals
250("dev_mondo", 0x07D, 1611, {{P, P, SH}});
251
252template<> SparcFaultBase::FaultVals
253    SparcFault<ResumableError>::vals
254("resume_error", 0x07E, 3330, {{P, P, SH}});
255
256template<> SparcFaultBase::FaultVals
257    SparcFault<SpillNNormal>::vals
258("spill_n_normal", 0x080, 900, {{P, P, H}});
259
260template<> SparcFaultBase::FaultVals
261    SparcFault<SpillNOther>::vals
262("spill_n_other", 0x0A0, 900, {{P, P, H}});
263
264template<> SparcFaultBase::FaultVals
265    SparcFault<FillNNormal>::vals
266("fill_n_normal", 0x0C0, 900, {{P, P, H}});
267
268template<> SparcFaultBase::FaultVals
269    SparcFault<FillNOther>::vals
270("fill_n_other", 0x0E0, 900, {{P, P, H}});
271
272template<> SparcFaultBase::FaultVals
273    SparcFault<TrapInstruction>::vals
274("trap_instruction", 0x100, 1602, {{P, P, H}});
275
276/**
277 * This causes the thread context to enter RED state. This causes the side
278 * effects which go with entering RED state because of a trap.
279 */
280
281void
282enterREDState(ThreadContext *tc)
283{
284    //@todo Disable the mmu?
285    //@todo Disable watchpoints?
286    HPSTATE hpstate= tc->readMiscRegNoEffect(MISCREG_HPSTATE);
287    hpstate.red = 1;
288    hpstate.hpriv = 1;
289    tc->setMiscReg(MISCREG_HPSTATE, hpstate);
290    // PSTATE.priv is set to 1 here. The manual says it should be 0, but
291    // Legion sets it to 1.
292    PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
293    pstate.priv = 1;
294    tc->setMiscReg(MISCREG_PSTATE, pstate);
295}
296
297/**
298 * This sets everything up for a RED state trap except for actually jumping to
299 * the handler.
300 */
301
302void
303doREDFault(ThreadContext *tc, TrapType tt)
304{
305    MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL);
306    MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE);
307    PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
308    HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
309    MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2);
310    MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI);
311    MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP);
312    MiscReg CANSAVE = tc->readMiscRegNoEffect(NumIntArchRegs + 3);
313    MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL);
314    PCState pc = tc->pcState();
315
316    TL++;
317
318    Addr pcMask = pstate.am ? mask(32) : mask(64);
319
320    // set TSTATE.gl to gl
321    replaceBits(TSTATE, 42, 40, GL);
322    // set TSTATE.ccr to ccr
323    replaceBits(TSTATE, 39, 32, CCR);
324    // set TSTATE.asi to asi
325    replaceBits(TSTATE, 31, 24, ASI);
326    // set TSTATE.pstate to pstate
327    replaceBits(TSTATE, 20, 8, pstate);
328    // set TSTATE.cwp to cwp
329    replaceBits(TSTATE, 4, 0, CWP);
330
331    // Write back TSTATE
332    tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE);
333
334    // set TPC to PC
335    tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask);
336    // set TNPC to NPC
337    tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask);
338
339    // set HTSTATE.hpstate to hpstate
340    tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate);
341
342    // TT = trap type;
343    tc->setMiscRegNoEffect(MISCREG_TT, tt);
344
345    // Update GL
346    tc->setMiscReg(MISCREG_GL, min<int>(GL+1, MaxGL));
347
348    bool priv = pstate.priv; // just save the priv bit
349    pstate = 0;
350    pstate.priv = priv;
351    pstate.pef = 1;
352    tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
353
354    hpstate.red = 1;
355    hpstate.hpriv = 1;
356    hpstate.ibe = 0;
357    hpstate.tlz = 0;
358    tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
359
360    bool changedCWP = true;
361    if (tt == 0x24)
362        CWP++;
363    else if (0x80 <= tt && tt <= 0xbf)
364        CWP += (CANSAVE + 2);
365    else if (0xc0 <= tt && tt <= 0xff)
366        CWP--;
367    else
368        changedCWP = false;
369
370    if (changedCWP) {
371        CWP = (CWP + NWindows) % NWindows;
372        tc->setMiscReg(MISCREG_CWP, CWP);
373    }
374}
375
376/**
377 * This sets everything up for a normal trap except for actually jumping to
378 * the handler.
379 */
380
381void
382doNormalFault(ThreadContext *tc, TrapType tt, bool gotoHpriv)
383{
384    MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL);
385    MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE);
386    PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
387    HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
388    MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2);
389    MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI);
390    MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP);
391    MiscReg CANSAVE = tc->readIntReg(NumIntArchRegs + 3);
392    MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL);
393    PCState pc = tc->pcState();
394
395    // Increment the trap level
396    TL++;
397    tc->setMiscRegNoEffect(MISCREG_TL, TL);
398
399    Addr pcMask = pstate.am ? mask(32) : mask(64);
400
401    // Save off state
402
403    // set TSTATE.gl to gl
404    replaceBits(TSTATE, 42, 40, GL);
405    // set TSTATE.ccr to ccr
406    replaceBits(TSTATE, 39, 32, CCR);
407    // set TSTATE.asi to asi
408    replaceBits(TSTATE, 31, 24, ASI);
409    // set TSTATE.pstate to pstate
410    replaceBits(TSTATE, 20, 8, pstate);
411    // set TSTATE.cwp to cwp
412    replaceBits(TSTATE, 4, 0, CWP);
413
414    // Write back TSTATE
415    tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE);
416
417    // set TPC to PC
418    tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask);
419    // set TNPC to NPC
420    tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask);
421
422    // set HTSTATE.hpstate to hpstate
423    tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate);
424
425    // TT = trap type;
426    tc->setMiscRegNoEffect(MISCREG_TT, tt);
427
428    // Update the global register level
429    if (!gotoHpriv)
430        tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxPGL));
431    else
432        tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxGL));
433
434    // pstate.mm is unchanged
435    pstate.pef = 1; // PSTATE.pef = whether or not an fpu is present
436    pstate.am = 0;
437    pstate.ie = 0;
438    // pstate.tle is unchanged
439    // pstate.tct = 0
440
441    if (gotoHpriv) {
442        pstate.cle = 0;
443        // The manual says PSTATE.priv should be 0, but Legion leaves it alone
444        hpstate.red = 0;
445        hpstate.hpriv = 1;
446        hpstate.ibe = 0;
447        // hpstate.tlz is unchanged
448        tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
449    } else { // we are going to priv
450        pstate.priv = 1;
451        pstate.cle = pstate.tle;
452    }
453    tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
454
455
456    bool changedCWP = true;
457    if (tt == 0x24)
458        CWP++;
459    else if (0x80 <= tt && tt <= 0xbf)
460        CWP += (CANSAVE + 2);
461    else if (0xc0 <= tt && tt <= 0xff)
462        CWP--;
463    else
464        changedCWP = false;
465
466    if (changedCWP) {
467        CWP = (CWP + NWindows) % NWindows;
468        tc->setMiscReg(MISCREG_CWP, CWP);
469    }
470}
471
472void
473getREDVector(MiscReg TT, Addr &PC, Addr &NPC)
474{
475    //XXX The following constant might belong in a header file.
476    const Addr RSTVAddr = 0xFFF0000000ULL;
477    PC = RSTVAddr | ((TT << 5) & 0xFF);
478    NPC = PC + sizeof(MachInst);
479}
480
481void
482getHyperVector(ThreadContext * tc, Addr &PC, Addr &NPC, MiscReg TT)
483{
484    Addr HTBA = tc->readMiscRegNoEffect(MISCREG_HTBA);
485    PC = (HTBA & ~mask(14)) | ((TT << 5) & mask(14));
486    NPC = PC + sizeof(MachInst);
487}
488
489void
490getPrivVector(ThreadContext *tc, Addr &PC, Addr &NPC, MiscReg TT, MiscReg TL)
491{
492    Addr TBA = tc->readMiscRegNoEffect(MISCREG_TBA);
493    PC = (TBA & ~mask(15)) |
494        (TL > 1 ? (1 << 14) : 0) |
495        ((TT << 5) & mask(14));
496    NPC = PC + sizeof(MachInst);
497}
498
499void
500SparcFaultBase::invoke(ThreadContext * tc, const StaticInstPtr &inst)
501{
502    FaultBase::invoke(tc);
503    if (!FullSystem)
504        return;
505
506    countStat()++;
507
508    // We can refer to this to see what the trap level -was-, but something
509    // in the middle could change it in the regfile out from under us.
510    MiscReg tl = tc->readMiscRegNoEffect(MISCREG_TL);
511    MiscReg tt = tc->readMiscRegNoEffect(MISCREG_TT);
512    PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE);
513    HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
514
515    Addr PC, NPC;
516
517    PrivilegeLevel current;
518    if (hpstate.hpriv)
519        current = Hyperprivileged;
520    else if (pstate.priv)
521        current = Privileged;
522    else
523        current = User;
524
525    PrivilegeLevel level = getNextLevel(current);
526
527    if (hpstate.red || (tl == MaxTL - 1)) {
528        getREDVector(5, PC, NPC);
529        doREDFault(tc, tt);
530        // This changes the hpstate and pstate, so we need to make sure we
531        // save the old version on the trap stack in doREDFault.
532        enterREDState(tc);
533    } else if (tl == MaxTL) {
534        panic("Should go to error state here.. crap\n");
535        // Do error_state somehow?
536        // Probably inject a WDR fault using the interrupt mechanism.
537        // What should the PC and NPC be set to?
538    } else if (tl > MaxPTL && level == Privileged) {
539        // guest_watchdog fault
540        doNormalFault(tc, trapType(), true);
541        getHyperVector(tc, PC, NPC, 2);
542    } else if (level == Hyperprivileged ||
543               (level == Privileged && trapType() >= 384)) {
544        doNormalFault(tc, trapType(), true);
545        getHyperVector(tc, PC, NPC, trapType());
546    } else {
547        doNormalFault(tc, trapType(), false);
548        getPrivVector(tc, PC, NPC, trapType(), tl + 1);
549    }
550
551    PCState pc;
552    pc.pc(PC);
553    pc.npc(NPC);
554    pc.nnpc(NPC + sizeof(MachInst));
555    pc.upc(0);
556    pc.nupc(1);
557    tc->pcState(pc);
558}
559
560void
561PowerOnReset::invoke(ThreadContext *tc, const StaticInstPtr &inst)
562{
563    // For SPARC, when a system is first started, there is a power
564    // on reset Trap which sets the processor into the following state.
565    // Bits that aren't set aren't defined on startup.
566
567    tc->setMiscRegNoEffect(MISCREG_TL, MaxTL);
568    tc->setMiscRegNoEffect(MISCREG_TT, trapType());
569    tc->setMiscReg(MISCREG_GL, MaxGL);
570
571    PSTATE pstate = 0;
572    pstate.pef = 1;
573    pstate.priv = 1;
574    tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate);
575
576    // Turn on red and hpriv, set everything else to 0
577    HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE);
578    hpstate.red = 1;
579    hpstate.hpriv = 1;
580    hpstate.ibe = 0;
581    hpstate.tlz = 0;
582    tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate);
583
584    // The tick register is unreadable by nonprivileged software
585    tc->setMiscRegNoEffect(MISCREG_TICK, 1ULL << 63);
586
587    // Enter RED state. We do this last so that the actual state preserved in
588    // the trap stack is the state from before this fault.
589    enterREDState(tc);
590
591    Addr PC, NPC;
592    getREDVector(trapType(), PC, NPC);
593
594    PCState pc;
595    pc.pc(PC);
596    pc.npc(NPC);
597    pc.nnpc(NPC + sizeof(MachInst));
598    pc.upc(0);
599    pc.nupc(1);
600    tc->pcState(pc);
601
602    // These registers are specified as "undefined" after a POR, and they
603    // should have reasonable values after the miscregfile is reset
604    /*
605    // Clear all the soft interrupt bits
606    softint = 0;
607    // disable timer compare interrupts, reset tick_cmpr
608    tc->setMiscRegNoEffect(MISCREG_
609    tick_cmprFields.int_dis = 1;
610    tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
611    stickFields.npt = 1; // The TICK register is unreadable by by !priv
612    stick_cmprFields.int_dis = 1; // disable timer compare interrupts
613    stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
614
615    tt[tl] = _trapType;
616
617    hintp = 0; // no interrupts pending
618    hstick_cmprFields.int_dis = 1; // disable timer compare interrupts
619    hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing
620    */
621}
622
623void
624FastInstructionAccessMMUMiss::invoke(ThreadContext *tc,
625                                     const StaticInstPtr &inst)
626{
627    if (FullSystem) {
628        SparcFaultBase::invoke(tc, inst);
629        return;
630    }
631
632    Process *p = tc->getProcessPtr();
633    const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr);
634    panic_if(!pte, "Tried to execute unmapped address %#x.\n", vaddr);
635
636    Addr alignedvaddr = p->pTable->pageAlign(vaddr);
637
638    // Grab fields used during instruction translation to figure out
639    // which context to use.
640    uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
641
642    // Inside a VM, a real address is the address that guest OS would
643    // interpret to be a physical address. To map to the physical address,
644    // it still needs to undergo a translation. The instruction
645    // translation code in the SPARC ITLB code assumes that the context is
646    // zero (kernel-level) if real addressing is being used.
647    bool is_real_address = !bits(tlbdata, 4);
648
649    // The SPARC ITLB code assumes that traps are executed in context
650    // zero so we carry that assumption through here.
651    bool trapped = bits(tlbdata, 18, 16) > 0;
652
653    // The primary context acts as a PASID. It allows the MMU to
654    // distinguish between virtual addresses that would alias to the
655    // same physical address (if two or more processes shared the same
656    // virtual address mapping).
657    int primary_context = bits(tlbdata, 47, 32);
658
659    // The partition id distinguishes between virtualized environments.
660    int const partition_id = 0;
661
662    // Given the assumptions in the translateInst code in the SPARC ITLB,
663    // the logic works out to the following for the context.
664    int context_id = (is_real_address || trapped) ? 0 : primary_context;
665
666    TlbEntry entry(p->pTable->pid(), alignedvaddr, pte->paddr,
667                   pte->flags & EmulationPageTable::Uncacheable,
668                   pte->flags & EmulationPageTable::ReadOnly);
669
670    // Insert the TLB entry.
671    // The entry specifying whether the address is "real" is set to
672    // false for syscall emulation mode regardless of whether the
673    // address is real in preceding code. Not sure sure that this is
674    // correct, but also not sure if it matters at all.
675    dynamic_cast<TLB *>(tc->getITBPtr())->
676        insert(alignedvaddr, partition_id, context_id, false, entry.pte);
677}
678
679void
680FastDataAccessMMUMiss::invoke(ThreadContext *tc, const StaticInstPtr &inst)
681{
682    if (FullSystem) {
683        SparcFaultBase::invoke(tc, inst);
684        return;
685    }
686
687    Process *p = tc->getProcessPtr();
688    const EmulationPageTable::Entry *pte = p->pTable->lookup(vaddr);
689    if (!pte && p->fixupStackFault(vaddr))
690        pte = p->pTable->lookup(vaddr);
691    panic_if(!pte, "Tried to access unmapped address %#x.\n", vaddr);
692
693    Addr alignedvaddr = p->pTable->pageAlign(vaddr);
694
695    // Grab fields used during data translation to figure out
696    // which context to use.
697    uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA);
698
699    // The primary context acts as a PASID. It allows the MMU to
700    // distinguish between virtual addresses that would alias to the
701    // same physical address (if two or more processes shared the same
702    // virtual address mapping). There's a secondary context used in the
703    // DTLB translation code, but it should __probably__ be zero for
704    // syscall emulation code. (The secondary context is used by Solaris
705    // to allow kernel privilege code to access user space code:
706    // [ISBN 0-13-022496-0]:PG199.)
707    int primary_context = bits(tlbdata, 47, 32);
708
709    // "Hyper-Privileged Mode" is in use. There are three main modes of
710    // operation for Sparc: Hyper-Privileged Mode, Privileged Mode, and
711    // User Mode.
712    int hpriv = bits(tlbdata, 0);
713
714    // Reset, Error and Debug state is in use. Something horrible has
715    // happened or the system is operating in Reset Mode.
716    int red = bits(tlbdata, 1);
717
718    // Inside a VM, a real address is the address that guest OS would
719    // interpret to be a physical address. To map to the physical address,
720    // it still needs to undergo a translation. The instruction
721    // translation code in the SPARC ITLB code assumes that the context is
722    // zero (kernel-level) if real addressing is being used.
723    int is_real_address = !bits(tlbdata, 5);
724
725    // Grab the address space identifier register from the thread context.
726    // XXX: Inspecting how setMiscReg and setMiscRegNoEffect behave for
727    // MISCREG_ASI causes me to think that the ASI register implementation
728    // might be bugged. The NoEffect variant changes the ASI register
729    // value in the architectural state while the normal variant changes
730    // the context field in the thread context's currently decoded request
731    // but does not directly affect the ASI register value in the
732    // architectural state. The ASI values and the context field in the
733    // request packet seem to have completely different uses.
734    MiscReg reg_asi = tc->readMiscRegNoEffect(MISCREG_ASI);
735    ASI asi = static_cast<ASI>(reg_asi);
736
737    // The SPARC DTLB code assumes that traps are executed in context
738    // zero if the asi value is ASI_IMPLICIT (which is 0x0). There's also
739    // an assumption that the nucleus address space is being used, but
740    // the context is the relevant issue since we need to pass it to TLB.
741    bool trapped = bits(tlbdata, 18, 16) > 0;
742
743    // Given the assumptions in the translateData code in the SPARC DTLB,
744    // the logic works out to the following for the context.
745    int context_id = ((!hpriv && !red && is_real_address) ||
746                      asiIsReal(asi) ||
747                      (trapped && asi == ASI_IMPLICIT))
748                     ? 0 : primary_context;
749
750    // The partition id distinguishes between virtualized environments.
751    int const partition_id = 0;
752
753    TlbEntry entry(p->pTable->pid(), alignedvaddr, pte->paddr,
754                   pte->flags & EmulationPageTable::Uncacheable,
755                   pte->flags & EmulationPageTable::ReadOnly);
756
757    // Insert the TLB entry.
758    // The entry specifying whether the address is "real" is set to
759    // false for syscall emulation mode regardless of whether the
760    // address is real in preceding code. Not sure sure that this is
761    // correct, but also not sure if it matters at all.
762    dynamic_cast<TLB *>(tc->getDTBPtr())->
763        insert(alignedvaddr, partition_id, context_id, false, entry.pte);
764}
765
766void
767SpillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst)
768{
769    if (FullSystem) {
770        SparcFaultBase::invoke(tc, inst);
771        return;
772    }
773
774    doNormalFault(tc, trapType(), false);
775
776    Process *p = tc->getProcessPtr();
777
778    SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
779    assert(sp);
780
781    // Then adjust the PC and NPC
782    tc->pcState(sp->readSpillStart());
783}
784
785void
786FillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst)
787{
788    if (FullSystem) {
789        SparcFaultBase::invoke(tc, inst);
790        return;
791    }
792
793    doNormalFault(tc, trapType(), false);
794
795    Process *p = tc->getProcessPtr();
796
797    SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
798    assert(sp);
799
800    // Then adjust the PC and NPC
801    tc->pcState(sp->readFillStart());
802}
803
804void
805TrapInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst)
806{
807    if (FullSystem) {
808        SparcFaultBase::invoke(tc, inst);
809        return;
810    }
811
812    // In SE, this mechanism is how the process requests a service from
813    // the operating system. We'll get the process object from the thread
814    // context and let it service the request.
815
816    Process *p = tc->getProcessPtr();
817
818    SparcProcess *sp = dynamic_cast<SparcProcess *>(p);
819    assert(sp);
820
821    Fault fault;
822    sp->handleTrap(_n, tc, &fault);
823
824    // We need to explicitly advance the pc, since that's not done for us
825    // on a faulting instruction
826    PCState pc = tc->pcState();
827    pc.advance();
828    tc->pcState(pc);
829}
830
831} // namespace SparcISA
832
833