faults.cc revision 12402
1/* 2 * Copyright (c) 2003-2005 The Regents of The University of Michigan 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * Authors: Gabe Black 29 * Kevin Lim 30 */ 31 32#include "arch/sparc/faults.hh" 33 34#include <algorithm> 35 36#include "arch/sparc/isa_traits.hh" 37#include "arch/sparc/process.hh" 38#include "arch/sparc/types.hh" 39#include "base/bitfield.hh" 40#include "base/trace.hh" 41#include "cpu/base.hh" 42#include "cpu/thread_context.hh" 43#include "mem/page_table.hh" 44#include "sim/full_system.hh" 45#include "sim/process.hh" 46 47using namespace std; 48 49namespace SparcISA 50{ 51 52template<> SparcFaultBase::FaultVals 53 SparcFault<PowerOnReset>::vals = 54{"power_on_reset", 0x001, 0, {H, H, H}, FaultStat()}; 55 56template<> SparcFaultBase::FaultVals 57 SparcFault<WatchDogReset>::vals = 58{"watch_dog_reset", 0x002, 120, {H, H, H}, FaultStat()}; 59 60template<> SparcFaultBase::FaultVals 61 SparcFault<ExternallyInitiatedReset>::vals = 62{"externally_initiated_reset", 0x003, 110, {H, H, H}, FaultStat()}; 63 64template<> SparcFaultBase::FaultVals 65 SparcFault<SoftwareInitiatedReset>::vals = 66{"software_initiated_reset", 0x004, 130, {SH, SH, H}, FaultStat()}; 67 68template<> SparcFaultBase::FaultVals 69 SparcFault<REDStateException>::vals = 70{"RED_state_exception", 0x005, 1, {H, H, H}, FaultStat()}; 71 72template<> SparcFaultBase::FaultVals 73 SparcFault<StoreError>::vals = 74{"store_error", 0x007, 201, {H, H, H}, FaultStat()}; 75 76template<> SparcFaultBase::FaultVals 77 SparcFault<InstructionAccessException>::vals = 78{"instruction_access_exception", 0x008, 300, {H, H, H}, FaultStat()}; 79 80//XXX This trap is apparently dropped from ua2005 81/*template<> SparcFaultBase::FaultVals 82 SparcFault<InstructionAccessMMUMiss>::vals = 83 {"inst_mmu", 0x009, 2, {H, H, H}};*/ 84 85template<> SparcFaultBase::FaultVals 86 SparcFault<InstructionAccessError>::vals = 87{"instruction_access_error", 0x00A, 400, {H, H, H}, FaultStat()}; 88 89template<> SparcFaultBase::FaultVals 90 SparcFault<IllegalInstruction>::vals = 91{"illegal_instruction", 0x010, 620, {H, H, H}, FaultStat()}; 92 93template<> SparcFaultBase::FaultVals 94 SparcFault<PrivilegedOpcode>::vals = 95{"privileged_opcode", 0x011, 700, {P, SH, SH}, FaultStat()}; 96 97//XXX This trap is apparently dropped from ua2005 98/*template<> SparcFaultBase::FaultVals 99 SparcFault<UnimplementedLDD>::vals = 100 {"unimp_ldd", 0x012, 6, {H, H, H}};*/ 101 102//XXX This trap is apparently dropped from ua2005 103/*template<> SparcFaultBase::FaultVals 104 SparcFault<UnimplementedSTD>::vals = 105 {"unimp_std", 0x013, 6, {H, H, H}};*/ 106 107template<> SparcFaultBase::FaultVals 108 SparcFault<FpDisabled>::vals = 109{"fp_disabled", 0x020, 800, {P, P, H}, FaultStat()}; 110 111/* SPARCv8 and SPARCv9 define just fp_disabled trap. SIMD is not contemplated 112 * as a separate part. Therefore, we use the same code and TT */ 113template<> SparcFaultBase::FaultVals 114 SparcFault<VecDisabled>::vals = 115{"fp_disabled", 0x020, 800, {P, P, H}, FaultStat()}; 116 117template<> SparcFaultBase::FaultVals 118 SparcFault<FpExceptionIEEE754>::vals = 119{"fp_exception_ieee_754", 0x021, 1110, {P, P, H}, FaultStat()}; 120 121template<> SparcFaultBase::FaultVals 122 SparcFault<FpExceptionOther>::vals = 123{"fp_exception_other", 0x022, 1110, {P, P, H}, FaultStat()}; 124 125template<> SparcFaultBase::FaultVals 126 SparcFault<TagOverflow>::vals = 127{"tag_overflow", 0x023, 1400, {P, P, H}, FaultStat()}; 128 129template<> SparcFaultBase::FaultVals 130 SparcFault<CleanWindow>::vals = 131{"clean_window", 0x024, 1010, {P, P, H}, FaultStat()}; 132 133template<> SparcFaultBase::FaultVals 134 SparcFault<DivisionByZero>::vals = 135{"division_by_zero", 0x028, 1500, {P, P, H}, FaultStat()}; 136 137template<> SparcFaultBase::FaultVals 138 SparcFault<InternalProcessorError>::vals = 139{"internal_processor_error", 0x029, 4, {H, H, H}, FaultStat()}; 140 141template<> SparcFaultBase::FaultVals 142 SparcFault<InstructionInvalidTSBEntry>::vals = 143{"instruction_invalid_tsb_entry", 0x02A, 210, {H, H, SH}, FaultStat()}; 144 145template<> SparcFaultBase::FaultVals 146 SparcFault<DataInvalidTSBEntry>::vals = 147{"data_invalid_tsb_entry", 0x02B, 1203, {H, H, H}, FaultStat()}; 148 149template<> SparcFaultBase::FaultVals 150 SparcFault<DataAccessException>::vals = 151{"data_access_exception", 0x030, 1201, {H, H, H}, FaultStat()}; 152 153//XXX This trap is apparently dropped from ua2005 154/*template<> SparcFaultBase::FaultVals 155 SparcFault<DataAccessMMUMiss>::vals = 156 {"data_mmu", 0x031, 12, {H, H, H}};*/ 157 158template<> SparcFaultBase::FaultVals 159 SparcFault<DataAccessError>::vals = 160{"data_access_error", 0x032, 1210, {H, H, H}, FaultStat()}; 161 162template<> SparcFaultBase::FaultVals 163 SparcFault<DataAccessProtection>::vals = 164{"data_access_protection", 0x033, 1207, {H, H, H}, FaultStat()}; 165 166template<> SparcFaultBase::FaultVals 167 SparcFault<MemAddressNotAligned>::vals = 168{"mem_address_not_aligned", 0x034, 1020, {H, H, H}, FaultStat()}; 169 170template<> SparcFaultBase::FaultVals 171 SparcFault<LDDFMemAddressNotAligned>::vals = 172{"LDDF_mem_address_not_aligned", 0x035, 1010, {H, H, H}, FaultStat()}; 173 174template<> SparcFaultBase::FaultVals 175 SparcFault<STDFMemAddressNotAligned>::vals = 176{"STDF_mem_address_not_aligned", 0x036, 1010, {H, H, H}, FaultStat()}; 177 178template<> SparcFaultBase::FaultVals 179 SparcFault<PrivilegedAction>::vals = 180{"privileged_action", 0x037, 1110, {H, H, SH}, FaultStat()}; 181 182template<> SparcFaultBase::FaultVals 183 SparcFault<LDQFMemAddressNotAligned>::vals = 184{"LDQF_mem_address_not_aligned", 0x038, 1010, {H, H, H}, FaultStat()}; 185 186template<> SparcFaultBase::FaultVals 187 SparcFault<STQFMemAddressNotAligned>::vals = 188{"STQF_mem_address_not_aligned", 0x039, 1010, {H, H, H}, FaultStat()}; 189 190template<> SparcFaultBase::FaultVals 191 SparcFault<InstructionRealTranslationMiss>::vals = 192{"instruction_real_translation_miss", 0x03E, 208, {H, H, SH}, FaultStat()}; 193 194template<> SparcFaultBase::FaultVals 195 SparcFault<DataRealTranslationMiss>::vals = 196{"data_real_translation_miss", 0x03F, 1203, {H, H, H}, FaultStat()}; 197 198//XXX This trap is apparently dropped from ua2005 199/*template<> SparcFaultBase::FaultVals 200 SparcFault<AsyncDataError>::vals = 201 {"async_data", 0x040, 2, {H, H, H}};*/ 202 203template<> SparcFaultBase::FaultVals 204 SparcFault<InterruptLevelN>::vals = 205{"interrupt_level_n", 0x040, 0, {P, P, SH}, FaultStat()}; 206 207template<> SparcFaultBase::FaultVals 208 SparcFault<HstickMatch>::vals = 209{"hstick_match", 0x05E, 1601, {H, H, H}, FaultStat()}; 210 211template<> SparcFaultBase::FaultVals 212 SparcFault<TrapLevelZero>::vals = 213{"trap_level_zero", 0x05F, 202, {H, H, SH}, FaultStat()}; 214 215template<> SparcFaultBase::FaultVals 216 SparcFault<InterruptVector>::vals = 217{"interrupt_vector", 0x060, 2630, {H, H, H}, FaultStat()}; 218 219template<> SparcFaultBase::FaultVals 220 SparcFault<PAWatchpoint>::vals = 221{"PA_watchpoint", 0x061, 1209, {H, H, H}, FaultStat()}; 222 223template<> SparcFaultBase::FaultVals 224 SparcFault<VAWatchpoint>::vals = 225{"VA_watchpoint", 0x062, 1120, {P, P, SH}, FaultStat()}; 226 227template<> SparcFaultBase::FaultVals 228 SparcFault<FastInstructionAccessMMUMiss>::vals = 229{"fast_instruction_access_MMU_miss", 0x064, 208, {H, H, SH}, FaultStat()}; 230 231template<> SparcFaultBase::FaultVals 232 SparcFault<FastDataAccessMMUMiss>::vals = 233{"fast_data_access_MMU_miss", 0x068, 1203, {H, H, H}, FaultStat()}; 234 235template<> SparcFaultBase::FaultVals 236 SparcFault<FastDataAccessProtection>::vals = 237{"fast_data_access_protection", 0x06C, 1207, {H, H, H}, FaultStat()}; 238 239template<> SparcFaultBase::FaultVals 240 SparcFault<InstructionBreakpoint>::vals = 241{"instruction_break", 0x076, 610, {H, H, H}, FaultStat()}; 242 243template<> SparcFaultBase::FaultVals 244 SparcFault<CpuMondo>::vals = 245{"cpu_mondo", 0x07C, 1608, {P, P, SH}, FaultStat()}; 246 247template<> SparcFaultBase::FaultVals 248 SparcFault<DevMondo>::vals = 249{"dev_mondo", 0x07D, 1611, {P, P, SH}, FaultStat()}; 250 251template<> SparcFaultBase::FaultVals 252 SparcFault<ResumableError>::vals = 253{"resume_error", 0x07E, 3330, {P, P, SH}, FaultStat()}; 254 255template<> SparcFaultBase::FaultVals 256 SparcFault<SpillNNormal>::vals = 257{"spill_n_normal", 0x080, 900, {P, P, H}, FaultStat()}; 258 259template<> SparcFaultBase::FaultVals 260 SparcFault<SpillNOther>::vals = 261{"spill_n_other", 0x0A0, 900, {P, P, H}, FaultStat()}; 262 263template<> SparcFaultBase::FaultVals 264 SparcFault<FillNNormal>::vals = 265{"fill_n_normal", 0x0C0, 900, {P, P, H}, FaultStat()}; 266 267template<> SparcFaultBase::FaultVals 268 SparcFault<FillNOther>::vals = 269{"fill_n_other", 0x0E0, 900, {P, P, H}, FaultStat()}; 270 271template<> SparcFaultBase::FaultVals 272 SparcFault<TrapInstruction>::vals = 273{"trap_instruction", 0x100, 1602, {P, P, H}, FaultStat()}; 274 275/** 276 * This causes the thread context to enter RED state. This causes the side 277 * effects which go with entering RED state because of a trap. 278 */ 279 280void 281enterREDState(ThreadContext *tc) 282{ 283 //@todo Disable the mmu? 284 //@todo Disable watchpoints? 285 HPSTATE hpstate= tc->readMiscRegNoEffect(MISCREG_HPSTATE); 286 hpstate.red = 1; 287 hpstate.hpriv = 1; 288 tc->setMiscReg(MISCREG_HPSTATE, hpstate); 289 // PSTATE.priv is set to 1 here. The manual says it should be 0, but 290 // Legion sets it to 1. 291 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); 292 pstate.priv = 1; 293 tc->setMiscReg(MISCREG_PSTATE, pstate); 294} 295 296/** 297 * This sets everything up for a RED state trap except for actually jumping to 298 * the handler. 299 */ 300 301void 302doREDFault(ThreadContext *tc, TrapType tt) 303{ 304 MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL); 305 MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE); 306 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); 307 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); 308 MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2); 309 MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI); 310 MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP); 311 MiscReg CANSAVE = tc->readMiscRegNoEffect(NumIntArchRegs + 3); 312 MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL); 313 PCState pc = tc->pcState(); 314 315 TL++; 316 317 Addr pcMask = pstate.am ? mask(32) : mask(64); 318 319 // set TSTATE.gl to gl 320 replaceBits(TSTATE, 42, 40, GL); 321 // set TSTATE.ccr to ccr 322 replaceBits(TSTATE, 39, 32, CCR); 323 // set TSTATE.asi to asi 324 replaceBits(TSTATE, 31, 24, ASI); 325 // set TSTATE.pstate to pstate 326 replaceBits(TSTATE, 20, 8, pstate); 327 // set TSTATE.cwp to cwp 328 replaceBits(TSTATE, 4, 0, CWP); 329 330 // Write back TSTATE 331 tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE); 332 333 // set TPC to PC 334 tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask); 335 // set TNPC to NPC 336 tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask); 337 338 // set HTSTATE.hpstate to hpstate 339 tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate); 340 341 // TT = trap type; 342 tc->setMiscRegNoEffect(MISCREG_TT, tt); 343 344 // Update GL 345 tc->setMiscReg(MISCREG_GL, min<int>(GL+1, MaxGL)); 346 347 bool priv = pstate.priv; // just save the priv bit 348 pstate = 0; 349 pstate.priv = priv; 350 pstate.pef = 1; 351 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); 352 353 hpstate.red = 1; 354 hpstate.hpriv = 1; 355 hpstate.ibe = 0; 356 hpstate.tlz = 0; 357 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); 358 359 bool changedCWP = true; 360 if (tt == 0x24) 361 CWP++; 362 else if (0x80 <= tt && tt <= 0xbf) 363 CWP += (CANSAVE + 2); 364 else if (0xc0 <= tt && tt <= 0xff) 365 CWP--; 366 else 367 changedCWP = false; 368 369 if (changedCWP) { 370 CWP = (CWP + NWindows) % NWindows; 371 tc->setMiscReg(MISCREG_CWP, CWP); 372 } 373} 374 375/** 376 * This sets everything up for a normal trap except for actually jumping to 377 * the handler. 378 */ 379 380void 381doNormalFault(ThreadContext *tc, TrapType tt, bool gotoHpriv) 382{ 383 MiscReg TL = tc->readMiscRegNoEffect(MISCREG_TL); 384 MiscReg TSTATE = tc->readMiscRegNoEffect(MISCREG_TSTATE); 385 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); 386 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); 387 MiscReg CCR = tc->readIntReg(NumIntArchRegs + 2); 388 MiscReg ASI = tc->readMiscRegNoEffect(MISCREG_ASI); 389 MiscReg CWP = tc->readMiscRegNoEffect(MISCREG_CWP); 390 MiscReg CANSAVE = tc->readIntReg(NumIntArchRegs + 3); 391 MiscReg GL = tc->readMiscRegNoEffect(MISCREG_GL); 392 PCState pc = tc->pcState(); 393 394 // Increment the trap level 395 TL++; 396 tc->setMiscRegNoEffect(MISCREG_TL, TL); 397 398 Addr pcMask = pstate.am ? mask(32) : mask(64); 399 400 // Save off state 401 402 // set TSTATE.gl to gl 403 replaceBits(TSTATE, 42, 40, GL); 404 // set TSTATE.ccr to ccr 405 replaceBits(TSTATE, 39, 32, CCR); 406 // set TSTATE.asi to asi 407 replaceBits(TSTATE, 31, 24, ASI); 408 // set TSTATE.pstate to pstate 409 replaceBits(TSTATE, 20, 8, pstate); 410 // set TSTATE.cwp to cwp 411 replaceBits(TSTATE, 4, 0, CWP); 412 413 // Write back TSTATE 414 tc->setMiscRegNoEffect(MISCREG_TSTATE, TSTATE); 415 416 // set TPC to PC 417 tc->setMiscRegNoEffect(MISCREG_TPC, pc.pc() & pcMask); 418 // set TNPC to NPC 419 tc->setMiscRegNoEffect(MISCREG_TNPC, pc.npc() & pcMask); 420 421 // set HTSTATE.hpstate to hpstate 422 tc->setMiscRegNoEffect(MISCREG_HTSTATE, hpstate); 423 424 // TT = trap type; 425 tc->setMiscRegNoEffect(MISCREG_TT, tt); 426 427 // Update the global register level 428 if (!gotoHpriv) 429 tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxPGL)); 430 else 431 tc->setMiscReg(MISCREG_GL, min<int>(GL + 1, MaxGL)); 432 433 // pstate.mm is unchanged 434 pstate.pef = 1; // PSTATE.pef = whether or not an fpu is present 435 pstate.am = 0; 436 pstate.ie = 0; 437 // pstate.tle is unchanged 438 // pstate.tct = 0 439 440 if (gotoHpriv) { 441 pstate.cle = 0; 442 // The manual says PSTATE.priv should be 0, but Legion leaves it alone 443 hpstate.red = 0; 444 hpstate.hpriv = 1; 445 hpstate.ibe = 0; 446 // hpstate.tlz is unchanged 447 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); 448 } else { // we are going to priv 449 pstate.priv = 1; 450 pstate.cle = pstate.tle; 451 } 452 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); 453 454 455 bool changedCWP = true; 456 if (tt == 0x24) 457 CWP++; 458 else if (0x80 <= tt && tt <= 0xbf) 459 CWP += (CANSAVE + 2); 460 else if (0xc0 <= tt && tt <= 0xff) 461 CWP--; 462 else 463 changedCWP = false; 464 465 if (changedCWP) { 466 CWP = (CWP + NWindows) % NWindows; 467 tc->setMiscReg(MISCREG_CWP, CWP); 468 } 469} 470 471void 472getREDVector(MiscReg TT, Addr &PC, Addr &NPC) 473{ 474 //XXX The following constant might belong in a header file. 475 const Addr RSTVAddr = 0xFFF0000000ULL; 476 PC = RSTVAddr | ((TT << 5) & 0xFF); 477 NPC = PC + sizeof(MachInst); 478} 479 480void 481getHyperVector(ThreadContext * tc, Addr &PC, Addr &NPC, MiscReg TT) 482{ 483 Addr HTBA = tc->readMiscRegNoEffect(MISCREG_HTBA); 484 PC = (HTBA & ~mask(14)) | ((TT << 5) & mask(14)); 485 NPC = PC + sizeof(MachInst); 486} 487 488void 489getPrivVector(ThreadContext *tc, Addr &PC, Addr &NPC, MiscReg TT, MiscReg TL) 490{ 491 Addr TBA = tc->readMiscRegNoEffect(MISCREG_TBA); 492 PC = (TBA & ~mask(15)) | 493 (TL > 1 ? (1 << 14) : 0) | 494 ((TT << 5) & mask(14)); 495 NPC = PC + sizeof(MachInst); 496} 497 498void 499SparcFaultBase::invoke(ThreadContext * tc, const StaticInstPtr &inst) 500{ 501 FaultBase::invoke(tc); 502 if (!FullSystem) 503 return; 504 505 countStat()++; 506 507 // We can refer to this to see what the trap level -was-, but something 508 // in the middle could change it in the regfile out from under us. 509 MiscReg tl = tc->readMiscRegNoEffect(MISCREG_TL); 510 MiscReg tt = tc->readMiscRegNoEffect(MISCREG_TT); 511 PSTATE pstate = tc->readMiscRegNoEffect(MISCREG_PSTATE); 512 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); 513 514 Addr PC, NPC; 515 516 PrivilegeLevel current; 517 if (hpstate.hpriv) 518 current = Hyperprivileged; 519 else if (pstate.priv) 520 current = Privileged; 521 else 522 current = User; 523 524 PrivilegeLevel level = getNextLevel(current); 525 526 if (hpstate.red || (tl == MaxTL - 1)) { 527 getREDVector(5, PC, NPC); 528 doREDFault(tc, tt); 529 // This changes the hpstate and pstate, so we need to make sure we 530 // save the old version on the trap stack in doREDFault. 531 enterREDState(tc); 532 } else if (tl == MaxTL) { 533 panic("Should go to error state here.. crap\n"); 534 // Do error_state somehow? 535 // Probably inject a WDR fault using the interrupt mechanism. 536 // What should the PC and NPC be set to? 537 } else if (tl > MaxPTL && level == Privileged) { 538 // guest_watchdog fault 539 doNormalFault(tc, trapType(), true); 540 getHyperVector(tc, PC, NPC, 2); 541 } else if (level == Hyperprivileged || 542 (level == Privileged && trapType() >= 384)) { 543 doNormalFault(tc, trapType(), true); 544 getHyperVector(tc, PC, NPC, trapType()); 545 } else { 546 doNormalFault(tc, trapType(), false); 547 getPrivVector(tc, PC, NPC, trapType(), tl + 1); 548 } 549 550 PCState pc; 551 pc.pc(PC); 552 pc.npc(NPC); 553 pc.nnpc(NPC + sizeof(MachInst)); 554 pc.upc(0); 555 pc.nupc(1); 556 tc->pcState(pc); 557} 558 559void 560PowerOnReset::invoke(ThreadContext *tc, const StaticInstPtr &inst) 561{ 562 // For SPARC, when a system is first started, there is a power 563 // on reset Trap which sets the processor into the following state. 564 // Bits that aren't set aren't defined on startup. 565 566 tc->setMiscRegNoEffect(MISCREG_TL, MaxTL); 567 tc->setMiscRegNoEffect(MISCREG_TT, trapType()); 568 tc->setMiscReg(MISCREG_GL, MaxGL); 569 570 PSTATE pstate = 0; 571 pstate.pef = 1; 572 pstate.priv = 1; 573 tc->setMiscRegNoEffect(MISCREG_PSTATE, pstate); 574 575 // Turn on red and hpriv, set everything else to 0 576 HPSTATE hpstate = tc->readMiscRegNoEffect(MISCREG_HPSTATE); 577 hpstate.red = 1; 578 hpstate.hpriv = 1; 579 hpstate.ibe = 0; 580 hpstate.tlz = 0; 581 tc->setMiscRegNoEffect(MISCREG_HPSTATE, hpstate); 582 583 // The tick register is unreadable by nonprivileged software 584 tc->setMiscRegNoEffect(MISCREG_TICK, 1ULL << 63); 585 586 // Enter RED state. We do this last so that the actual state preserved in 587 // the trap stack is the state from before this fault. 588 enterREDState(tc); 589 590 Addr PC, NPC; 591 getREDVector(trapType(), PC, NPC); 592 593 PCState pc; 594 pc.pc(PC); 595 pc.npc(NPC); 596 pc.nnpc(NPC + sizeof(MachInst)); 597 pc.upc(0); 598 pc.nupc(1); 599 tc->pcState(pc); 600 601 // These registers are specified as "undefined" after a POR, and they 602 // should have reasonable values after the miscregfile is reset 603 /* 604 // Clear all the soft interrupt bits 605 softint = 0; 606 // disable timer compare interrupts, reset tick_cmpr 607 tc->setMiscRegNoEffect(MISCREG_ 608 tick_cmprFields.int_dis = 1; 609 tick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing 610 stickFields.npt = 1; // The TICK register is unreadable by by !priv 611 stick_cmprFields.int_dis = 1; // disable timer compare interrupts 612 stick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing 613 614 tt[tl] = _trapType; 615 616 hintp = 0; // no interrupts pending 617 hstick_cmprFields.int_dis = 1; // disable timer compare interrupts 618 hstick_cmprFields.tick_cmpr = 0; // Reset to 0 for pretty printing 619 */ 620} 621 622void 623FastInstructionAccessMMUMiss::invoke(ThreadContext *tc, 624 const StaticInstPtr &inst) 625{ 626 if (FullSystem) { 627 SparcFaultBase::invoke(tc, inst); 628 return; 629 } 630 631 Process *p = tc->getProcessPtr(); 632 TlbEntry entry; 633 bool success = p->pTable->lookup(vaddr, entry); 634 if (!success) { 635 panic("Tried to execute unmapped address %#x.\n", vaddr); 636 } else { 637 Addr alignedvaddr = p->pTable->pageAlign(vaddr); 638 639 // Grab fields used during instruction translation to figure out 640 // which context to use. 641 uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA); 642 643 // Inside a VM, a real address is the address that guest OS would 644 // interpret to be a physical address. To map to the physical address, 645 // it still needs to undergo a translation. The instruction 646 // translation code in the SPARC ITLB code assumes that the context is 647 // zero (kernel-level) if real addressing is being used. 648 bool is_real_address = !bits(tlbdata, 4); 649 650 // The SPARC ITLB code assumes that traps are executed in context 651 // zero so we carry that assumption through here. 652 bool trapped = bits(tlbdata, 18, 16) > 0; 653 654 // The primary context acts as a PASID. It allows the MMU to 655 // distinguish between virtual addresses that would alias to the 656 // same physical address (if two or more processes shared the same 657 // virtual address mapping). 658 int primary_context = bits(tlbdata, 47, 32); 659 660 // The partition id distinguishes between virtualized environments. 661 int const partition_id = 0; 662 663 // Given the assumptions in the translateInst code in the SPARC ITLB, 664 // the logic works out to the following for the context. 665 int context_id = (is_real_address || trapped) ? 0 : primary_context; 666 667 // Insert the TLB entry. 668 // The entry specifying whether the address is "real" is set to 669 // false for syscall emulation mode regardless of whether the 670 // address is real in preceding code. Not sure sure that this is 671 // correct, but also not sure if it matters at all. 672 tc->getITBPtr()->insert(alignedvaddr, partition_id, context_id, 673 false, entry.pte); 674 } 675} 676 677void 678FastDataAccessMMUMiss::invoke(ThreadContext *tc, const StaticInstPtr &inst) 679{ 680 if (FullSystem) { 681 SparcFaultBase::invoke(tc, inst); 682 return; 683 } 684 685 Process *p = tc->getProcessPtr(); 686 TlbEntry entry; 687 bool success = p->pTable->lookup(vaddr, entry); 688 if (!success) { 689 if (p->fixupStackFault(vaddr)) 690 success = p->pTable->lookup(vaddr, entry); 691 } 692 if (!success) { 693 panic("Tried to access unmapped address %#x.\n", vaddr); 694 } else { 695 Addr alignedvaddr = p->pTable->pageAlign(vaddr); 696 697 // Grab fields used during data translation to figure out 698 // which context to use. 699 uint64_t tlbdata = tc->readMiscRegNoEffect(MISCREG_TLB_DATA); 700 701 // The primary context acts as a PASID. It allows the MMU to 702 // distinguish between virtual addresses that would alias to the 703 // same physical address (if two or more processes shared the same 704 // virtual address mapping). There's a secondary context used in the 705 // DTLB translation code, but it should __probably__ be zero for 706 // syscall emulation code. (The secondary context is used by Solaris 707 // to allow kernel privilege code to access user space code: 708 // [ISBN 0-13-022496-0]:PG199.) 709 int primary_context = bits(tlbdata, 47, 32); 710 711 // "Hyper-Privileged Mode" is in use. There are three main modes of 712 // operation for Sparc: Hyper-Privileged Mode, Privileged Mode, and 713 // User Mode. 714 int hpriv = bits(tlbdata, 0); 715 716 // Reset, Error and Debug state is in use. Something horrible has 717 // happened or the system is operating in Reset Mode. 718 int red = bits(tlbdata, 1); 719 720 // Inside a VM, a real address is the address that guest OS would 721 // interpret to be a physical address. To map to the physical address, 722 // it still needs to undergo a translation. The instruction 723 // translation code in the SPARC ITLB code assumes that the context is 724 // zero (kernel-level) if real addressing is being used. 725 int is_real_address = !bits(tlbdata, 5); 726 727 // Grab the address space identifier register from the thread context. 728 // XXX: Inspecting how setMiscReg and setMiscRegNoEffect behave for 729 // MISCREG_ASI causes me to think that the ASI register implementation 730 // might be bugged. The NoEffect variant changes the ASI register 731 // value in the architectural state while the normal variant changes 732 // the context field in the thread context's currently decoded request 733 // but does not directly affect the ASI register value in the 734 // architectural state. The ASI values and the context field in the 735 // request packet seem to have completely different uses. 736 MiscReg reg_asi = tc->readMiscRegNoEffect(MISCREG_ASI); 737 ASI asi = static_cast<ASI>(reg_asi); 738 739 // The SPARC DTLB code assumes that traps are executed in context 740 // zero if the asi value is ASI_IMPLICIT (which is 0x0). There's also 741 // an assumption that the nucleus address space is being used, but 742 // the context is the relevant issue since we need to pass it to TLB. 743 bool trapped = bits(tlbdata, 18, 16) > 0; 744 745 // Given the assumptions in the translateData code in the SPARC DTLB, 746 // the logic works out to the following for the context. 747 int context_id = ((!hpriv && !red && is_real_address) || 748 asiIsReal(asi) || 749 (trapped && asi == ASI_IMPLICIT)) 750 ? 0 : primary_context; 751 752 // The partition id distinguishes between virtualized environments. 753 int const partition_id = 0; 754 755 // Insert the TLB entry. 756 // The entry specifying whether the address is "real" is set to 757 // false for syscall emulation mode regardless of whether the 758 // address is real in preceding code. Not sure sure that this is 759 // correct, but also not sure if it matters at all. 760 tc->getDTBPtr()->insert(alignedvaddr, partition_id, context_id, 761 false, entry.pte); 762 } 763} 764 765void 766SpillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst) 767{ 768 if (FullSystem) { 769 SparcFaultBase::invoke(tc, inst); 770 return; 771 } 772 773 doNormalFault(tc, trapType(), false); 774 775 Process *p = tc->getProcessPtr(); 776 777 SparcProcess *sp = dynamic_cast<SparcProcess *>(p); 778 assert(sp); 779 780 // Then adjust the PC and NPC 781 tc->pcState(sp->readSpillStart()); 782} 783 784void 785FillNNormal::invoke(ThreadContext *tc, const StaticInstPtr &inst) 786{ 787 if (FullSystem) { 788 SparcFaultBase::invoke(tc, inst); 789 return; 790 } 791 792 doNormalFault(tc, trapType(), false); 793 794 Process *p = tc->getProcessPtr(); 795 796 SparcProcess *sp = dynamic_cast<SparcProcess *>(p); 797 assert(sp); 798 799 // Then adjust the PC and NPC 800 tc->pcState(sp->readFillStart()); 801} 802 803void 804TrapInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst) 805{ 806 if (FullSystem) { 807 SparcFaultBase::invoke(tc, inst); 808 return; 809 } 810 811 // In SE, this mechanism is how the process requests a service from 812 // the operating system. We'll get the process object from the thread 813 // context and let it service the request. 814 815 Process *p = tc->getProcessPtr(); 816 817 SparcProcess *sp = dynamic_cast<SparcProcess *>(p); 818 assert(sp); 819 820 Fault fault; 821 sp->handleTrap(_n, tc, &fault); 822 823 // We need to explicitly advance the pc, since that's not done for us 824 // on a faulting instruction 825 PCState pc = tc->pcState(); 826 pc.advance(); 827 tc->pcState(pc); 828} 829 830} // namespace SparcISA 831 832