process.cc revision 12431:000549e1f497
1/*
2 * Copyright (c) 2004-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 *          Ali Saidi
30 *          Korey Sewell
31 */
32
33#include "arch/mips/process.hh"
34
35#include "arch/mips/isa_traits.hh"
36#include "base/loader/elf_object.hh"
37#include "base/loader/object_file.hh"
38#include "base/logging.hh"
39#include "cpu/thread_context.hh"
40#include "debug/Loader.hh"
41#include "mem/page_table.hh"
42#include "params/Process.hh"
43#include "sim/aux_vector.hh"
44#include "sim/process.hh"
45#include "sim/process_impl.hh"
46#include "sim/syscall_return.hh"
47#include "sim/system.hh"
48
49using namespace std;
50using namespace MipsISA;
51
52MipsProcess::MipsProcess(ProcessParams *params, ObjectFile *objFile)
53    : Process(params, new FuncPageTable(params->name, params->pid), objFile)
54{
55    fatal_if(!params->useArchPT, "Arch page tables not implemented.");
56    // Set up stack. On MIPS, stack starts at the top of kuseg
57    // user address space. MIPS stack grows down from here
58    Addr stack_base = 0x7FFFFFFF;
59
60    Addr max_stack_size = 8 * 1024 * 1024;
61
62    // Set pointer for next thread stack.  Reserve 8M for main stack.
63    Addr next_thread_stack_base = stack_base - max_stack_size;
64
65    // Set up break point (Top of Heap)
66    Addr brk_point = objFile->dataBase() + objFile->dataSize() +
67                     objFile->bssSize();
68    brk_point = roundUp(brk_point, PageBytes);
69
70    // Set up region for mmaps.  Start it 1GB above the top of the heap.
71    Addr mmap_end = brk_point + 0x40000000L;
72
73    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
74                                     next_thread_stack_base, mmap_end);
75}
76
77void
78MipsProcess::initState()
79{
80    Process::initState();
81
82    argsInit<uint32_t>(PageBytes);
83}
84
85template<class IntType>
86void
87MipsProcess::argsInit(int pageSize)
88{
89    int intSize = sizeof(IntType);
90
91    // Patch the ld_bias for dynamic executables.
92    updateBias();
93
94    // load object file into target memory
95    objFile->loadSections(initVirtMem);
96
97    typedef AuxVector<IntType> auxv_t;
98    std::vector<auxv_t> auxv;
99
100    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
101    if (elfObject)
102    {
103        // Set the system page size
104        auxv.push_back(auxv_t(M5_AT_PAGESZ, MipsISA::PageBytes));
105        // Set the frequency at which time() increments
106        auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
107        // For statically linked executables, this is the virtual
108        // address of the program header tables if they appear in the
109        // executable image.
110        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
111        DPRINTF(Loader, "auxv at PHDR %08p\n", elfObject->programHeaderTable());
112        // This is the size of a program header entry from the elf file.
113        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
114        // This is the number of program headers from the original elf file.
115        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
116        // This is the base address of the ELF interpreter; it should be
117        // zero for static executables or contain the base address for
118        // dynamic executables.
119        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
120        //The entry point to the program
121        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
122        //Different user and group IDs
123        auxv.push_back(auxv_t(M5_AT_UID, uid()));
124        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
125        auxv.push_back(auxv_t(M5_AT_GID, gid()));
126        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
127    }
128
129    // Calculate how much space we need for arg & env & auxv arrays.
130    int argv_array_size = intSize * (argv.size() + 1);
131    int envp_array_size = intSize * (envp.size() + 1);
132    int auxv_array_size = intSize * 2 * (auxv.size() + 1);
133
134    int arg_data_size = 0;
135    for (vector<string>::size_type i = 0; i < argv.size(); ++i) {
136        arg_data_size += argv[i].size() + 1;
137    }
138    int env_data_size = 0;
139    for (vector<string>::size_type i = 0; i < envp.size(); ++i) {
140        env_data_size += envp[i].size() + 1;
141    }
142
143    int space_needed =
144        argv_array_size +
145        envp_array_size +
146        auxv_array_size +
147        arg_data_size +
148        env_data_size;
149
150    // set bottom of stack
151    memState->setStackMin(memState->getStackBase() - space_needed);
152    // align it
153    memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
154    memState->setStackSize(memState->getStackBase() - memState->getStackMin());
155    // map memory
156    allocateMem(memState->getStackMin(), roundUp(memState->getStackSize(),
157                pageSize));
158
159    // map out initial stack contents; leave room for argc
160    IntType argv_array_base = memState->getStackMin() + intSize;
161    IntType envp_array_base = argv_array_base + argv_array_size;
162    IntType auxv_array_base = envp_array_base + envp_array_size;
163    IntType arg_data_base = auxv_array_base + auxv_array_size;
164    IntType env_data_base = arg_data_base + arg_data_size;
165
166    // write contents to stack
167    IntType argc = argv.size();
168
169    argc = htog((IntType)argc);
170
171    initVirtMem.writeBlob(memState->getStackMin(), (uint8_t*)&argc, intSize);
172
173    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
174
175    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
176
177    // Copy the aux vector
178    for (typename vector<auxv_t>::size_type x = 0; x < auxv.size(); x++) {
179        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
180                (uint8_t*)&(auxv[x].a_type), intSize);
181        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
182                (uint8_t*)&(auxv[x].a_val), intSize);
183    }
184
185    // Write out the terminating zeroed auxilliary vector
186    for (unsigned i = 0; i < 2; i++) {
187        const IntType zero = 0;
188        const Addr addr = auxv_array_base + 2 * intSize * (auxv.size() + i);
189        initVirtMem.writeBlob(addr, (uint8_t*)&zero, intSize);
190    }
191
192    ThreadContext *tc = system->getThreadContext(contextIds[0]);
193
194    setSyscallArg(tc, 0, argc);
195    setSyscallArg(tc, 1, argv_array_base);
196    tc->setIntReg(StackPointerReg, memState->getStackMin());
197
198    tc->pcState(getStartPC());
199}
200
201
202MipsISA::IntReg
203MipsProcess::getSyscallArg(ThreadContext *tc, int &i)
204{
205    assert(i < 6);
206    return tc->readIntReg(FirstArgumentReg + i++);
207}
208
209void
210MipsProcess::setSyscallArg(ThreadContext *tc, int i, MipsISA::IntReg val)
211{
212    assert(i < 6);
213    tc->setIntReg(FirstArgumentReg + i, val);
214}
215
216void
217MipsProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
218{
219    if (sysret.successful()) {
220        // no error
221        tc->setIntReg(SyscallSuccessReg, 0);
222        tc->setIntReg(ReturnValueReg, sysret.returnValue());
223    } else {
224        // got an error, return details
225        tc->setIntReg(SyscallSuccessReg, (IntReg) -1);
226        tc->setIntReg(ReturnValueReg, sysret.errnoValue());
227    }
228}
229