isa_parser.py revision 12222:6db0fc7407a5
1# Copyright (c) 2014, 2016 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64    return re.sub(r'(?m)^(?!#)', '  ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation.  Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation.  Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84    # get rid of blank lines first
85    s = re.sub(r'(?m)^\s*\n', '', s);
86    if (s != '' and re.match(r'[ \t]', s[0])):
87        s = 'if 1:\n' + s
88    return s
89
90class ISAParserError(Exception):
91    """Exception class for parser errors"""
92    def __init__(self, first, second=None):
93        if second is None:
94            self.lineno = 0
95            self.string = first
96        else:
97            self.lineno = first
98            self.string = second
99
100    def __str__(self):
101        return self.string
102
103def error(*args):
104    raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115    def __init__(self, parser, t):
116        self.parser = parser
117        self.template = t
118
119    def subst(self, d):
120        myDict = None
121
122        # Protect non-Python-dict substitutions (e.g. if there's a printf
123        # in the templated C++ code)
124        template = self.parser.protectNonSubstPercents(self.template)
125        # CPU-model-specific substitutions are handled later (in GenCode).
126        template = self.parser.protectCpuSymbols(template)
127
128        # Build a dict ('myDict') to use for the template substitution.
129        # Start with the template namespace.  Make a copy since we're
130        # going to modify it.
131        myDict = self.parser.templateMap.copy()
132
133        if isinstance(d, InstObjParams):
134            # If we're dealing with an InstObjParams object, we need
135            # to be a little more sophisticated.  The instruction-wide
136            # parameters are already formed, but the parameters which
137            # are only function wide still need to be generated.
138            compositeCode = ''
139
140            myDict.update(d.__dict__)
141            # The "operands" and "snippets" attributes of the InstObjParams
142            # objects are for internal use and not substitution.
143            del myDict['operands']
144            del myDict['snippets']
145
146            snippetLabels = [l for l in labelRE.findall(template)
147                             if d.snippets.has_key(l)]
148
149            snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150                             for s in snippetLabels])
151
152            myDict.update(snippets)
153
154            compositeCode = ' '.join(map(str, snippets.values()))
155
156            # Add in template itself in case it references any
157            # operands explicitly (like Mem)
158            compositeCode += ' ' + template
159
160            operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163            if operands.readPC or operands.setPC:
164                myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166            # In case there are predicated register reads and write, declare
167            # the variables for register indicies. It is being assumed that
168            # all the operands in the OperandList are also in the
169            # SubOperandList and in the same order. Otherwise, it is
170            # expected that predication would not be used for the operands.
171            if operands.predRead:
172                myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173            if operands.predWrite:
174                myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176            is_src = lambda op: op.is_src
177            is_dest = lambda op: op.is_dest
178
179            myDict['op_src_decl'] = \
180                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181            myDict['op_dest_decl'] = \
182                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183            if operands.readPC:
184                myDict['op_src_decl'] += \
185                    'TheISA::PCState __parserAutoPCState;\n'
186            if operands.setPC:
187                myDict['op_dest_decl'] += \
188                    'TheISA::PCState __parserAutoPCState;\n'
189
190            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191            if operands.readPC:
192                myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193                                  myDict['op_rd']
194
195            # Compose the op_wb string. If we're going to write back the
196            # PC state because we changed some of its elements, we'll need to
197            # do that as early as possible. That allows later uncoordinated
198            # modifications to the PC to layer appropriately.
199            reordered = list(operands.items)
200            reordered.reverse()
201            op_wb_str = ''
202            pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203            for op_desc in reordered:
204                if op_desc.isPCPart() and op_desc.is_dest:
205                    op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206                    pcWbStr = ''
207                else:
208                    op_wb_str = op_desc.op_wb + op_wb_str
209            myDict['op_wb'] = op_wb_str
210
211        elif isinstance(d, dict):
212            # if the argument is a dictionary, we just use it.
213            myDict.update(d)
214        elif hasattr(d, '__dict__'):
215            # if the argument is an object, we use its attribute map.
216            myDict.update(d.__dict__)
217        else:
218            raise TypeError, "Template.subst() arg must be or have dictionary"
219        return template % myDict
220
221    # Convert to string.  This handles the case when a template with a
222    # CPU-specific term gets interpolated into another template or into
223    # an output block.
224    def __str__(self):
225        return self.parser.expandCpuSymbolsToString(self.template)
226
227################
228# Format object.
229#
230# A format object encapsulates an instruction format.  It must provide
231# a defineInst() method that generates the code for an instruction
232# definition.
233
234class Format(object):
235    def __init__(self, id, params, code):
236        self.id = id
237        self.params = params
238        label = 'def format ' + id
239        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240        param_list = string.join(params, ", ")
241        f = '''def defInst(_code, _context, %s):
242                my_locals = vars().copy()
243                exec _code in _context, my_locals
244                return my_locals\n''' % param_list
245        c = compile(f, label + ' wrapper', 'exec')
246        exec c
247        self.func = defInst
248
249    def defineInst(self, parser, name, args, lineno):
250        parser.updateExportContext()
251        context = parser.exportContext.copy()
252        if len(name):
253            Name = name[0].upper()
254            if len(name) > 1:
255                Name += name[1:]
256        context.update({ 'name' : name, 'Name' : Name })
257        try:
258            vars = self.func(self.user_code, context, *args[0], **args[1])
259        except Exception, exc:
260            if debug:
261                raise
262            error(lineno, 'error defining "%s": %s.' % (name, exc))
263        for k in vars.keys():
264            if k not in ('header_output', 'decoder_output',
265                         'exec_output', 'decode_block'):
266                del vars[k]
267        return GenCode(parser, **vars)
268
269# Special null format to catch an implicit-format instruction
270# definition outside of any format block.
271class NoFormat(object):
272    def __init__(self):
273        self.defaultInst = ''
274
275    def defineInst(self, parser, name, args, lineno):
276        error(lineno,
277              'instruction definition "%s" with no active format!' % name)
278
279###############
280# GenCode class
281#
282# The GenCode class encapsulates generated code destined for various
283# output files.  The header_output and decoder_output attributes are
284# strings containing code destined for decoder.hh and decoder.cc
285# respectively.  The decode_block attribute contains code to be
286# incorporated in the decode function itself (that will also end up in
287# decoder.cc).  The exec_output attribute is a dictionary with a key
288# for each CPU model name; the value associated with a particular key
289# is the string of code for that CPU model's exec.cc file.  The
290# has_decode_default attribute is used in the decode block to allow
291# explicit default clauses to override default default clauses.
292
293class GenCode(object):
294    # Constructor.  At this point we substitute out all CPU-specific
295    # symbols.  For the exec output, these go into the per-model
296    # dictionary.  For all other output types they get collapsed into
297    # a single string.
298    def __init__(self, parser,
299                 header_output = '', decoder_output = '', exec_output = '',
300                 decode_block = '', has_decode_default = False):
301        self.parser = parser
302        self.header_output = parser.expandCpuSymbolsToString(header_output)
303        self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304        self.exec_output = exec_output
305        self.decode_block = decode_block
306        self.has_decode_default = has_decode_default
307
308    # Write these code chunks out to the filesystem.  They will be properly
309    # interwoven by the write_top_level_files().
310    def emit(self):
311        if self.header_output:
312            self.parser.get_file('header').write(self.header_output)
313        if self.decoder_output:
314            self.parser.get_file('decoder').write(self.decoder_output)
315        if self.exec_output:
316            self.parser.get_file('exec').write(self.exec_output)
317        if self.decode_block:
318            self.parser.get_file('decode_block').write(self.decode_block)
319
320    # Override '+' operator: generate a new GenCode object that
321    # concatenates all the individual strings in the operands.
322    def __add__(self, other):
323        return GenCode(self.parser,
324                       self.header_output + other.header_output,
325                       self.decoder_output + other.decoder_output,
326                       self.exec_output + other.exec_output,
327                       self.decode_block + other.decode_block,
328                       self.has_decode_default or other.has_decode_default)
329
330    # Prepend a string (typically a comment) to all the strings.
331    def prepend_all(self, pre):
332        self.header_output = pre + self.header_output
333        self.decoder_output  = pre + self.decoder_output
334        self.decode_block = pre + self.decode_block
335        self.exec_output  = pre + self.exec_output
336
337    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338    # and 'break;').  Used to build the big nested switch statement.
339    def wrap_decode_block(self, pre, post = ''):
340        self.decode_block = pre + indent(self.decode_block) + post
341
342#####################################################################
343#
344#                      Bitfield Operator Support
345#
346#####################################################################
347
348bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353def substBitOps(code):
354    # first convert single-bit selectors to two-index form
355    # i.e., <n> --> <n:n>
356    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357    # simple case: selector applied to ID (name)
358    # i.e., foo<a:b> --> bits(foo, a, b)
359    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360    # if selector is applied to expression (ending in ')'),
361    # we need to search backward for matching '('
362    match = bitOpExprRE.search(code)
363    while match:
364        exprEnd = match.start()
365        here = exprEnd - 1
366        nestLevel = 1
367        while nestLevel > 0:
368            if code[here] == '(':
369                nestLevel -= 1
370            elif code[here] == ')':
371                nestLevel += 1
372            here -= 1
373            if here < 0:
374                sys.exit("Didn't find '('!")
375        exprStart = here+1
376        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377                                         match.group(1), match.group(2))
378        code = code[:exprStart] + newExpr + code[match.end():]
379        match = bitOpExprRE.search(code)
380    return code
381
382
383#####################################################################
384#
385#                             Code Parser
386#
387# The remaining code is the support for automatically extracting
388# instruction characteristics from pseudocode.
389#
390#####################################################################
391
392# Force the argument to be a list.  Useful for flags, where a caller
393# can specify a singleton flag or a list of flags.  Also usful for
394# converting tuples to lists so they can be modified.
395def makeList(arg):
396    if isinstance(arg, list):
397        return arg
398    elif isinstance(arg, tuple):
399        return list(arg)
400    elif not arg:
401        return []
402    else:
403        return [ arg ]
404
405class Operand(object):
406    '''Base class for operand descriptors.  An instance of this class
407    (or actually a class derived from this one) represents a specific
408    operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409    derived classes encapsulates the traits of a particular operand
410    type (e.g., "32-bit integer register").'''
411
412    def buildReadCode(self, func = None):
413        subst_dict = {"name": self.base_name,
414                      "func": func,
415                      "reg_idx": self.reg_spec,
416                      "ctype": self.ctype}
417        if hasattr(self, 'src_reg_idx'):
418            subst_dict['op_idx'] = self.src_reg_idx
419        code = self.read_code % subst_dict
420        return '%s = %s;\n' % (self.base_name, code)
421
422    def buildWriteCode(self, func = None):
423        subst_dict = {"name": self.base_name,
424                      "func": func,
425                      "reg_idx": self.reg_spec,
426                      "ctype": self.ctype,
427                      "final_val": self.base_name}
428        if hasattr(self, 'dest_reg_idx'):
429            subst_dict['op_idx'] = self.dest_reg_idx
430        code = self.write_code % subst_dict
431        return '''
432        {
433            %s final_val = %s;
434            %s;
435            if (traceData) { traceData->setData(final_val); }
436        }''' % (self.dflt_ctype, self.base_name, code)
437
438    def __init__(self, parser, full_name, ext, is_src, is_dest):
439        self.full_name = full_name
440        self.ext = ext
441        self.is_src = is_src
442        self.is_dest = is_dest
443        # The 'effective extension' (eff_ext) is either the actual
444        # extension, if one was explicitly provided, or the default.
445        if ext:
446            self.eff_ext = ext
447        elif hasattr(self, 'dflt_ext'):
448            self.eff_ext = self.dflt_ext
449
450        if hasattr(self, 'eff_ext'):
451            self.ctype = parser.operandTypeMap[self.eff_ext]
452
453    # Finalize additional fields (primarily code fields).  This step
454    # is done separately since some of these fields may depend on the
455    # register index enumeration that hasn't been performed yet at the
456    # time of __init__(). The register index enumeration is affected
457    # by predicated register reads/writes. Hence, we forward the flags
458    # that indicate whether or not predication is in use.
459    def finalize(self, predRead, predWrite):
460        self.flags = self.getFlags()
461        self.constructor = self.makeConstructor(predRead, predWrite)
462        self.op_decl = self.makeDecl()
463
464        if self.is_src:
465            self.op_rd = self.makeRead(predRead)
466            self.op_src_decl = self.makeDecl()
467        else:
468            self.op_rd = ''
469            self.op_src_decl = ''
470
471        if self.is_dest:
472            self.op_wb = self.makeWrite(predWrite)
473            self.op_dest_decl = self.makeDecl()
474        else:
475            self.op_wb = ''
476            self.op_dest_decl = ''
477
478    def isMem(self):
479        return 0
480
481    def isReg(self):
482        return 0
483
484    def isFloatReg(self):
485        return 0
486
487    def isIntReg(self):
488        return 0
489
490    def isCCReg(self):
491        return 0
492
493    def isControlReg(self):
494        return 0
495
496    def isVecReg(self):
497        return 0
498
499    def isVecElem(self):
500        return 0
501
502    def isPCState(self):
503        return 0
504
505    def isPCPart(self):
506        return self.isPCState() and self.reg_spec
507
508    def hasReadPred(self):
509        return self.read_predicate != None
510
511    def hasWritePred(self):
512        return self.write_predicate != None
513
514    def getFlags(self):
515        # note the empty slice '[:]' gives us a copy of self.flags[0]
516        # instead of a reference to it
517        my_flags = self.flags[0][:]
518        if self.is_src:
519            my_flags += self.flags[1]
520        if self.is_dest:
521            my_flags += self.flags[2]
522        return my_flags
523
524    def makeDecl(self):
525        # Note that initializations in the declarations are solely
526        # to avoid 'uninitialized variable' errors from the compiler.
527        return self.ctype + ' ' + self.base_name + ' = 0;\n';
528
529
530src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
531dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
532
533
534class IntRegOperand(Operand):
535    reg_class = 'IntRegClass'
536
537    def isReg(self):
538        return 1
539
540    def isIntReg(self):
541        return 1
542
543    def makeConstructor(self, predRead, predWrite):
544        c_src = ''
545        c_dest = ''
546
547        if self.is_src:
548            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
549            if self.hasReadPred():
550                c_src = '\n\tif (%s) {%s\n\t}' % \
551                        (self.read_predicate, c_src)
552
553        if self.is_dest:
554            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
555            c_dest += '\n\t_numIntDestRegs++;'
556            if self.hasWritePred():
557                c_dest = '\n\tif (%s) {%s\n\t}' % \
558                         (self.write_predicate, c_dest)
559
560        return c_src + c_dest
561
562    def makeRead(self, predRead):
563        if (self.ctype == 'float' or self.ctype == 'double'):
564            error('Attempt to read integer register as FP')
565        if self.read_code != None:
566            return self.buildReadCode('readIntRegOperand')
567
568        int_reg_val = ''
569        if predRead:
570            int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
571            if self.hasReadPred():
572                int_reg_val = '(%s) ? %s : 0' % \
573                              (self.read_predicate, int_reg_val)
574        else:
575            int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
576
577        return '%s = %s;\n' % (self.base_name, int_reg_val)
578
579    def makeWrite(self, predWrite):
580        if (self.ctype == 'float' or self.ctype == 'double'):
581            error('Attempt to write integer register as FP')
582        if self.write_code != None:
583            return self.buildWriteCode('setIntRegOperand')
584
585        if predWrite:
586            wp = 'true'
587            if self.hasWritePred():
588                wp = self.write_predicate
589
590            wcond = 'if (%s)' % (wp)
591            windex = '_destIndex++'
592        else:
593            wcond = ''
594            windex = '%d' % self.dest_reg_idx
595
596        wb = '''
597        %s
598        {
599            %s final_val = %s;
600            xc->setIntRegOperand(this, %s, final_val);\n
601            if (traceData) { traceData->setData(final_val); }
602        }''' % (wcond, self.ctype, self.base_name, windex)
603
604        return wb
605
606class FloatRegOperand(Operand):
607    reg_class = 'FloatRegClass'
608
609    def isReg(self):
610        return 1
611
612    def isFloatReg(self):
613        return 1
614
615    def makeConstructor(self, predRead, predWrite):
616        c_src = ''
617        c_dest = ''
618
619        if self.is_src:
620            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
621
622        if self.is_dest:
623            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
624            c_dest += '\n\t_numFPDestRegs++;'
625
626        return c_src + c_dest
627
628    def makeRead(self, predRead):
629        bit_select = 0
630        if (self.ctype == 'float' or self.ctype == 'double'):
631            func = 'readFloatRegOperand'
632        else:
633            func = 'readFloatRegOperandBits'
634        if self.read_code != None:
635            return self.buildReadCode(func)
636
637        if predRead:
638            rindex = '_sourceIndex++'
639        else:
640            rindex = '%d' % self.src_reg_idx
641
642        return '%s = xc->%s(this, %s);\n' % \
643            (self.base_name, func, rindex)
644
645    def makeWrite(self, predWrite):
646        if (self.ctype == 'float' or self.ctype == 'double'):
647            func = 'setFloatRegOperand'
648        else:
649            func = 'setFloatRegOperandBits'
650        if self.write_code != None:
651            return self.buildWriteCode(func)
652
653        if predWrite:
654            wp = '_destIndex++'
655        else:
656            wp = '%d' % self.dest_reg_idx
657        wp = 'xc->%s(this, %s, final_val);' % (func, wp)
658
659        wb = '''
660        {
661            %s final_val = %s;
662            %s\n
663            if (traceData) { traceData->setData(final_val); }
664        }''' % (self.ctype, self.base_name, wp)
665        return wb
666
667class VecRegOperand(Operand):
668    reg_class = 'VecRegClass'
669
670    def __init__(self, parser, full_name, ext, is_src, is_dest):
671        Operand.__init__(self, parser, full_name, ext, is_src, is_dest)
672        self.elemExt = None
673        self.parser = parser
674
675    def isReg(self):
676        return 1
677
678    def isVecReg(self):
679        return 1
680
681    def makeDeclElem(self, elem_op):
682        (elem_name, elem_ext) = elem_op
683        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
684        if elem_ext:
685            ext = elem_ext
686        else:
687            ext = dflt_elem_ext
688        ctype = self.parser.operandTypeMap[ext]
689        return '\n\t%s %s = 0;' % (ctype, elem_name)
690
691    def makeDecl(self):
692        if not self.is_dest and self.is_src:
693            c_decl = '\t/* Vars for %s*/' % (self.base_name)
694            if hasattr(self, 'active_elems'):
695                if self.active_elems:
696                    for elem in self.active_elems:
697                        c_decl += self.makeDeclElem(elem)
698            return c_decl + '\t/* End vars for %s */\n' % (self.base_name)
699        else:
700            return ''
701
702    def makeConstructor(self, predRead, predWrite):
703        c_src = ''
704        c_dest = ''
705
706        numAccessNeeded = 1
707
708        if self.is_src:
709            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
710
711        if self.is_dest:
712            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
713            c_dest += '\n\t_numVecDestRegs++;'
714
715        return c_src + c_dest
716
717    # Read destination register to write
718    def makeReadWElem(self, elem_op):
719        (elem_name, elem_ext) = elem_op
720        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
721        if elem_ext:
722            ext = elem_ext
723        else:
724            ext = dflt_elem_ext
725        ctype = self.parser.operandTypeMap[ext]
726        c_read = '\t\t%s& %s = %s[%s];\n' % \
727                  (ctype, elem_name, self.base_name, elem_spec)
728        return c_read
729
730    def makeReadW(self, predWrite):
731        func = 'getWritableVecRegOperand'
732        if self.read_code != None:
733            return self.buildReadCode(func)
734
735        if predWrite:
736            rindex = '_destIndex++'
737        else:
738            rindex = '%d' % self.dest_reg_idx
739
740        c_readw = '\t\t%s& tmp_d%s = xc->%s(this, %s);\n'\
741                % ('TheISA::VecRegContainer', rindex, func, rindex)
742        if self.elemExt:
743            c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
744                        rindex, self.parser.operandTypeMap[self.elemExt])
745        if self.ext:
746            c_readw += '\t\tauto %s = tmp_d%s.as<%s>();\n' % (self.base_name,
747                        rindex, self.parser.operandTypeMap[self.ext])
748        if hasattr(self, 'active_elems'):
749            if self.active_elems:
750                for elem in self.active_elems:
751                    c_readw += self.makeReadWElem(elem)
752        return c_readw
753
754    # Normal source operand read
755    def makeReadElem(self, elem_op, name):
756        (elem_name, elem_ext) = elem_op
757        (elem_spec, dflt_elem_ext, zeroing) = self.elems[elem_name]
758
759        if elem_ext:
760            ext = elem_ext
761        else:
762            ext = dflt_elem_ext
763        ctype = self.parser.operandTypeMap[ext]
764        c_read = '\t\t%s = %s[%s];\n' % \
765                  (elem_name, name, elem_spec)
766        return c_read
767
768    def makeRead(self, predRead):
769        func = 'readVecRegOperand'
770        if self.read_code != None:
771            return self.buildReadCode(func)
772
773        if predRead:
774            rindex = '_sourceIndex++'
775        else:
776            rindex = '%d' % self.src_reg_idx
777
778        name = self.base_name
779        if self.is_dest and self.is_src:
780            name += '_merger'
781
782        c_read =  '\t\t%s& tmp_s%s = xc->%s(this, %s);\n' \
783                % ('const TheISA::VecRegContainer', rindex, func, rindex)
784        # If the parser has detected that elements are being access, create
785        # the appropriate view
786        if self.elemExt:
787            c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
788                 (name, rindex, self.parser.operandTypeMap[self.elemExt])
789        if self.ext:
790            c_read += '\t\tauto %s = tmp_s%s.as<%s>();\n' % \
791                 (name, rindex, self.parser.operandTypeMap[self.ext])
792        if hasattr(self, 'active_elems'):
793            if self.active_elems:
794                for elem in self.active_elems:
795                    c_read += self.makeReadElem(elem, name)
796        return c_read
797
798    def makeWrite(self, predWrite):
799        func = 'setVecRegOperand'
800        if self.write_code != None:
801            return self.buildWriteCode(func)
802
803        wb = '''
804        if (traceData) {
805            warn_once("Vectors not supported yet in tracedata");
806            /*traceData->setData(final_val);*/
807        }
808        '''
809        return wb
810
811    def finalize(self, predRead, predWrite):
812        super(VecRegOperand, self).finalize(predRead, predWrite)
813        if self.is_dest:
814            self.op_rd = self.makeReadW(predWrite) + self.op_rd
815
816class VecElemOperand(Operand):
817    reg_class = 'VectorElemClass'
818
819    def isReg(self):
820        return 1
821
822    def isVecElem(self):
823        return 1
824
825    def makeDecl(self):
826        if self.is_dest and not self.is_src:
827            return '\n\t%s %s;' % (self.ctype, self.base_name)
828        else:
829            return ''
830
831    def makeConstructor(self, predRead, predWrite):
832        c_src = ''
833        c_dest = ''
834
835        numAccessNeeded = 1
836        regId = 'RegId(%s, %s * numVecElemPerVecReg + elemIdx, %s)' % \
837                (self.reg_class, self.reg_spec)
838
839        if self.is_src:
840            c_src = ('\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s, %s);' %
841                    (self.reg_class, self.reg_spec, self.elem_spec))
842
843        if self.is_dest:
844            c_dest = ('\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s, %s);' %
845                    (self.reg_class, self.reg_spec, self.elem_spec))
846            c_dest += '\n\t_numVecElemDestRegs++;'
847        return c_src + c_dest
848
849    def makeRead(self, predRead):
850        c_read = ('\n/* Elem is kept inside the operand description */' +
851                  '\n\tVecElem %s = xc->readVecElemOperand(this, %d);' %
852                  (self.base_name, self.src_reg_idx))
853        return c_read
854
855    def makeWrite(self, predWrite):
856        c_write = ('\n/* Elem is kept inside the operand description */' +
857                   '\n\txc->setVecElemOperand(this, %d, %s);' %
858                   (self.dest_reg_idx, self.base_name))
859        return c_write
860
861class CCRegOperand(Operand):
862    reg_class = 'CCRegClass'
863
864    def isReg(self):
865        return 1
866
867    def isCCReg(self):
868        return 1
869
870    def makeConstructor(self, predRead, predWrite):
871        c_src = ''
872        c_dest = ''
873
874        if self.is_src:
875            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
876            if self.hasReadPred():
877                c_src = '\n\tif (%s) {%s\n\t}' % \
878                        (self.read_predicate, c_src)
879
880        if self.is_dest:
881            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
882            c_dest += '\n\t_numCCDestRegs++;'
883            if self.hasWritePred():
884                c_dest = '\n\tif (%s) {%s\n\t}' % \
885                         (self.write_predicate, c_dest)
886
887        return c_src + c_dest
888
889    def makeRead(self, predRead):
890        if (self.ctype == 'float' or self.ctype == 'double'):
891            error('Attempt to read condition-code register as FP')
892        if self.read_code != None:
893            return self.buildReadCode('readCCRegOperand')
894
895        int_reg_val = ''
896        if predRead:
897            int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
898            if self.hasReadPred():
899                int_reg_val = '(%s) ? %s : 0' % \
900                              (self.read_predicate, int_reg_val)
901        else:
902            int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
903
904        return '%s = %s;\n' % (self.base_name, int_reg_val)
905
906    def makeWrite(self, predWrite):
907        if (self.ctype == 'float' or self.ctype == 'double'):
908            error('Attempt to write condition-code register as FP')
909        if self.write_code != None:
910            return self.buildWriteCode('setCCRegOperand')
911
912        if predWrite:
913            wp = 'true'
914            if self.hasWritePred():
915                wp = self.write_predicate
916
917            wcond = 'if (%s)' % (wp)
918            windex = '_destIndex++'
919        else:
920            wcond = ''
921            windex = '%d' % self.dest_reg_idx
922
923        wb = '''
924        %s
925        {
926            %s final_val = %s;
927            xc->setCCRegOperand(this, %s, final_val);\n
928            if (traceData) { traceData->setData(final_val); }
929        }''' % (wcond, self.ctype, self.base_name, windex)
930
931        return wb
932
933class ControlRegOperand(Operand):
934    reg_class = 'MiscRegClass'
935
936    def isReg(self):
937        return 1
938
939    def isControlReg(self):
940        return 1
941
942    def makeConstructor(self, predRead, predWrite):
943        c_src = ''
944        c_dest = ''
945
946        if self.is_src:
947            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
948
949        if self.is_dest:
950            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
951
952        return c_src + c_dest
953
954    def makeRead(self, predRead):
955        bit_select = 0
956        if (self.ctype == 'float' or self.ctype == 'double'):
957            error('Attempt to read control register as FP')
958        if self.read_code != None:
959            return self.buildReadCode('readMiscRegOperand')
960
961        if predRead:
962            rindex = '_sourceIndex++'
963        else:
964            rindex = '%d' % self.src_reg_idx
965
966        return '%s = xc->readMiscRegOperand(this, %s);\n' % \
967            (self.base_name, rindex)
968
969    def makeWrite(self, predWrite):
970        if (self.ctype == 'float' or self.ctype == 'double'):
971            error('Attempt to write control register as FP')
972        if self.write_code != None:
973            return self.buildWriteCode('setMiscRegOperand')
974
975        if predWrite:
976            windex = '_destIndex++'
977        else:
978            windex = '%d' % self.dest_reg_idx
979
980        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
981             (windex, self.base_name)
982        wb += 'if (traceData) { traceData->setData(%s); }' % \
983              self.base_name
984
985        return wb
986
987class MemOperand(Operand):
988    def isMem(self):
989        return 1
990
991    def makeConstructor(self, predRead, predWrite):
992        return ''
993
994    def makeDecl(self):
995        # Declare memory data variable.
996        return '%s %s;\n' % (self.ctype, self.base_name)
997
998    def makeRead(self, predRead):
999        if self.read_code != None:
1000            return self.buildReadCode()
1001        return ''
1002
1003    def makeWrite(self, predWrite):
1004        if self.write_code != None:
1005            return self.buildWriteCode()
1006        return ''
1007
1008class PCStateOperand(Operand):
1009    def makeConstructor(self, predRead, predWrite):
1010        return ''
1011
1012    def makeRead(self, predRead):
1013        if self.reg_spec:
1014            # A component of the PC state.
1015            return '%s = __parserAutoPCState.%s();\n' % \
1016                (self.base_name, self.reg_spec)
1017        else:
1018            # The whole PC state itself.
1019            return '%s = xc->pcState();\n' % self.base_name
1020
1021    def makeWrite(self, predWrite):
1022        if self.reg_spec:
1023            # A component of the PC state.
1024            return '__parserAutoPCState.%s(%s);\n' % \
1025                (self.reg_spec, self.base_name)
1026        else:
1027            # The whole PC state itself.
1028            return 'xc->pcState(%s);\n' % self.base_name
1029
1030    def makeDecl(self):
1031        ctype = 'TheISA::PCState'
1032        if self.isPCPart():
1033            ctype = self.ctype
1034        # Note that initializations in the declarations are solely
1035        # to avoid 'uninitialized variable' errors from the compiler.
1036        return '%s %s = 0;\n' % (ctype, self.base_name)
1037
1038    def isPCState(self):
1039        return 1
1040
1041class OperandList(object):
1042    '''Find all the operands in the given code block.  Returns an operand
1043    descriptor list (instance of class OperandList).'''
1044    def __init__(self, parser, code):
1045        self.items = []
1046        self.bases = {}
1047        # delete strings and comments so we don't match on operands inside
1048        for regEx in (stringRE, commentRE):
1049            code = regEx.sub('', code)
1050        # search for operands
1051        next_pos = 0
1052        while 1:
1053            match = parser.operandsRE.search(code, next_pos)
1054            if not match:
1055                # no more matches: we're done
1056                break
1057            op = match.groups()
1058            # regexp groups are operand full name, base, and extension
1059            (op_full, op_base, op_ext) = op
1060            # If is a elem operand, define or update the corresponding
1061            # vector operand
1062            isElem = False
1063            if op_base in parser.elemToVector:
1064                isElem = True
1065                elem_op = (op_base, op_ext)
1066                op_base = parser.elemToVector[op_base]
1067                op_ext = '' # use the default one
1068            # if the token following the operand is an assignment, this is
1069            # a destination (LHS), else it's a source (RHS)
1070            is_dest = (assignRE.match(code, match.end()) != None)
1071            is_src = not is_dest
1072
1073            # see if we've already seen this one
1074            op_desc = self.find_base(op_base)
1075            if op_desc:
1076                if op_ext and op_ext != '' and op_desc.ext != op_ext:
1077                    error ('Inconsistent extensions for operand %s: %s - %s' \
1078                            % (op_base, op_desc.ext, op_ext))
1079                op_desc.is_src = op_desc.is_src or is_src
1080                op_desc.is_dest = op_desc.is_dest or is_dest
1081                if isElem:
1082                    (elem_base, elem_ext) = elem_op
1083                    found = False
1084                    for ae in op_desc.active_elems:
1085                        (ae_base, ae_ext) = ae
1086                        if ae_base == elem_base:
1087                            if ae_ext != elem_ext:
1088                                error('Inconsistent extensions for elem'
1089                                      ' operand %s' % elem_base)
1090                            else:
1091                                found = True
1092                    if not found:
1093                        op_desc.active_elems.append(elem_op)
1094            else:
1095                # new operand: create new descriptor
1096                op_desc = parser.operandNameMap[op_base](parser,
1097                    op_full, op_ext, is_src, is_dest)
1098                # if operand is a vector elem, add the corresponding vector
1099                # operand if not already done
1100                if isElem:
1101                    op_desc.elemExt = elem_op[1]
1102                    op_desc.active_elems = [elem_op]
1103                self.append(op_desc)
1104            # start next search after end of current match
1105            next_pos = match.end()
1106        self.sort()
1107        # enumerate source & dest register operands... used in building
1108        # constructor later
1109        self.numSrcRegs = 0
1110        self.numDestRegs = 0
1111        self.numFPDestRegs = 0
1112        self.numIntDestRegs = 0
1113        self.numVecDestRegs = 0
1114        self.numCCDestRegs = 0
1115        self.numMiscDestRegs = 0
1116        self.memOperand = None
1117
1118        # Flags to keep track if one or more operands are to be read/written
1119        # conditionally.
1120        self.predRead = False
1121        self.predWrite = False
1122
1123        for op_desc in self.items:
1124            if op_desc.isReg():
1125                if op_desc.is_src:
1126                    op_desc.src_reg_idx = self.numSrcRegs
1127                    self.numSrcRegs += 1
1128                if op_desc.is_dest:
1129                    op_desc.dest_reg_idx = self.numDestRegs
1130                    self.numDestRegs += 1
1131                    if op_desc.isFloatReg():
1132                        self.numFPDestRegs += 1
1133                    elif op_desc.isIntReg():
1134                        self.numIntDestRegs += 1
1135                    elif op_desc.isVecReg():
1136                        self.numVecDestRegs += 1
1137                    elif op_desc.isCCReg():
1138                        self.numCCDestRegs += 1
1139                    elif op_desc.isControlReg():
1140                        self.numMiscDestRegs += 1
1141            elif op_desc.isMem():
1142                if self.memOperand:
1143                    error("Code block has more than one memory operand.")
1144                self.memOperand = op_desc
1145
1146            # Check if this operand has read/write predication. If true, then
1147            # the microop will dynamically index source/dest registers.
1148            self.predRead = self.predRead or op_desc.hasReadPred()
1149            self.predWrite = self.predWrite or op_desc.hasWritePred()
1150
1151        if parser.maxInstSrcRegs < self.numSrcRegs:
1152            parser.maxInstSrcRegs = self.numSrcRegs
1153        if parser.maxInstDestRegs < self.numDestRegs:
1154            parser.maxInstDestRegs = self.numDestRegs
1155        if parser.maxMiscDestRegs < self.numMiscDestRegs:
1156            parser.maxMiscDestRegs = self.numMiscDestRegs
1157
1158        # now make a final pass to finalize op_desc fields that may depend
1159        # on the register enumeration
1160        for op_desc in self.items:
1161            op_desc.finalize(self.predRead, self.predWrite)
1162
1163    def __len__(self):
1164        return len(self.items)
1165
1166    def __getitem__(self, index):
1167        return self.items[index]
1168
1169    def append(self, op_desc):
1170        self.items.append(op_desc)
1171        self.bases[op_desc.base_name] = op_desc
1172
1173    def find_base(self, base_name):
1174        # like self.bases[base_name], but returns None if not found
1175        # (rather than raising exception)
1176        return self.bases.get(base_name)
1177
1178    # internal helper function for concat[Some]Attr{Strings|Lists}
1179    def __internalConcatAttrs(self, attr_name, filter, result):
1180        for op_desc in self.items:
1181            if filter(op_desc):
1182                result += getattr(op_desc, attr_name)
1183        return result
1184
1185    # return a single string that is the concatenation of the (string)
1186    # values of the specified attribute for all operands
1187    def concatAttrStrings(self, attr_name):
1188        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1189
1190    # like concatAttrStrings, but only include the values for the operands
1191    # for which the provided filter function returns true
1192    def concatSomeAttrStrings(self, filter, attr_name):
1193        return self.__internalConcatAttrs(attr_name, filter, '')
1194
1195    # return a single list that is the concatenation of the (list)
1196    # values of the specified attribute for all operands
1197    def concatAttrLists(self, attr_name):
1198        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1199
1200    # like concatAttrLists, but only include the values for the operands
1201    # for which the provided filter function returns true
1202    def concatSomeAttrLists(self, filter, attr_name):
1203        return self.__internalConcatAttrs(attr_name, filter, [])
1204
1205    def sort(self):
1206        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1207
1208class SubOperandList(OperandList):
1209    '''Find all the operands in the given code block.  Returns an operand
1210    descriptor list (instance of class OperandList).'''
1211    def __init__(self, parser, code, master_list):
1212        self.items = []
1213        self.bases = {}
1214        # delete strings and comments so we don't match on operands inside
1215        for regEx in (stringRE, commentRE):
1216            code = regEx.sub('', code)
1217        # search for operands
1218        next_pos = 0
1219        while 1:
1220            match = parser.operandsRE.search(code, next_pos)
1221            if not match:
1222                # no more matches: we're done
1223                break
1224            op = match.groups()
1225            # regexp groups are operand full name, base, and extension
1226            (op_full, op_base, op_ext) = op
1227            # If is a elem operand, define or update the corresponding
1228            # vector operand
1229            if op_base in parser.elemToVector:
1230                elem_op = op_base
1231                op_base = parser.elemToVector[elem_op]
1232            # find this op in the master list
1233            op_desc = master_list.find_base(op_base)
1234            if not op_desc:
1235                error('Found operand %s which is not in the master list!'
1236                      % op_base)
1237            else:
1238                # See if we've already found this operand
1239                op_desc = self.find_base(op_base)
1240                if not op_desc:
1241                    # if not, add a reference to it to this sub list
1242                    self.append(master_list.bases[op_base])
1243
1244            # start next search after end of current match
1245            next_pos = match.end()
1246        self.sort()
1247        self.memOperand = None
1248        # Whether the whole PC needs to be read so parts of it can be accessed
1249        self.readPC = False
1250        # Whether the whole PC needs to be written after parts of it were
1251        # changed
1252        self.setPC = False
1253        # Whether this instruction manipulates the whole PC or parts of it.
1254        # Mixing the two is a bad idea and flagged as an error.
1255        self.pcPart = None
1256
1257        # Flags to keep track if one or more operands are to be read/written
1258        # conditionally.
1259        self.predRead = False
1260        self.predWrite = False
1261
1262        for op_desc in self.items:
1263            if op_desc.isPCPart():
1264                self.readPC = True
1265                if op_desc.is_dest:
1266                    self.setPC = True
1267
1268            if op_desc.isPCState():
1269                if self.pcPart is not None:
1270                    if self.pcPart and not op_desc.isPCPart() or \
1271                            not self.pcPart and op_desc.isPCPart():
1272                        error("Mixed whole and partial PC state operands.")
1273                self.pcPart = op_desc.isPCPart()
1274
1275            if op_desc.isMem():
1276                if self.memOperand:
1277                    error("Code block has more than one memory operand.")
1278                self.memOperand = op_desc
1279
1280            # Check if this operand has read/write predication. If true, then
1281            # the microop will dynamically index source/dest registers.
1282            self.predRead = self.predRead or op_desc.hasReadPred()
1283            self.predWrite = self.predWrite or op_desc.hasWritePred()
1284
1285# Regular expression object to match C++ strings
1286stringRE = re.compile(r'"([^"\\]|\\.)*"')
1287
1288# Regular expression object to match C++ comments
1289# (used in findOperands())
1290commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1291        re.DOTALL | re.MULTILINE)
1292
1293# Regular expression object to match assignment statements (used in
1294# findOperands()).  If the code immediately following the first
1295# appearance of the operand matches this regex, then the operand
1296# appears to be on the LHS of an assignment, and is thus a
1297# destination.  basically we're looking for an '=' that's not '=='.
1298# The heinous tangle before that handles the case where the operand
1299# has an array subscript.
1300assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1301
1302def makeFlagConstructor(flag_list):
1303    if len(flag_list) == 0:
1304        return ''
1305    # filter out repeated flags
1306    flag_list.sort()
1307    i = 1
1308    while i < len(flag_list):
1309        if flag_list[i] == flag_list[i-1]:
1310            del flag_list[i]
1311        else:
1312            i += 1
1313    pre = '\n\tflags['
1314    post = '] = true;'
1315    code = pre + string.join(flag_list, post + pre) + post
1316    return code
1317
1318# Assume all instruction flags are of the form 'IsFoo'
1319instFlagRE = re.compile(r'Is.*')
1320
1321# OpClass constants end in 'Op' except No_OpClass
1322opClassRE = re.compile(r'.*Op|No_OpClass')
1323
1324class InstObjParams(object):
1325    def __init__(self, parser, mnem, class_name, base_class = '',
1326                 snippets = {}, opt_args = []):
1327        self.mnemonic = mnem
1328        self.class_name = class_name
1329        self.base_class = base_class
1330        if not isinstance(snippets, dict):
1331            snippets = {'code' : snippets}
1332        compositeCode = ' '.join(map(str, snippets.values()))
1333        self.snippets = snippets
1334
1335        self.operands = OperandList(parser, compositeCode)
1336
1337        # The header of the constructor declares the variables to be used
1338        # in the body of the constructor.
1339        header = ''
1340        header += '\n\t_numSrcRegs = 0;'
1341        header += '\n\t_numDestRegs = 0;'
1342        header += '\n\t_numFPDestRegs = 0;'
1343        header += '\n\t_numVecDestRegs = 0;'
1344        header += '\n\t_numVecElemDestRegs = 0;'
1345        header += '\n\t_numIntDestRegs = 0;'
1346        header += '\n\t_numCCDestRegs = 0;'
1347
1348        self.constructor = header + \
1349                           self.operands.concatAttrStrings('constructor')
1350
1351        self.flags = self.operands.concatAttrLists('flags')
1352
1353        self.op_class = None
1354
1355        # Optional arguments are assumed to be either StaticInst flags
1356        # or an OpClass value.  To avoid having to import a complete
1357        # list of these values to match against, we do it ad-hoc
1358        # with regexps.
1359        for oa in opt_args:
1360            if instFlagRE.match(oa):
1361                self.flags.append(oa)
1362            elif opClassRE.match(oa):
1363                self.op_class = oa
1364            else:
1365                error('InstObjParams: optional arg "%s" not recognized '
1366                      'as StaticInst::Flag or OpClass.' % oa)
1367
1368        # Make a basic guess on the operand class if not set.
1369        # These are good enough for most cases.
1370        if not self.op_class:
1371            if 'IsStore' in self.flags:
1372                # The order matters here: 'IsFloating' and 'IsInteger' are
1373                # usually set in FP instructions because of the base
1374                # register
1375                if 'IsFloating' in self.flags:
1376                    self.op_class = 'FloatMemWriteOp'
1377                else:
1378                    self.op_class = 'MemWriteOp'
1379            elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1380                # The order matters here: 'IsFloating' and 'IsInteger' are
1381                # usually set in FP instructions because of the base
1382                # register
1383                if 'IsFloating' in self.flags:
1384                    self.op_class = 'FloatMemReadOp'
1385                else:
1386                    self.op_class = 'MemReadOp'
1387            elif 'IsFloating' in self.flags:
1388                self.op_class = 'FloatAddOp'
1389            elif 'IsVector' in self.flags:
1390                self.op_class = 'SimdAddOp'
1391            else:
1392                self.op_class = 'IntAluOp'
1393
1394        # add flag initialization to contructor here to include
1395        # any flags added via opt_args
1396        self.constructor += makeFlagConstructor(self.flags)
1397
1398        # if 'IsFloating' is set, add call to the FP enable check
1399        # function (which should be provided by isa_desc via a declare)
1400        # if 'IsVector' is set, add call to the Vector enable check
1401        # function (which should be provided by isa_desc via a declare)
1402        if 'IsFloating' in self.flags:
1403            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1404        elif 'IsVector' in self.flags:
1405            self.fp_enable_check = 'fault = checkVecEnableFault(xc);'
1406        else:
1407            self.fp_enable_check = ''
1408
1409##############
1410# Stack: a simple stack object.  Used for both formats (formatStack)
1411# and default cases (defaultStack).  Simply wraps a list to give more
1412# stack-like syntax and enable initialization with an argument list
1413# (as opposed to an argument that's a list).
1414
1415class Stack(list):
1416    def __init__(self, *items):
1417        list.__init__(self, items)
1418
1419    def push(self, item):
1420        self.append(item);
1421
1422    def top(self):
1423        return self[-1]
1424
1425# Format a file include stack backtrace as a string
1426def backtrace(filename_stack):
1427    fmt = "In file included from %s:"
1428    return "\n".join([fmt % f for f in filename_stack])
1429
1430
1431#######################
1432#
1433# LineTracker: track filenames along with line numbers in PLY lineno fields
1434#     PLY explicitly doesn't do anything with 'lineno' except propagate
1435#     it.  This class lets us tie filenames with the line numbers with a
1436#     minimum of disruption to existing increment code.
1437#
1438
1439class LineTracker(object):
1440    def __init__(self, filename, lineno=1):
1441        self.filename = filename
1442        self.lineno = lineno
1443
1444    # Overload '+=' for increments.  We need to create a new object on
1445    # each update else every token ends up referencing the same
1446    # constantly incrementing instance.
1447    def __iadd__(self, incr):
1448        return LineTracker(self.filename, self.lineno + incr)
1449
1450    def __str__(self):
1451        return "%s:%d" % (self.filename, self.lineno)
1452
1453    # In case there are places where someone really expects a number
1454    def __int__(self):
1455        return self.lineno
1456
1457
1458#######################
1459#
1460# ISA Parser
1461#   parses ISA DSL and emits C++ headers and source
1462#
1463
1464class ISAParser(Grammar):
1465    class CpuModel(object):
1466        def __init__(self, name, filename, includes, strings):
1467            self.name = name
1468            self.filename = filename
1469            self.includes = includes
1470            self.strings = strings
1471
1472    def __init__(self, output_dir):
1473        super(ISAParser, self).__init__()
1474        self.output_dir = output_dir
1475
1476        self.filename = None # for output file watermarking/scaremongering
1477
1478        self.cpuModels = [
1479            ISAParser.CpuModel('ExecContext',
1480                               'generic_cpu_exec.cc',
1481                               '#include "cpu/exec_context.hh"',
1482                               { "CPU_exec_context" : "ExecContext" }),
1483            ]
1484
1485        # variable to hold templates
1486        self.templateMap = {}
1487
1488        # This dictionary maps format name strings to Format objects.
1489        self.formatMap = {}
1490
1491        # Track open files and, if applicable, how many chunks it has been
1492        # split into so far.
1493        self.files = {}
1494        self.splits = {}
1495
1496        # isa_name / namespace identifier from namespace declaration.
1497        # before the namespace declaration, None.
1498        self.isa_name = None
1499        self.namespace = None
1500
1501        # The format stack.
1502        self.formatStack = Stack(NoFormat())
1503
1504        # The default case stack.
1505        self.defaultStack = Stack(None)
1506
1507        # Stack that tracks current file and line number.  Each
1508        # element is a tuple (filename, lineno) that records the
1509        # *current* filename and the line number in the *previous*
1510        # file where it was included.
1511        self.fileNameStack = Stack()
1512
1513        symbols = ('makeList', 're', 'string')
1514        self.exportContext = dict([(s, eval(s)) for s in symbols])
1515
1516        self.maxInstSrcRegs = 0
1517        self.maxInstDestRegs = 0
1518        self.maxMiscDestRegs = 0
1519
1520    def __getitem__(self, i):    # Allow object (self) to be
1521        return getattr(self, i)  # passed to %-substitutions
1522
1523    # Change the file suffix of a base filename:
1524    #   (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1525    def suffixize(self, s, sec):
1526        extn = re.compile('(\.[^\.]+)$') # isolate extension
1527        if self.namespace:
1528            return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1529        else:
1530            return extn.sub(r'-g\1.inc', s)
1531
1532    # Get the file object for emitting code into the specified section
1533    # (header, decoder, exec, decode_block).
1534    def get_file(self, section):
1535        if section == 'decode_block':
1536            filename = 'decode-method.cc.inc'
1537        else:
1538            if section == 'header':
1539                file = 'decoder.hh'
1540            else:
1541                file = '%s.cc' % section
1542            filename = self.suffixize(file, section)
1543        try:
1544            return self.files[filename]
1545        except KeyError: pass
1546
1547        f = self.open(filename)
1548        self.files[filename] = f
1549
1550        # The splittable files are the ones with many independent
1551        # per-instruction functions - the decoder's instruction constructors
1552        # and the instruction execution (execute()) methods. These both have
1553        # the suffix -ns.cc.inc, meaning they are within the namespace part
1554        # of the ISA, contain object-emitting C++ source, and are included
1555        # into other top-level files. These are the files that need special
1556        # #define's to allow parts of them to be compiled separately. Rather
1557        # than splitting the emissions into separate files, the monolithic
1558        # output of the ISA parser is maintained, but the value (or lack
1559        # thereof) of the __SPLIT definition during C preprocessing will
1560        # select the different chunks. If no 'split' directives are used,
1561        # the cpp emissions have no effect.
1562        if re.search('-ns.cc.inc$', filename):
1563            print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1564            self.splits[f] = 1
1565        # ensure requisite #include's
1566        elif filename == 'decoder-g.hh.inc':
1567            print >>f, '#include "base/bitfield.hh"'
1568
1569        return f
1570
1571    # Weave together the parts of the different output sections by
1572    # #include'ing them into some very short top-level .cc/.hh files.
1573    # These small files make it much clearer how this tool works, since
1574    # you directly see the chunks emitted as files that are #include'd.
1575    def write_top_level_files(self):
1576        # decoder header - everything depends on this
1577        file = 'decoder.hh'
1578        with self.open(file) as f:
1579            fn = 'decoder-g.hh.inc'
1580            assert(fn in self.files)
1581            f.write('#include "%s"\n' % fn)
1582
1583            fn = 'decoder-ns.hh.inc'
1584            assert(fn in self.files)
1585            f.write('namespace %s {\n#include "%s"\n}\n'
1586                    % (self.namespace, fn))
1587
1588        # decoder method - cannot be split
1589        file = 'decoder.cc'
1590        with self.open(file) as f:
1591            fn = 'decoder-g.cc.inc'
1592            assert(fn in self.files)
1593            f.write('#include "%s"\n' % fn)
1594
1595            fn = 'decoder.hh'
1596            f.write('#include "%s"\n' % fn)
1597
1598            fn = 'decode-method.cc.inc'
1599            # is guaranteed to have been written for parse to complete
1600            f.write('#include "%s"\n' % fn)
1601
1602        extn = re.compile('(\.[^\.]+)$')
1603
1604        # instruction constructors
1605        splits = self.splits[self.get_file('decoder')]
1606        file_ = 'inst-constrs.cc'
1607        for i in range(1, splits+1):
1608            if splits > 1:
1609                file = extn.sub(r'-%d\1' % i, file_)
1610            else:
1611                file = file_
1612            with self.open(file) as f:
1613                fn = 'decoder-g.cc.inc'
1614                assert(fn in self.files)
1615                f.write('#include "%s"\n' % fn)
1616
1617                fn = 'decoder.hh'
1618                f.write('#include "%s"\n' % fn)
1619
1620                fn = 'decoder-ns.cc.inc'
1621                assert(fn in self.files)
1622                print >>f, 'namespace %s {' % self.namespace
1623                if splits > 1:
1624                    print >>f, '#define __SPLIT %u' % i
1625                print >>f, '#include "%s"' % fn
1626                print >>f, '}'
1627
1628        # instruction execution per-CPU model
1629        splits = self.splits[self.get_file('exec')]
1630        for cpu in self.cpuModels:
1631            for i in range(1, splits+1):
1632                if splits > 1:
1633                    file = extn.sub(r'_%d\1' % i, cpu.filename)
1634                else:
1635                    file = cpu.filename
1636                with self.open(file) as f:
1637                    fn = 'exec-g.cc.inc'
1638                    assert(fn in self.files)
1639                    f.write('#include "%s"\n' % fn)
1640
1641                    f.write(cpu.includes+"\n")
1642
1643                    fn = 'decoder.hh'
1644                    f.write('#include "%s"\n' % fn)
1645
1646                    fn = 'exec-ns.cc.inc'
1647                    assert(fn in self.files)
1648                    print >>f, 'namespace %s {' % self.namespace
1649                    print >>f, '#define CPU_EXEC_CONTEXT %s' \
1650                               % cpu.strings['CPU_exec_context']
1651                    if splits > 1:
1652                        print >>f, '#define __SPLIT %u' % i
1653                    print >>f, '#include "%s"' % fn
1654                    print >>f, '}'
1655
1656        # max_inst_regs.hh
1657        self.update('max_inst_regs.hh',
1658                    '''namespace %(namespace)s {
1659    const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1660    const int MaxInstDestRegs = %(maxInstDestRegs)d;
1661    const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1662
1663    scaremonger_template ='''// DO NOT EDIT
1664// This file was automatically generated from an ISA description:
1665//   %(filename)s
1666
1667''';
1668
1669    #####################################################################
1670    #
1671    #                                Lexer
1672    #
1673    # The PLY lexer module takes two things as input:
1674    # - A list of token names (the string list 'tokens')
1675    # - A regular expression describing a match for each token.  The
1676    #   regexp for token FOO can be provided in two ways:
1677    #   - as a string variable named t_FOO
1678    #   - as the doc string for a function named t_FOO.  In this case,
1679    #     the function is also executed, allowing an action to be
1680    #     associated with each token match.
1681    #
1682    #####################################################################
1683
1684    # Reserved words.  These are listed separately as they are matched
1685    # using the same regexp as generic IDs, but distinguished in the
1686    # t_ID() function.  The PLY documentation suggests this approach.
1687    reserved = (
1688        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1689        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1690        'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1691        )
1692
1693    # List of tokens.  The lex module requires this.
1694    tokens = reserved + (
1695        # identifier
1696        'ID',
1697
1698        # integer literal
1699        'INTLIT',
1700
1701        # string literal
1702        'STRLIT',
1703
1704        # code literal
1705        'CODELIT',
1706
1707        # ( ) [ ] { } < > , ; . : :: *
1708        'LPAREN', 'RPAREN',
1709        'LBRACKET', 'RBRACKET',
1710        'LBRACE', 'RBRACE',
1711        'LESS', 'GREATER', 'EQUALS',
1712        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1713        'ASTERISK',
1714
1715        # C preprocessor directives
1716        'CPPDIRECTIVE'
1717
1718    # The following are matched but never returned. commented out to
1719    # suppress PLY warning
1720        # newfile directive
1721    #    'NEWFILE',
1722
1723        # endfile directive
1724    #    'ENDFILE'
1725    )
1726
1727    # Regular expressions for token matching
1728    t_LPAREN           = r'\('
1729    t_RPAREN           = r'\)'
1730    t_LBRACKET         = r'\['
1731    t_RBRACKET         = r'\]'
1732    t_LBRACE           = r'\{'
1733    t_RBRACE           = r'\}'
1734    t_LESS             = r'\<'
1735    t_GREATER          = r'\>'
1736    t_EQUALS           = r'='
1737    t_COMMA            = r','
1738    t_SEMI             = r';'
1739    t_DOT              = r'\.'
1740    t_COLON            = r':'
1741    t_DBLCOLON         = r'::'
1742    t_ASTERISK         = r'\*'
1743
1744    # Identifiers and reserved words
1745    reserved_map = { }
1746    for r in reserved:
1747        reserved_map[r.lower()] = r
1748
1749    def t_ID(self, t):
1750        r'[A-Za-z_]\w*'
1751        t.type = self.reserved_map.get(t.value, 'ID')
1752        return t
1753
1754    # Integer literal
1755    def t_INTLIT(self, t):
1756        r'-?(0x[\da-fA-F]+)|\d+'
1757        try:
1758            t.value = int(t.value,0)
1759        except ValueError:
1760            error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1761            t.value = 0
1762        return t
1763
1764    # String literal.  Note that these use only single quotes, and
1765    # can span multiple lines.
1766    def t_STRLIT(self, t):
1767        r"(?m)'([^'])+'"
1768        # strip off quotes
1769        t.value = t.value[1:-1]
1770        t.lexer.lineno += t.value.count('\n')
1771        return t
1772
1773
1774    # "Code literal"... like a string literal, but delimiters are
1775    # '{{' and '}}' so they get formatted nicely under emacs c-mode
1776    def t_CODELIT(self, t):
1777        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1778        # strip off {{ & }}
1779        t.value = t.value[2:-2]
1780        t.lexer.lineno += t.value.count('\n')
1781        return t
1782
1783    def t_CPPDIRECTIVE(self, t):
1784        r'^\#[^\#].*\n'
1785        t.lexer.lineno += t.value.count('\n')
1786        return t
1787
1788    def t_NEWFILE(self, t):
1789        r'^\#\#newfile\s+"[^"]*"\n'
1790        self.fileNameStack.push(t.lexer.lineno)
1791        t.lexer.lineno = LineTracker(t.value[11:-2])
1792
1793    def t_ENDFILE(self, t):
1794        r'^\#\#endfile\n'
1795        t.lexer.lineno = self.fileNameStack.pop()
1796
1797    #
1798    # The functions t_NEWLINE, t_ignore, and t_error are
1799    # special for the lex module.
1800    #
1801
1802    # Newlines
1803    def t_NEWLINE(self, t):
1804        r'\n+'
1805        t.lexer.lineno += t.value.count('\n')
1806
1807    # Comments
1808    def t_comment(self, t):
1809        r'//.*'
1810
1811    # Completely ignored characters
1812    t_ignore = ' \t\x0c'
1813
1814    # Error handler
1815    def t_error(self, t):
1816        error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1817        t.skip(1)
1818
1819    #####################################################################
1820    #
1821    #                                Parser
1822    #
1823    # Every function whose name starts with 'p_' defines a grammar
1824    # rule.  The rule is encoded in the function's doc string, while
1825    # the function body provides the action taken when the rule is
1826    # matched.  The argument to each function is a list of the values
1827    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1828    # symbols on the RHS.  For tokens, the value is copied from the
1829    # t.value attribute provided by the lexer.  For non-terminals, the
1830    # value is assigned by the producing rule; i.e., the job of the
1831    # grammar rule function is to set the value for the non-terminal
1832    # on the LHS (by assigning to t[0]).
1833    #####################################################################
1834
1835    # The LHS of the first grammar rule is used as the start symbol
1836    # (in this case, 'specification').  Note that this rule enforces
1837    # that there will be exactly one namespace declaration, with 0 or
1838    # more global defs/decls before and after it.  The defs & decls
1839    # before the namespace decl will be outside the namespace; those
1840    # after will be inside.  The decoder function is always inside the
1841    # namespace.
1842    def p_specification(self, t):
1843        'specification : opt_defs_and_outputs top_level_decode_block'
1844
1845        for f in self.splits.iterkeys():
1846            f.write('\n#endif\n')
1847
1848        for f in self.files.itervalues(): # close ALL the files;
1849            f.close() # not doing so can cause compilation to fail
1850
1851        self.write_top_level_files()
1852
1853        t[0] = True
1854
1855    # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1856    # output statements. Its productions do the hard work of eventually
1857    # instantiating a GenCode, which are generally emitted (written to disk)
1858    # as soon as possible, except for the decode_block, which has to be
1859    # accumulated into one large function of nested switch/case blocks.
1860    def p_opt_defs_and_outputs_0(self, t):
1861        'opt_defs_and_outputs : empty'
1862
1863    def p_opt_defs_and_outputs_1(self, t):
1864        'opt_defs_and_outputs : defs_and_outputs'
1865
1866    def p_defs_and_outputs_0(self, t):
1867        'defs_and_outputs : def_or_output'
1868
1869    def p_defs_and_outputs_1(self, t):
1870        'defs_and_outputs : defs_and_outputs def_or_output'
1871
1872    # The list of possible definition/output statements.
1873    # They are all processed as they are seen.
1874    def p_def_or_output(self, t):
1875        '''def_or_output : name_decl
1876                         | def_format
1877                         | def_bitfield
1878                         | def_bitfield_struct
1879                         | def_template
1880                         | def_operand_types
1881                         | def_operands
1882                         | output
1883                         | global_let
1884                         | split'''
1885
1886    # Utility function used by both invocations of splitting - explicit
1887    # 'split' keyword and split() function inside "let {{ }};" blocks.
1888    def split(self, sec, write=False):
1889        assert(sec != 'header' and "header cannot be split")
1890
1891        f = self.get_file(sec)
1892        self.splits[f] += 1
1893        s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1894        if write:
1895            f.write(s)
1896        else:
1897            return s
1898
1899    # split output file to reduce compilation time
1900    def p_split(self, t):
1901        'split : SPLIT output_type SEMI'
1902        assert(self.isa_name and "'split' not allowed before namespace decl")
1903
1904        self.split(t[2], True)
1905
1906    def p_output_type(self, t):
1907        '''output_type : DECODER
1908                       | HEADER
1909                       | EXEC'''
1910        t[0] = t[1]
1911
1912    # ISA name declaration looks like "namespace <foo>;"
1913    def p_name_decl(self, t):
1914        'name_decl : NAMESPACE ID SEMI'
1915        assert(self.isa_name == None and "Only 1 namespace decl permitted")
1916        self.isa_name = t[2]
1917        self.namespace = t[2] + 'Inst'
1918
1919    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1920    # directly to the appropriate output section.
1921
1922    # Massage output block by substituting in template definitions and
1923    # bit operators.  We handle '%'s embedded in the string that don't
1924    # indicate template substitutions (or CPU-specific symbols, which
1925    # get handled in GenCode) by doubling them first so that the
1926    # format operation will reduce them back to single '%'s.
1927    def process_output(self, s):
1928        s = self.protectNonSubstPercents(s)
1929        # protects cpu-specific symbols too
1930        s = self.protectCpuSymbols(s)
1931        return substBitOps(s % self.templateMap)
1932
1933    def p_output(self, t):
1934        'output : OUTPUT output_type CODELIT SEMI'
1935        kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1936        GenCode(self, **kwargs).emit()
1937
1938    # global let blocks 'let {{...}}' (Python code blocks) are
1939    # executed directly when seen.  Note that these execute in a
1940    # special variable context 'exportContext' to prevent the code
1941    # from polluting this script's namespace.
1942    def p_global_let(self, t):
1943        'global_let : LET CODELIT SEMI'
1944        def _split(sec):
1945            return self.split(sec)
1946        self.updateExportContext()
1947        self.exportContext["header_output"] = ''
1948        self.exportContext["decoder_output"] = ''
1949        self.exportContext["exec_output"] = ''
1950        self.exportContext["decode_block"] = ''
1951        self.exportContext["split"] = _split
1952        split_setup = '''
1953def wrap(func):
1954    def split(sec):
1955        globals()[sec + '_output'] += func(sec)
1956    return split
1957split = wrap(split)
1958del wrap
1959'''
1960        # This tricky setup (immediately above) allows us to just write
1961        # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1962        # will automatically be added to the exec_output variable. The inner
1963        # Python execution environment doesn't know about the split points,
1964        # so we carefully inject and wrap a closure that can retrieve the
1965        # next split's #define from the parser and add it to the current
1966        # emission-in-progress.
1967        try:
1968            exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1969        except Exception, exc:
1970            if debug:
1971                raise
1972            error(t.lineno(1), 'In global let block: %s' % exc)
1973        GenCode(self,
1974                header_output=self.exportContext["header_output"],
1975                decoder_output=self.exportContext["decoder_output"],
1976                exec_output=self.exportContext["exec_output"],
1977                decode_block=self.exportContext["decode_block"]).emit()
1978
1979    # Define the mapping from operand type extensions to C++ types and
1980    # bit widths (stored in operandTypeMap).
1981    def p_def_operand_types(self, t):
1982        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1983        try:
1984            self.operandTypeMap = eval('{' + t[3] + '}')
1985        except Exception, exc:
1986            if debug:
1987                raise
1988            error(t.lineno(1),
1989                  'In def operand_types: %s' % exc)
1990
1991    # Define the mapping from operand names to operand classes and
1992    # other traits.  Stored in operandNameMap.
1993    def p_def_operands(self, t):
1994        'def_operands : DEF OPERANDS CODELIT SEMI'
1995        if not hasattr(self, 'operandTypeMap'):
1996            error(t.lineno(1),
1997                  'error: operand types must be defined before operands')
1998        try:
1999            user_dict = eval('{' + t[3] + '}', self.exportContext)
2000        except Exception, exc:
2001            if debug:
2002                raise
2003            error(t.lineno(1), 'In def operands: %s' % exc)
2004        self.buildOperandNameMap(user_dict, t.lexer.lineno)
2005
2006    # A bitfield definition looks like:
2007    # 'def [signed] bitfield <ID> [<first>:<last>]'
2008    # This generates a preprocessor macro in the output file.
2009    def p_def_bitfield_0(self, t):
2010        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
2011        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
2012        if (t[2] == 'signed'):
2013            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
2014        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
2015        GenCode(self, header_output=hash_define).emit()
2016
2017    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
2018    def p_def_bitfield_1(self, t):
2019        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
2020        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
2021        if (t[2] == 'signed'):
2022            expr = 'sext<%d>(%s)' % (1, expr)
2023        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
2024        GenCode(self, header_output=hash_define).emit()
2025
2026    # alternate form for structure member: 'def bitfield <ID> <ID>'
2027    def p_def_bitfield_struct(self, t):
2028        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
2029        if (t[2] != ''):
2030            error(t.lineno(1),
2031                  'error: structure bitfields are always unsigned.')
2032        expr = 'machInst.%s' % t[5]
2033        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
2034        GenCode(self, header_output=hash_define).emit()
2035
2036    def p_id_with_dot_0(self, t):
2037        'id_with_dot : ID'
2038        t[0] = t[1]
2039
2040    def p_id_with_dot_1(self, t):
2041        'id_with_dot : ID DOT id_with_dot'
2042        t[0] = t[1] + t[2] + t[3]
2043
2044    def p_opt_signed_0(self, t):
2045        'opt_signed : SIGNED'
2046        t[0] = t[1]
2047
2048    def p_opt_signed_1(self, t):
2049        'opt_signed : empty'
2050        t[0] = ''
2051
2052    def p_def_template(self, t):
2053        'def_template : DEF TEMPLATE ID CODELIT SEMI'
2054        if t[3] in self.templateMap:
2055            print "warning: template %s already defined" % t[3]
2056        self.templateMap[t[3]] = Template(self, t[4])
2057
2058    # An instruction format definition looks like
2059    # "def format <fmt>(<params>) {{...}};"
2060    def p_def_format(self, t):
2061        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
2062        (id, params, code) = (t[3], t[5], t[7])
2063        self.defFormat(id, params, code, t.lexer.lineno)
2064
2065    # The formal parameter list for an instruction format is a
2066    # possibly empty list of comma-separated parameters.  Positional
2067    # (standard, non-keyword) parameters must come first, followed by
2068    # keyword parameters, followed by a '*foo' parameter that gets
2069    # excess positional arguments (as in Python).  Each of these three
2070    # parameter categories is optional.
2071    #
2072    # Note that we do not support the '**foo' parameter for collecting
2073    # otherwise undefined keyword args.  Otherwise the parameter list
2074    # is (I believe) identical to what is supported in Python.
2075    #
2076    # The param list generates a tuple, where the first element is a
2077    # list of the positional params and the second element is a dict
2078    # containing the keyword params.
2079    def p_param_list_0(self, t):
2080        'param_list : positional_param_list COMMA nonpositional_param_list'
2081        t[0] = t[1] + t[3]
2082
2083    def p_param_list_1(self, t):
2084        '''param_list : positional_param_list
2085                      | nonpositional_param_list'''
2086        t[0] = t[1]
2087
2088    def p_positional_param_list_0(self, t):
2089        'positional_param_list : empty'
2090        t[0] = []
2091
2092    def p_positional_param_list_1(self, t):
2093        'positional_param_list : ID'
2094        t[0] = [t[1]]
2095
2096    def p_positional_param_list_2(self, t):
2097        'positional_param_list : positional_param_list COMMA ID'
2098        t[0] = t[1] + [t[3]]
2099
2100    def p_nonpositional_param_list_0(self, t):
2101        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
2102        t[0] = t[1] + t[3]
2103
2104    def p_nonpositional_param_list_1(self, t):
2105        '''nonpositional_param_list : keyword_param_list
2106                                    | excess_args_param'''
2107        t[0] = t[1]
2108
2109    def p_keyword_param_list_0(self, t):
2110        'keyword_param_list : keyword_param'
2111        t[0] = [t[1]]
2112
2113    def p_keyword_param_list_1(self, t):
2114        'keyword_param_list : keyword_param_list COMMA keyword_param'
2115        t[0] = t[1] + [t[3]]
2116
2117    def p_keyword_param(self, t):
2118        'keyword_param : ID EQUALS expr'
2119        t[0] = t[1] + ' = ' + t[3].__repr__()
2120
2121    def p_excess_args_param(self, t):
2122        'excess_args_param : ASTERISK ID'
2123        # Just concatenate them: '*ID'.  Wrap in list to be consistent
2124        # with positional_param_list and keyword_param_list.
2125        t[0] = [t[1] + t[2]]
2126
2127    # End of format definition-related rules.
2128    ##############
2129
2130    #
2131    # A decode block looks like:
2132    #       decode <field1> [, <field2>]* [default <inst>] { ... }
2133    #
2134    def p_top_level_decode_block(self, t):
2135        'top_level_decode_block : decode_block'
2136        codeObj = t[1]
2137        codeObj.wrap_decode_block('''
2138StaticInstPtr
2139%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
2140{
2141    using namespace %(namespace)s;
2142''' % self, '}')
2143
2144        codeObj.emit()
2145
2146    def p_decode_block(self, t):
2147        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
2148        default_defaults = self.defaultStack.pop()
2149        codeObj = t[5]
2150        # use the "default defaults" only if there was no explicit
2151        # default statement in decode_stmt_list
2152        if not codeObj.has_decode_default:
2153            codeObj += default_defaults
2154        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
2155        t[0] = codeObj
2156
2157    # The opt_default statement serves only to push the "default
2158    # defaults" onto defaultStack.  This value will be used by nested
2159    # decode blocks, and used and popped off when the current
2160    # decode_block is processed (in p_decode_block() above).
2161    def p_opt_default_0(self, t):
2162        'opt_default : empty'
2163        # no default specified: reuse the one currently at the top of
2164        # the stack
2165        self.defaultStack.push(self.defaultStack.top())
2166        # no meaningful value returned
2167        t[0] = None
2168
2169    def p_opt_default_1(self, t):
2170        'opt_default : DEFAULT inst'
2171        # push the new default
2172        codeObj = t[2]
2173        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
2174        self.defaultStack.push(codeObj)
2175        # no meaningful value returned
2176        t[0] = None
2177
2178    def p_decode_stmt_list_0(self, t):
2179        'decode_stmt_list : decode_stmt'
2180        t[0] = t[1]
2181
2182    def p_decode_stmt_list_1(self, t):
2183        'decode_stmt_list : decode_stmt decode_stmt_list'
2184        if (t[1].has_decode_default and t[2].has_decode_default):
2185            error(t.lineno(1), 'Two default cases in decode block')
2186        t[0] = t[1] + t[2]
2187
2188    #
2189    # Decode statement rules
2190    #
2191    # There are four types of statements allowed in a decode block:
2192    # 1. Format blocks 'format <foo> { ... }'
2193    # 2. Nested decode blocks
2194    # 3. Instruction definitions.
2195    # 4. C preprocessor directives.
2196
2197
2198    # Preprocessor directives found in a decode statement list are
2199    # passed through to the output, replicated to all of the output
2200    # code streams.  This works well for ifdefs, so we can ifdef out
2201    # both the declarations and the decode cases generated by an
2202    # instruction definition.  Handling them as part of the grammar
2203    # makes it easy to keep them in the right place with respect to
2204    # the code generated by the other statements.
2205    def p_decode_stmt_cpp(self, t):
2206        'decode_stmt : CPPDIRECTIVE'
2207        t[0] = GenCode(self, t[1], t[1], t[1], t[1])
2208
2209    # A format block 'format <foo> { ... }' sets the default
2210    # instruction format used to handle instruction definitions inside
2211    # the block.  This format can be overridden by using an explicit
2212    # format on the instruction definition or with a nested format
2213    # block.
2214    def p_decode_stmt_format(self, t):
2215        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
2216        # The format will be pushed on the stack when 'push_format_id'
2217        # is processed (see below).  Once the parser has recognized
2218        # the full production (though the right brace), we're done
2219        # with the format, so now we can pop it.
2220        self.formatStack.pop()
2221        t[0] = t[4]
2222
2223    # This rule exists so we can set the current format (& push the
2224    # stack) when we recognize the format name part of the format
2225    # block.
2226    def p_push_format_id(self, t):
2227        'push_format_id : ID'
2228        try:
2229            self.formatStack.push(self.formatMap[t[1]])
2230            t[0] = ('', '// format %s' % t[1])
2231        except KeyError:
2232            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2233
2234    # Nested decode block: if the value of the current field matches
2235    # the specified constant(s), do a nested decode on some other field.
2236    def p_decode_stmt_decode(self, t):
2237        'decode_stmt : case_list COLON decode_block'
2238        case_list = t[1]
2239        codeObj = t[3]
2240        # just wrap the decoding code from the block as a case in the
2241        # outer switch statement.
2242        codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2243        codeObj.has_decode_default = (case_list == ['default:'])
2244        t[0] = codeObj
2245
2246    # Instruction definition (finally!).
2247    def p_decode_stmt_inst(self, t):
2248        'decode_stmt : case_list COLON inst SEMI'
2249        case_list = t[1]
2250        codeObj = t[3]
2251        codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2252        codeObj.has_decode_default = (case_list == ['default:'])
2253        t[0] = codeObj
2254
2255    # The constant list for a decode case label must be non-empty, and must
2256    # either be the keyword 'default', or made up of one or more
2257    # comma-separated integer literals or strings which evaluate to
2258    # constants when compiled as C++.
2259    def p_case_list_0(self, t):
2260        'case_list : DEFAULT'
2261        t[0] = ['default:']
2262
2263    def prep_int_lit_case_label(self, lit):
2264        if lit >= 2**32:
2265            return 'case ULL(%#x): ' % lit
2266        else:
2267            return 'case %#x: ' % lit
2268
2269    def prep_str_lit_case_label(self, lit):
2270        return 'case %s: ' % lit
2271
2272    def p_case_list_1(self, t):
2273        'case_list : INTLIT'
2274        t[0] = [self.prep_int_lit_case_label(t[1])]
2275
2276    def p_case_list_2(self, t):
2277        'case_list : STRLIT'
2278        t[0] = [self.prep_str_lit_case_label(t[1])]
2279
2280    def p_case_list_3(self, t):
2281        'case_list : case_list COMMA INTLIT'
2282        t[0] = t[1]
2283        t[0].append(self.prep_int_lit_case_label(t[3]))
2284
2285    def p_case_list_4(self, t):
2286        'case_list : case_list COMMA STRLIT'
2287        t[0] = t[1]
2288        t[0].append(self.prep_str_lit_case_label(t[3]))
2289
2290    # Define an instruction using the current instruction format
2291    # (specified by an enclosing format block).
2292    # "<mnemonic>(<args>)"
2293    def p_inst_0(self, t):
2294        'inst : ID LPAREN arg_list RPAREN'
2295        # Pass the ID and arg list to the current format class to deal with.
2296        currentFormat = self.formatStack.top()
2297        codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2298        args = ','.join(map(str, t[3]))
2299        args = re.sub('(?m)^', '//', args)
2300        args = re.sub('^//', '', args)
2301        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2302        codeObj.prepend_all(comment)
2303        t[0] = codeObj
2304
2305    # Define an instruction using an explicitly specified format:
2306    # "<fmt>::<mnemonic>(<args>)"
2307    def p_inst_1(self, t):
2308        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2309        try:
2310            format = self.formatMap[t[1]]
2311        except KeyError:
2312            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2313
2314        codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2315        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2316        codeObj.prepend_all(comment)
2317        t[0] = codeObj
2318
2319    # The arg list generates a tuple, where the first element is a
2320    # list of the positional args and the second element is a dict
2321    # containing the keyword args.
2322    def p_arg_list_0(self, t):
2323        'arg_list : positional_arg_list COMMA keyword_arg_list'
2324        t[0] = ( t[1], t[3] )
2325
2326    def p_arg_list_1(self, t):
2327        'arg_list : positional_arg_list'
2328        t[0] = ( t[1], {} )
2329
2330    def p_arg_list_2(self, t):
2331        'arg_list : keyword_arg_list'
2332        t[0] = ( [], t[1] )
2333
2334    def p_positional_arg_list_0(self, t):
2335        'positional_arg_list : empty'
2336        t[0] = []
2337
2338    def p_positional_arg_list_1(self, t):
2339        'positional_arg_list : expr'
2340        t[0] = [t[1]]
2341
2342    def p_positional_arg_list_2(self, t):
2343        'positional_arg_list : positional_arg_list COMMA expr'
2344        t[0] = t[1] + [t[3]]
2345
2346    def p_keyword_arg_list_0(self, t):
2347        'keyword_arg_list : keyword_arg'
2348        t[0] = t[1]
2349
2350    def p_keyword_arg_list_1(self, t):
2351        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2352        t[0] = t[1]
2353        t[0].update(t[3])
2354
2355    def p_keyword_arg(self, t):
2356        'keyword_arg : ID EQUALS expr'
2357        t[0] = { t[1] : t[3] }
2358
2359    #
2360    # Basic expressions.  These constitute the argument values of
2361    # "function calls" (i.e. instruction definitions in the decode
2362    # block) and default values for formal parameters of format
2363    # functions.
2364    #
2365    # Right now, these are either strings, integers, or (recursively)
2366    # lists of exprs (using Python square-bracket list syntax).  Note
2367    # that bare identifiers are trated as string constants here (since
2368    # there isn't really a variable namespace to refer to).
2369    #
2370    def p_expr_0(self, t):
2371        '''expr : ID
2372                | INTLIT
2373                | STRLIT
2374                | CODELIT'''
2375        t[0] = t[1]
2376
2377    def p_expr_1(self, t):
2378        '''expr : LBRACKET list_expr RBRACKET'''
2379        t[0] = t[2]
2380
2381    def p_list_expr_0(self, t):
2382        'list_expr : expr'
2383        t[0] = [t[1]]
2384
2385    def p_list_expr_1(self, t):
2386        'list_expr : list_expr COMMA expr'
2387        t[0] = t[1] + [t[3]]
2388
2389    def p_list_expr_2(self, t):
2390        'list_expr : empty'
2391        t[0] = []
2392
2393    #
2394    # Empty production... use in other rules for readability.
2395    #
2396    def p_empty(self, t):
2397        'empty :'
2398        pass
2399
2400    # Parse error handler.  Note that the argument here is the
2401    # offending *token*, not a grammar symbol (hence the need to use
2402    # t.value)
2403    def p_error(self, t):
2404        if t:
2405            error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2406        else:
2407            error("unknown syntax error")
2408
2409    # END OF GRAMMAR RULES
2410
2411    def updateExportContext(self):
2412
2413        # create a continuation that allows us to grab the current parser
2414        def wrapInstObjParams(*args):
2415            return InstObjParams(self, *args)
2416        self.exportContext['InstObjParams'] = wrapInstObjParams
2417        self.exportContext.update(self.templateMap)
2418
2419    def defFormat(self, id, params, code, lineno):
2420        '''Define a new format'''
2421
2422        # make sure we haven't already defined this one
2423        if id in self.formatMap:
2424            error(lineno, 'format %s redefined.' % id)
2425
2426        # create new object and store in global map
2427        self.formatMap[id] = Format(id, params, code)
2428
2429    def expandCpuSymbolsToDict(self, template):
2430        '''Expand template with CPU-specific references into a
2431        dictionary with an entry for each CPU model name.  The entry
2432        key is the model name and the corresponding value is the
2433        template with the CPU-specific refs substituted for that
2434        model.'''
2435
2436        # Protect '%'s that don't go with CPU-specific terms
2437        t = re.sub(r'%(?!\(CPU_)', '%%', template)
2438        result = {}
2439        for cpu in self.cpuModels:
2440            result[cpu.name] = t % cpu.strings
2441        return result
2442
2443    def expandCpuSymbolsToString(self, template):
2444        '''*If* the template has CPU-specific references, return a
2445        single string containing a copy of the template for each CPU
2446        model with the corresponding values substituted in.  If the
2447        template has no CPU-specific references, it is returned
2448        unmodified.'''
2449
2450        if template.find('%(CPU_') != -1:
2451            return reduce(lambda x,y: x+y,
2452                          self.expandCpuSymbolsToDict(template).values())
2453        else:
2454            return template
2455
2456    def protectCpuSymbols(self, template):
2457        '''Protect CPU-specific references by doubling the
2458        corresponding '%'s (in preparation for substituting a different
2459        set of references into the template).'''
2460
2461        return re.sub(r'%(?=\(CPU_)', '%%', template)
2462
2463    def protectNonSubstPercents(self, s):
2464        '''Protect any non-dict-substitution '%'s in a format string
2465        (i.e. those not followed by '(')'''
2466
2467        return re.sub(r'%(?!\()', '%%', s)
2468
2469    def buildOperandNameMap(self, user_dict, lineno):
2470        operand_name = {}
2471        for op_name, val in user_dict.iteritems():
2472
2473            # Check if extra attributes have been specified.
2474            if len(val) > 9:
2475                error(lineno, 'error: too many attributes for operand "%s"' %
2476                      base_cls_name)
2477
2478            # Pad val with None in case optional args are missing
2479            val += (None, None, None, None)
2480            base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2481            read_code, write_code, read_predicate, write_predicate = val[:9]
2482
2483            # Canonical flag structure is a triple of lists, where each list
2484            # indicates the set of flags implied by this operand always, when
2485            # used as a source, and when used as a dest, respectively.
2486            # For simplicity this can be initialized using a variety of fairly
2487            # obvious shortcuts; we convert these to canonical form here.
2488            if not flags:
2489                # no flags specified (e.g., 'None')
2490                flags = ( [], [], [] )
2491            elif isinstance(flags, str):
2492                # a single flag: assumed to be unconditional
2493                flags = ( [ flags ], [], [] )
2494            elif isinstance(flags, list):
2495                # a list of flags: also assumed to be unconditional
2496                flags = ( flags, [], [] )
2497            elif isinstance(flags, tuple):
2498                # it's a tuple: it should be a triple,
2499                # but each item could be a single string or a list
2500                (uncond_flags, src_flags, dest_flags) = flags
2501                flags = (makeList(uncond_flags),
2502                         makeList(src_flags), makeList(dest_flags))
2503
2504            # Accumulate attributes of new operand class in tmp_dict
2505            tmp_dict = {}
2506            attrList = ['reg_spec', 'flags', 'sort_pri',
2507                        'read_code', 'write_code',
2508                        'read_predicate', 'write_predicate']
2509            if dflt_ext:
2510                dflt_ctype = self.operandTypeMap[dflt_ext]
2511                attrList.extend(['dflt_ctype', 'dflt_ext'])
2512            # reg_spec is either just a string or a dictionary
2513            # (for elems of vector)
2514            if isinstance(reg_spec, tuple):
2515                (reg_spec, elem_spec) = reg_spec
2516                if isinstance(elem_spec, str):
2517                    attrList.append('elem_spec')
2518                else:
2519                    assert(isinstance(elem_spec, dict))
2520                    elems = elem_spec
2521                    attrList.append('elems')
2522            for attr in attrList:
2523                tmp_dict[attr] = eval(attr)
2524            tmp_dict['base_name'] = op_name
2525
2526            # New class name will be e.g. "IntReg_Ra"
2527            cls_name = base_cls_name + '_' + op_name
2528            # Evaluate string arg to get class object.  Note that the
2529            # actual base class for "IntReg" is "IntRegOperand", i.e. we
2530            # have to append "Operand".
2531            try:
2532                base_cls = eval(base_cls_name + 'Operand')
2533            except NameError:
2534                error(lineno,
2535                      'error: unknown operand base class "%s"' % base_cls_name)
2536            # The following statement creates a new class called
2537            # <cls_name> as a subclass of <base_cls> with the attributes
2538            # in tmp_dict, just as if we evaluated a class declaration.
2539            operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2540
2541        self.operandNameMap = operand_name
2542
2543        # Define operand variables.
2544        operands = user_dict.keys()
2545        # Add the elems defined in the vector operands and
2546        # build a map elem -> vector (used in OperandList)
2547        elem_to_vec = {}
2548        for op in user_dict.keys():
2549            if hasattr(self.operandNameMap[op], 'elems'):
2550                for elem in self.operandNameMap[op].elems.keys():
2551                    operands.append(elem)
2552                    elem_to_vec[elem] = op
2553        self.elemToVector = elem_to_vec
2554        extensions = self.operandTypeMap.keys()
2555
2556        operandsREString = r'''
2557        (?<!\w)      # neg. lookbehind assertion: prevent partial matches
2558        ((%s)(?:_(%s))?)   # match: operand with optional '_' then suffix
2559        (?!\w)       # neg. lookahead assertion: prevent partial matches
2560        ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2561
2562        self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2563
2564        # Same as operandsREString, but extension is mandatory, and only two
2565        # groups are returned (base and ext, not full name as above).
2566        # Used for subtituting '_' for '.' to make C++ identifiers.
2567        operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2568            % (string.join(operands, '|'), string.join(extensions, '|'))
2569
2570        self.operandsWithExtRE = \
2571            re.compile(operandsWithExtREString, re.MULTILINE)
2572
2573    def substMungedOpNames(self, code):
2574        '''Munge operand names in code string to make legal C++
2575        variable names.  This means getting rid of the type extension
2576        if any.  Will match base_name attribute of Operand object.)'''
2577        return self.operandsWithExtRE.sub(r'\1', code)
2578
2579    def mungeSnippet(self, s):
2580        '''Fix up code snippets for final substitution in templates.'''
2581        if isinstance(s, str):
2582            return self.substMungedOpNames(substBitOps(s))
2583        else:
2584            return s
2585
2586    def open(self, name, bare=False):
2587        '''Open the output file for writing and include scary warning.'''
2588        filename = os.path.join(self.output_dir, name)
2589        f = open(filename, 'w')
2590        if f:
2591            if not bare:
2592                f.write(ISAParser.scaremonger_template % self)
2593        return f
2594
2595    def update(self, file, contents):
2596        '''Update the output file only.  Scons should handle the case when
2597        the new contents are unchanged using its built-in hash feature.'''
2598        f = self.open(file)
2599        f.write(contents)
2600        f.close()
2601
2602    # This regular expression matches '##include' directives
2603    includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2604                           re.MULTILINE)
2605
2606    def replace_include(self, matchobj, dirname):
2607        """Function to replace a matched '##include' directive with the
2608        contents of the specified file (with nested ##includes
2609        replaced recursively).  'matchobj' is an re match object
2610        (from a match of includeRE) and 'dirname' is the directory
2611        relative to which the file path should be resolved."""
2612
2613        fname = matchobj.group('filename')
2614        full_fname = os.path.normpath(os.path.join(dirname, fname))
2615        contents = '##newfile "%s"\n%s\n##endfile\n' % \
2616                   (full_fname, self.read_and_flatten(full_fname))
2617        return contents
2618
2619    def read_and_flatten(self, filename):
2620        """Read a file and recursively flatten nested '##include' files."""
2621
2622        current_dir = os.path.dirname(filename)
2623        try:
2624            contents = open(filename).read()
2625        except IOError:
2626            error('Error including file "%s"' % filename)
2627
2628        self.fileNameStack.push(LineTracker(filename))
2629
2630        # Find any includes and include them
2631        def replace(matchobj):
2632            return self.replace_include(matchobj, current_dir)
2633        contents = self.includeRE.sub(replace, contents)
2634
2635        self.fileNameStack.pop()
2636        return contents
2637
2638    AlreadyGenerated = {}
2639
2640    def _parse_isa_desc(self, isa_desc_file):
2641        '''Read in and parse the ISA description.'''
2642
2643        # The build system can end up running the ISA parser twice: once to
2644        # finalize the build dependencies, and then to actually generate
2645        # the files it expects (in src/arch/$ARCH/generated). This code
2646        # doesn't do anything different either time, however; the SCons
2647        # invocations just expect different things. Since this code runs
2648        # within SCons, we can just remember that we've already run and
2649        # not perform a completely unnecessary run, since the ISA parser's
2650        # effect is idempotent.
2651        if isa_desc_file in ISAParser.AlreadyGenerated:
2652            return
2653
2654        # grab the last three path components of isa_desc_file
2655        self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2656
2657        # Read file and (recursively) all included files into a string.
2658        # PLY requires that the input be in a single string so we have to
2659        # do this up front.
2660        isa_desc = self.read_and_flatten(isa_desc_file)
2661
2662        # Initialize lineno tracker
2663        self.lex.lineno = LineTracker(isa_desc_file)
2664
2665        # Parse.
2666        self.parse_string(isa_desc)
2667
2668        ISAParser.AlreadyGenerated[isa_desc_file] = None
2669
2670    def parse_isa_desc(self, *args, **kwargs):
2671        try:
2672            self._parse_isa_desc(*args, **kwargs)
2673        except ISAParserError, e:
2674            print backtrace(self.fileNameStack)
2675            print "At %s:" % e.lineno
2676            print e
2677            sys.exit(1)
2678
2679# Called as script: get args from command line.
2680# Args are: <isa desc file> <output dir>
2681if __name__ == '__main__':
2682    ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2683