isa_parser.py revision 12104:edd63f9c6184
1# Copyright (c) 2014 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64    return re.sub(r'(?m)^(?!#)', '  ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation.  Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation.  Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84    # get rid of blank lines first
85    s = re.sub(r'(?m)^\s*\n', '', s);
86    if (s != '' and re.match(r'[ \t]', s[0])):
87        s = 'if 1:\n' + s
88    return s
89
90class ISAParserError(Exception):
91    """Exception class for parser errors"""
92    def __init__(self, first, second=None):
93        if second is None:
94            self.lineno = 0
95            self.string = first
96        else:
97            self.lineno = first
98            self.string = second
99
100    def __str__(self):
101        return self.string
102
103def error(*args):
104    raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115    def __init__(self, parser, t):
116        self.parser = parser
117        self.template = t
118
119    def subst(self, d):
120        myDict = None
121
122        # Protect non-Python-dict substitutions (e.g. if there's a printf
123        # in the templated C++ code)
124        template = self.parser.protectNonSubstPercents(self.template)
125        # CPU-model-specific substitutions are handled later (in GenCode).
126        template = self.parser.protectCpuSymbols(template)
127
128        # Build a dict ('myDict') to use for the template substitution.
129        # Start with the template namespace.  Make a copy since we're
130        # going to modify it.
131        myDict = self.parser.templateMap.copy()
132
133        if isinstance(d, InstObjParams):
134            # If we're dealing with an InstObjParams object, we need
135            # to be a little more sophisticated.  The instruction-wide
136            # parameters are already formed, but the parameters which
137            # are only function wide still need to be generated.
138            compositeCode = ''
139
140            myDict.update(d.__dict__)
141            # The "operands" and "snippets" attributes of the InstObjParams
142            # objects are for internal use and not substitution.
143            del myDict['operands']
144            del myDict['snippets']
145
146            snippetLabels = [l for l in labelRE.findall(template)
147                             if d.snippets.has_key(l)]
148
149            snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150                             for s in snippetLabels])
151
152            myDict.update(snippets)
153
154            compositeCode = ' '.join(map(str, snippets.values()))
155
156            # Add in template itself in case it references any
157            # operands explicitly (like Mem)
158            compositeCode += ' ' + template
159
160            operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163            if operands.readPC or operands.setPC:
164                myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166            # In case there are predicated register reads and write, declare
167            # the variables for register indicies. It is being assumed that
168            # all the operands in the OperandList are also in the
169            # SubOperandList and in the same order. Otherwise, it is
170            # expected that predication would not be used for the operands.
171            if operands.predRead:
172                myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173            if operands.predWrite:
174                myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176            is_src = lambda op: op.is_src
177            is_dest = lambda op: op.is_dest
178
179            myDict['op_src_decl'] = \
180                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181            myDict['op_dest_decl'] = \
182                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183            if operands.readPC:
184                myDict['op_src_decl'] += \
185                    'TheISA::PCState __parserAutoPCState;\n'
186            if operands.setPC:
187                myDict['op_dest_decl'] += \
188                    'TheISA::PCState __parserAutoPCState;\n'
189
190            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191            if operands.readPC:
192                myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193                                  myDict['op_rd']
194
195            # Compose the op_wb string. If we're going to write back the
196            # PC state because we changed some of its elements, we'll need to
197            # do that as early as possible. That allows later uncoordinated
198            # modifications to the PC to layer appropriately.
199            reordered = list(operands.items)
200            reordered.reverse()
201            op_wb_str = ''
202            pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203            for op_desc in reordered:
204                if op_desc.isPCPart() and op_desc.is_dest:
205                    op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206                    pcWbStr = ''
207                else:
208                    op_wb_str = op_desc.op_wb + op_wb_str
209            myDict['op_wb'] = op_wb_str
210
211        elif isinstance(d, dict):
212            # if the argument is a dictionary, we just use it.
213            myDict.update(d)
214        elif hasattr(d, '__dict__'):
215            # if the argument is an object, we use its attribute map.
216            myDict.update(d.__dict__)
217        else:
218            raise TypeError, "Template.subst() arg must be or have dictionary"
219        return template % myDict
220
221    # Convert to string.  This handles the case when a template with a
222    # CPU-specific term gets interpolated into another template or into
223    # an output block.
224    def __str__(self):
225        return self.parser.expandCpuSymbolsToString(self.template)
226
227################
228# Format object.
229#
230# A format object encapsulates an instruction format.  It must provide
231# a defineInst() method that generates the code for an instruction
232# definition.
233
234class Format(object):
235    def __init__(self, id, params, code):
236        self.id = id
237        self.params = params
238        label = 'def format ' + id
239        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240        param_list = string.join(params, ", ")
241        f = '''def defInst(_code, _context, %s):
242                my_locals = vars().copy()
243                exec _code in _context, my_locals
244                return my_locals\n''' % param_list
245        c = compile(f, label + ' wrapper', 'exec')
246        exec c
247        self.func = defInst
248
249    def defineInst(self, parser, name, args, lineno):
250        parser.updateExportContext()
251        context = parser.exportContext.copy()
252        if len(name):
253            Name = name[0].upper()
254            if len(name) > 1:
255                Name += name[1:]
256        context.update({ 'name' : name, 'Name' : Name })
257        try:
258            vars = self.func(self.user_code, context, *args[0], **args[1])
259        except Exception, exc:
260            if debug:
261                raise
262            error(lineno, 'error defining "%s": %s.' % (name, exc))
263        for k in vars.keys():
264            if k not in ('header_output', 'decoder_output',
265                         'exec_output', 'decode_block'):
266                del vars[k]
267        return GenCode(parser, **vars)
268
269# Special null format to catch an implicit-format instruction
270# definition outside of any format block.
271class NoFormat(object):
272    def __init__(self):
273        self.defaultInst = ''
274
275    def defineInst(self, parser, name, args, lineno):
276        error(lineno,
277              'instruction definition "%s" with no active format!' % name)
278
279###############
280# GenCode class
281#
282# The GenCode class encapsulates generated code destined for various
283# output files.  The header_output and decoder_output attributes are
284# strings containing code destined for decoder.hh and decoder.cc
285# respectively.  The decode_block attribute contains code to be
286# incorporated in the decode function itself (that will also end up in
287# decoder.cc).  The exec_output attribute is a dictionary with a key
288# for each CPU model name; the value associated with a particular key
289# is the string of code for that CPU model's exec.cc file.  The
290# has_decode_default attribute is used in the decode block to allow
291# explicit default clauses to override default default clauses.
292
293class GenCode(object):
294    # Constructor.  At this point we substitute out all CPU-specific
295    # symbols.  For the exec output, these go into the per-model
296    # dictionary.  For all other output types they get collapsed into
297    # a single string.
298    def __init__(self, parser,
299                 header_output = '', decoder_output = '', exec_output = '',
300                 decode_block = '', has_decode_default = False):
301        self.parser = parser
302        self.header_output = parser.expandCpuSymbolsToString(header_output)
303        self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304        self.exec_output = exec_output
305        self.decode_block = decode_block
306        self.has_decode_default = has_decode_default
307
308    # Write these code chunks out to the filesystem.  They will be properly
309    # interwoven by the write_top_level_files().
310    def emit(self):
311        if self.header_output:
312            self.parser.get_file('header').write(self.header_output)
313        if self.decoder_output:
314            self.parser.get_file('decoder').write(self.decoder_output)
315        if self.exec_output:
316            self.parser.get_file('exec').write(self.exec_output)
317        if self.decode_block:
318            self.parser.get_file('decode_block').write(self.decode_block)
319
320    # Override '+' operator: generate a new GenCode object that
321    # concatenates all the individual strings in the operands.
322    def __add__(self, other):
323        return GenCode(self.parser,
324                       self.header_output + other.header_output,
325                       self.decoder_output + other.decoder_output,
326                       self.exec_output + other.exec_output,
327                       self.decode_block + other.decode_block,
328                       self.has_decode_default or other.has_decode_default)
329
330    # Prepend a string (typically a comment) to all the strings.
331    def prepend_all(self, pre):
332        self.header_output = pre + self.header_output
333        self.decoder_output  = pre + self.decoder_output
334        self.decode_block = pre + self.decode_block
335        self.exec_output  = pre + self.exec_output
336
337    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338    # and 'break;').  Used to build the big nested switch statement.
339    def wrap_decode_block(self, pre, post = ''):
340        self.decode_block = pre + indent(self.decode_block) + post
341
342#####################################################################
343#
344#                      Bitfield Operator Support
345#
346#####################################################################
347
348bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353def substBitOps(code):
354    # first convert single-bit selectors to two-index form
355    # i.e., <n> --> <n:n>
356    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357    # simple case: selector applied to ID (name)
358    # i.e., foo<a:b> --> bits(foo, a, b)
359    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360    # if selector is applied to expression (ending in ')'),
361    # we need to search backward for matching '('
362    match = bitOpExprRE.search(code)
363    while match:
364        exprEnd = match.start()
365        here = exprEnd - 1
366        nestLevel = 1
367        while nestLevel > 0:
368            if code[here] == '(':
369                nestLevel -= 1
370            elif code[here] == ')':
371                nestLevel += 1
372            here -= 1
373            if here < 0:
374                sys.exit("Didn't find '('!")
375        exprStart = here+1
376        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377                                         match.group(1), match.group(2))
378        code = code[:exprStart] + newExpr + code[match.end():]
379        match = bitOpExprRE.search(code)
380    return code
381
382
383#####################################################################
384#
385#                             Code Parser
386#
387# The remaining code is the support for automatically extracting
388# instruction characteristics from pseudocode.
389#
390#####################################################################
391
392# Force the argument to be a list.  Useful for flags, where a caller
393# can specify a singleton flag or a list of flags.  Also usful for
394# converting tuples to lists so they can be modified.
395def makeList(arg):
396    if isinstance(arg, list):
397        return arg
398    elif isinstance(arg, tuple):
399        return list(arg)
400    elif not arg:
401        return []
402    else:
403        return [ arg ]
404
405class Operand(object):
406    '''Base class for operand descriptors.  An instance of this class
407    (or actually a class derived from this one) represents a specific
408    operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409    derived classes encapsulates the traits of a particular operand
410    type (e.g., "32-bit integer register").'''
411
412    def buildReadCode(self, func = None):
413        subst_dict = {"name": self.base_name,
414                      "func": func,
415                      "reg_idx": self.reg_spec,
416                      "ctype": self.ctype}
417        if hasattr(self, 'src_reg_idx'):
418            subst_dict['op_idx'] = self.src_reg_idx
419        code = self.read_code % subst_dict
420        return '%s = %s;\n' % (self.base_name, code)
421
422    def buildWriteCode(self, func = None):
423        subst_dict = {"name": self.base_name,
424                      "func": func,
425                      "reg_idx": self.reg_spec,
426                      "ctype": self.ctype,
427                      "final_val": self.base_name}
428        if hasattr(self, 'dest_reg_idx'):
429            subst_dict['op_idx'] = self.dest_reg_idx
430        code = self.write_code % subst_dict
431        return '''
432        {
433            %s final_val = %s;
434            %s;
435            if (traceData) { traceData->setData(final_val); }
436        }''' % (self.dflt_ctype, self.base_name, code)
437
438    def __init__(self, parser, full_name, ext, is_src, is_dest):
439        self.full_name = full_name
440        self.ext = ext
441        self.is_src = is_src
442        self.is_dest = is_dest
443        # The 'effective extension' (eff_ext) is either the actual
444        # extension, if one was explicitly provided, or the default.
445        if ext:
446            self.eff_ext = ext
447        elif hasattr(self, 'dflt_ext'):
448            self.eff_ext = self.dflt_ext
449
450        if hasattr(self, 'eff_ext'):
451            self.ctype = parser.operandTypeMap[self.eff_ext]
452
453    # Finalize additional fields (primarily code fields).  This step
454    # is done separately since some of these fields may depend on the
455    # register index enumeration that hasn't been performed yet at the
456    # time of __init__(). The register index enumeration is affected
457    # by predicated register reads/writes. Hence, we forward the flags
458    # that indicate whether or not predication is in use.
459    def finalize(self, predRead, predWrite):
460        self.flags = self.getFlags()
461        self.constructor = self.makeConstructor(predRead, predWrite)
462        self.op_decl = self.makeDecl()
463
464        if self.is_src:
465            self.op_rd = self.makeRead(predRead)
466            self.op_src_decl = self.makeDecl()
467        else:
468            self.op_rd = ''
469            self.op_src_decl = ''
470
471        if self.is_dest:
472            self.op_wb = self.makeWrite(predWrite)
473            self.op_dest_decl = self.makeDecl()
474        else:
475            self.op_wb = ''
476            self.op_dest_decl = ''
477
478    def isMem(self):
479        return 0
480
481    def isReg(self):
482        return 0
483
484    def isFloatReg(self):
485        return 0
486
487    def isIntReg(self):
488        return 0
489
490    def isCCReg(self):
491        return 0
492
493    def isControlReg(self):
494        return 0
495
496    def isPCState(self):
497        return 0
498
499    def isPCPart(self):
500        return self.isPCState() and self.reg_spec
501
502    def hasReadPred(self):
503        return self.read_predicate != None
504
505    def hasWritePred(self):
506        return self.write_predicate != None
507
508    def getFlags(self):
509        # note the empty slice '[:]' gives us a copy of self.flags[0]
510        # instead of a reference to it
511        my_flags = self.flags[0][:]
512        if self.is_src:
513            my_flags += self.flags[1]
514        if self.is_dest:
515            my_flags += self.flags[2]
516        return my_flags
517
518    def makeDecl(self):
519        # Note that initializations in the declarations are solely
520        # to avoid 'uninitialized variable' errors from the compiler.
521        return self.ctype + ' ' + self.base_name + ' = 0;\n';
522
523
524src_reg_constructor = '\n\t_srcRegIdx[_numSrcRegs++] = RegId(%s, %s);'
525dst_reg_constructor = '\n\t_destRegIdx[_numDestRegs++] = RegId(%s, %s);'
526
527
528class IntRegOperand(Operand):
529    reg_class = 'IntRegClass'
530
531    def isReg(self):
532        return 1
533
534    def isIntReg(self):
535        return 1
536
537    def makeConstructor(self, predRead, predWrite):
538        c_src = ''
539        c_dest = ''
540
541        if self.is_src:
542            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
543            if self.hasReadPred():
544                c_src = '\n\tif (%s) {%s\n\t}' % \
545                        (self.read_predicate, c_src)
546
547        if self.is_dest:
548            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
549            c_dest += '\n\t_numIntDestRegs++;'
550            if self.hasWritePred():
551                c_dest = '\n\tif (%s) {%s\n\t}' % \
552                         (self.write_predicate, c_dest)
553
554        return c_src + c_dest
555
556    def makeRead(self, predRead):
557        if (self.ctype == 'float' or self.ctype == 'double'):
558            error('Attempt to read integer register as FP')
559        if self.read_code != None:
560            return self.buildReadCode('readIntRegOperand')
561
562        int_reg_val = ''
563        if predRead:
564            int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
565            if self.hasReadPred():
566                int_reg_val = '(%s) ? %s : 0' % \
567                              (self.read_predicate, int_reg_val)
568        else:
569            int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
570
571        return '%s = %s;\n' % (self.base_name, int_reg_val)
572
573    def makeWrite(self, predWrite):
574        if (self.ctype == 'float' or self.ctype == 'double'):
575            error('Attempt to write integer register as FP')
576        if self.write_code != None:
577            return self.buildWriteCode('setIntRegOperand')
578
579        if predWrite:
580            wp = 'true'
581            if self.hasWritePred():
582                wp = self.write_predicate
583
584            wcond = 'if (%s)' % (wp)
585            windex = '_destIndex++'
586        else:
587            wcond = ''
588            windex = '%d' % self.dest_reg_idx
589
590        wb = '''
591        %s
592        {
593            %s final_val = %s;
594            xc->setIntRegOperand(this, %s, final_val);\n
595            if (traceData) { traceData->setData(final_val); }
596        }''' % (wcond, self.ctype, self.base_name, windex)
597
598        return wb
599
600class FloatRegOperand(Operand):
601    reg_class = 'FloatRegClass'
602
603    def isReg(self):
604        return 1
605
606    def isFloatReg(self):
607        return 1
608
609    def makeConstructor(self, predRead, predWrite):
610        c_src = ''
611        c_dest = ''
612
613        if self.is_src:
614            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
615
616        if self.is_dest:
617            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
618            c_dest += '\n\t_numFPDestRegs++;'
619
620        return c_src + c_dest
621
622    def makeRead(self, predRead):
623        bit_select = 0
624        if (self.ctype == 'float' or self.ctype == 'double'):
625            func = 'readFloatRegOperand'
626        else:
627            func = 'readFloatRegOperandBits'
628        if self.read_code != None:
629            return self.buildReadCode(func)
630
631        if predRead:
632            rindex = '_sourceIndex++'
633        else:
634            rindex = '%d' % self.src_reg_idx
635
636        return '%s = xc->%s(this, %s);\n' % \
637            (self.base_name, func, rindex)
638
639    def makeWrite(self, predWrite):
640        if (self.ctype == 'float' or self.ctype == 'double'):
641            func = 'setFloatRegOperand'
642        else:
643            func = 'setFloatRegOperandBits'
644        if self.write_code != None:
645            return self.buildWriteCode(func)
646
647        if predWrite:
648            wp = '_destIndex++'
649        else:
650            wp = '%d' % self.dest_reg_idx
651        wp = 'xc->%s(this, %s, final_val);' % (func, wp)
652
653        wb = '''
654        {
655            %s final_val = %s;
656            %s\n
657            if (traceData) { traceData->setData(final_val); }
658        }''' % (self.ctype, self.base_name, wp)
659        return wb
660
661class CCRegOperand(Operand):
662    reg_class = 'CCRegClass'
663
664    def isReg(self):
665        return 1
666
667    def isCCReg(self):
668        return 1
669
670    def makeConstructor(self, predRead, predWrite):
671        c_src = ''
672        c_dest = ''
673
674        if self.is_src:
675            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
676            if self.hasReadPred():
677                c_src = '\n\tif (%s) {%s\n\t}' % \
678                        (self.read_predicate, c_src)
679
680        if self.is_dest:
681            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
682            c_dest += '\n\t_numCCDestRegs++;'
683            if self.hasWritePred():
684                c_dest = '\n\tif (%s) {%s\n\t}' % \
685                         (self.write_predicate, c_dest)
686
687        return c_src + c_dest
688
689    def makeRead(self, predRead):
690        if (self.ctype == 'float' or self.ctype == 'double'):
691            error('Attempt to read condition-code register as FP')
692        if self.read_code != None:
693            return self.buildReadCode('readCCRegOperand')
694
695        int_reg_val = ''
696        if predRead:
697            int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
698            if self.hasReadPred():
699                int_reg_val = '(%s) ? %s : 0' % \
700                              (self.read_predicate, int_reg_val)
701        else:
702            int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
703
704        return '%s = %s;\n' % (self.base_name, int_reg_val)
705
706    def makeWrite(self, predWrite):
707        if (self.ctype == 'float' or self.ctype == 'double'):
708            error('Attempt to write condition-code register as FP')
709        if self.write_code != None:
710            return self.buildWriteCode('setCCRegOperand')
711
712        if predWrite:
713            wp = 'true'
714            if self.hasWritePred():
715                wp = self.write_predicate
716
717            wcond = 'if (%s)' % (wp)
718            windex = '_destIndex++'
719        else:
720            wcond = ''
721            windex = '%d' % self.dest_reg_idx
722
723        wb = '''
724        %s
725        {
726            %s final_val = %s;
727            xc->setCCRegOperand(this, %s, final_val);\n
728            if (traceData) { traceData->setData(final_val); }
729        }''' % (wcond, self.ctype, self.base_name, windex)
730
731        return wb
732
733class ControlRegOperand(Operand):
734    reg_class = 'MiscRegClass'
735
736    def isReg(self):
737        return 1
738
739    def isControlReg(self):
740        return 1
741
742    def makeConstructor(self, predRead, predWrite):
743        c_src = ''
744        c_dest = ''
745
746        if self.is_src:
747            c_src = src_reg_constructor % (self.reg_class, self.reg_spec)
748
749        if self.is_dest:
750            c_dest = dst_reg_constructor % (self.reg_class, self.reg_spec)
751
752        return c_src + c_dest
753
754    def makeRead(self, predRead):
755        bit_select = 0
756        if (self.ctype == 'float' or self.ctype == 'double'):
757            error('Attempt to read control register as FP')
758        if self.read_code != None:
759            return self.buildReadCode('readMiscRegOperand')
760
761        if predRead:
762            rindex = '_sourceIndex++'
763        else:
764            rindex = '%d' % self.src_reg_idx
765
766        return '%s = xc->readMiscRegOperand(this, %s);\n' % \
767            (self.base_name, rindex)
768
769    def makeWrite(self, predWrite):
770        if (self.ctype == 'float' or self.ctype == 'double'):
771            error('Attempt to write control register as FP')
772        if self.write_code != None:
773            return self.buildWriteCode('setMiscRegOperand')
774
775        if predWrite:
776            windex = '_destIndex++'
777        else:
778            windex = '%d' % self.dest_reg_idx
779
780        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
781             (windex, self.base_name)
782        wb += 'if (traceData) { traceData->setData(%s); }' % \
783              self.base_name
784
785        return wb
786
787class MemOperand(Operand):
788    def isMem(self):
789        return 1
790
791    def makeConstructor(self, predRead, predWrite):
792        return ''
793
794    def makeDecl(self):
795        # Declare memory data variable.
796        return '%s %s;\n' % (self.ctype, self.base_name)
797
798    def makeRead(self, predRead):
799        if self.read_code != None:
800            return self.buildReadCode()
801        return ''
802
803    def makeWrite(self, predWrite):
804        if self.write_code != None:
805            return self.buildWriteCode()
806        return ''
807
808class PCStateOperand(Operand):
809    def makeConstructor(self, predRead, predWrite):
810        return ''
811
812    def makeRead(self, predRead):
813        if self.reg_spec:
814            # A component of the PC state.
815            return '%s = __parserAutoPCState.%s();\n' % \
816                (self.base_name, self.reg_spec)
817        else:
818            # The whole PC state itself.
819            return '%s = xc->pcState();\n' % self.base_name
820
821    def makeWrite(self, predWrite):
822        if self.reg_spec:
823            # A component of the PC state.
824            return '__parserAutoPCState.%s(%s);\n' % \
825                (self.reg_spec, self.base_name)
826        else:
827            # The whole PC state itself.
828            return 'xc->pcState(%s);\n' % self.base_name
829
830    def makeDecl(self):
831        ctype = 'TheISA::PCState'
832        if self.isPCPart():
833            ctype = self.ctype
834        # Note that initializations in the declarations are solely
835        # to avoid 'uninitialized variable' errors from the compiler.
836        return '%s %s = 0;\n' % (ctype, self.base_name)
837
838    def isPCState(self):
839        return 1
840
841class OperandList(object):
842    '''Find all the operands in the given code block.  Returns an operand
843    descriptor list (instance of class OperandList).'''
844    def __init__(self, parser, code):
845        self.items = []
846        self.bases = {}
847        # delete strings and comments so we don't match on operands inside
848        for regEx in (stringRE, commentRE):
849            code = regEx.sub('', code)
850        # search for operands
851        next_pos = 0
852        while 1:
853            match = parser.operandsRE.search(code, next_pos)
854            if not match:
855                # no more matches: we're done
856                break
857            op = match.groups()
858            # regexp groups are operand full name, base, and extension
859            (op_full, op_base, op_ext) = op
860            # if the token following the operand is an assignment, this is
861            # a destination (LHS), else it's a source (RHS)
862            is_dest = (assignRE.match(code, match.end()) != None)
863            is_src = not is_dest
864            # see if we've already seen this one
865            op_desc = self.find_base(op_base)
866            if op_desc:
867                if op_desc.ext != op_ext:
868                    error('Inconsistent extensions for operand %s' % \
869                          op_base)
870                op_desc.is_src = op_desc.is_src or is_src
871                op_desc.is_dest = op_desc.is_dest or is_dest
872            else:
873                # new operand: create new descriptor
874                op_desc = parser.operandNameMap[op_base](parser,
875                    op_full, op_ext, is_src, is_dest)
876                self.append(op_desc)
877            # start next search after end of current match
878            next_pos = match.end()
879        self.sort()
880        # enumerate source & dest register operands... used in building
881        # constructor later
882        self.numSrcRegs = 0
883        self.numDestRegs = 0
884        self.numFPDestRegs = 0
885        self.numIntDestRegs = 0
886        self.numCCDestRegs = 0
887        self.numMiscDestRegs = 0
888        self.memOperand = None
889
890        # Flags to keep track if one or more operands are to be read/written
891        # conditionally.
892        self.predRead = False
893        self.predWrite = False
894
895        for op_desc in self.items:
896            if op_desc.isReg():
897                if op_desc.is_src:
898                    op_desc.src_reg_idx = self.numSrcRegs
899                    self.numSrcRegs += 1
900                if op_desc.is_dest:
901                    op_desc.dest_reg_idx = self.numDestRegs
902                    self.numDestRegs += 1
903                    if op_desc.isFloatReg():
904                        self.numFPDestRegs += 1
905                    elif op_desc.isIntReg():
906                        self.numIntDestRegs += 1
907                    elif op_desc.isCCReg():
908                        self.numCCDestRegs += 1
909                    elif op_desc.isControlReg():
910                        self.numMiscDestRegs += 1
911            elif op_desc.isMem():
912                if self.memOperand:
913                    error("Code block has more than one memory operand.")
914                self.memOperand = op_desc
915
916            # Check if this operand has read/write predication. If true, then
917            # the microop will dynamically index source/dest registers.
918            self.predRead = self.predRead or op_desc.hasReadPred()
919            self.predWrite = self.predWrite or op_desc.hasWritePred()
920
921        if parser.maxInstSrcRegs < self.numSrcRegs:
922            parser.maxInstSrcRegs = self.numSrcRegs
923        if parser.maxInstDestRegs < self.numDestRegs:
924            parser.maxInstDestRegs = self.numDestRegs
925        if parser.maxMiscDestRegs < self.numMiscDestRegs:
926            parser.maxMiscDestRegs = self.numMiscDestRegs
927
928        # now make a final pass to finalize op_desc fields that may depend
929        # on the register enumeration
930        for op_desc in self.items:
931            op_desc.finalize(self.predRead, self.predWrite)
932
933    def __len__(self):
934        return len(self.items)
935
936    def __getitem__(self, index):
937        return self.items[index]
938
939    def append(self, op_desc):
940        self.items.append(op_desc)
941        self.bases[op_desc.base_name] = op_desc
942
943    def find_base(self, base_name):
944        # like self.bases[base_name], but returns None if not found
945        # (rather than raising exception)
946        return self.bases.get(base_name)
947
948    # internal helper function for concat[Some]Attr{Strings|Lists}
949    def __internalConcatAttrs(self, attr_name, filter, result):
950        for op_desc in self.items:
951            if filter(op_desc):
952                result += getattr(op_desc, attr_name)
953        return result
954
955    # return a single string that is the concatenation of the (string)
956    # values of the specified attribute for all operands
957    def concatAttrStrings(self, attr_name):
958        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
959
960    # like concatAttrStrings, but only include the values for the operands
961    # for which the provided filter function returns true
962    def concatSomeAttrStrings(self, filter, attr_name):
963        return self.__internalConcatAttrs(attr_name, filter, '')
964
965    # return a single list that is the concatenation of the (list)
966    # values of the specified attribute for all operands
967    def concatAttrLists(self, attr_name):
968        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
969
970    # like concatAttrLists, but only include the values for the operands
971    # for which the provided filter function returns true
972    def concatSomeAttrLists(self, filter, attr_name):
973        return self.__internalConcatAttrs(attr_name, filter, [])
974
975    def sort(self):
976        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
977
978class SubOperandList(OperandList):
979    '''Find all the operands in the given code block.  Returns an operand
980    descriptor list (instance of class OperandList).'''
981    def __init__(self, parser, code, master_list):
982        self.items = []
983        self.bases = {}
984        # delete strings and comments so we don't match on operands inside
985        for regEx in (stringRE, commentRE):
986            code = regEx.sub('', code)
987        # search for operands
988        next_pos = 0
989        while 1:
990            match = parser.operandsRE.search(code, next_pos)
991            if not match:
992                # no more matches: we're done
993                break
994            op = match.groups()
995            # regexp groups are operand full name, base, and extension
996            (op_full, op_base, op_ext) = op
997            # find this op in the master list
998            op_desc = master_list.find_base(op_base)
999            if not op_desc:
1000                error('Found operand %s which is not in the master list!'
1001                      % op_base)
1002            else:
1003                # See if we've already found this operand
1004                op_desc = self.find_base(op_base)
1005                if not op_desc:
1006                    # if not, add a reference to it to this sub list
1007                    self.append(master_list.bases[op_base])
1008
1009            # start next search after end of current match
1010            next_pos = match.end()
1011        self.sort()
1012        self.memOperand = None
1013        # Whether the whole PC needs to be read so parts of it can be accessed
1014        self.readPC = False
1015        # Whether the whole PC needs to be written after parts of it were
1016        # changed
1017        self.setPC = False
1018        # Whether this instruction manipulates the whole PC or parts of it.
1019        # Mixing the two is a bad idea and flagged as an error.
1020        self.pcPart = None
1021
1022        # Flags to keep track if one or more operands are to be read/written
1023        # conditionally.
1024        self.predRead = False
1025        self.predWrite = False
1026
1027        for op_desc in self.items:
1028            if op_desc.isPCPart():
1029                self.readPC = True
1030                if op_desc.is_dest:
1031                    self.setPC = True
1032
1033            if op_desc.isPCState():
1034                if self.pcPart is not None:
1035                    if self.pcPart and not op_desc.isPCPart() or \
1036                            not self.pcPart and op_desc.isPCPart():
1037                        error("Mixed whole and partial PC state operands.")
1038                self.pcPart = op_desc.isPCPart()
1039
1040            if op_desc.isMem():
1041                if self.memOperand:
1042                    error("Code block has more than one memory operand.")
1043                self.memOperand = op_desc
1044
1045            # Check if this operand has read/write predication. If true, then
1046            # the microop will dynamically index source/dest registers.
1047            self.predRead = self.predRead or op_desc.hasReadPred()
1048            self.predWrite = self.predWrite or op_desc.hasWritePred()
1049
1050# Regular expression object to match C++ strings
1051stringRE = re.compile(r'"([^"\\]|\\.)*"')
1052
1053# Regular expression object to match C++ comments
1054# (used in findOperands())
1055commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1056        re.DOTALL | re.MULTILINE)
1057
1058# Regular expression object to match assignment statements (used in
1059# findOperands()).  If the code immediately following the first
1060# appearance of the operand matches this regex, then the operand
1061# appears to be on the LHS of an assignment, and is thus a
1062# destination.  basically we're looking for an '=' that's not '=='.
1063# The heinous tangle before that handles the case where the operand
1064# has an array subscript.
1065assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1066
1067def makeFlagConstructor(flag_list):
1068    if len(flag_list) == 0:
1069        return ''
1070    # filter out repeated flags
1071    flag_list.sort()
1072    i = 1
1073    while i < len(flag_list):
1074        if flag_list[i] == flag_list[i-1]:
1075            del flag_list[i]
1076        else:
1077            i += 1
1078    pre = '\n\tflags['
1079    post = '] = true;'
1080    code = pre + string.join(flag_list, post + pre) + post
1081    return code
1082
1083# Assume all instruction flags are of the form 'IsFoo'
1084instFlagRE = re.compile(r'Is.*')
1085
1086# OpClass constants end in 'Op' except No_OpClass
1087opClassRE = re.compile(r'.*Op|No_OpClass')
1088
1089class InstObjParams(object):
1090    def __init__(self, parser, mnem, class_name, base_class = '',
1091                 snippets = {}, opt_args = []):
1092        self.mnemonic = mnem
1093        self.class_name = class_name
1094        self.base_class = base_class
1095        if not isinstance(snippets, dict):
1096            snippets = {'code' : snippets}
1097        compositeCode = ' '.join(map(str, snippets.values()))
1098        self.snippets = snippets
1099
1100        self.operands = OperandList(parser, compositeCode)
1101
1102        # The header of the constructor declares the variables to be used
1103        # in the body of the constructor.
1104        header = ''
1105        header += '\n\t_numSrcRegs = 0;'
1106        header += '\n\t_numDestRegs = 0;'
1107        header += '\n\t_numFPDestRegs = 0;'
1108        header += '\n\t_numIntDestRegs = 0;'
1109        header += '\n\t_numCCDestRegs = 0;'
1110
1111        self.constructor = header + \
1112                           self.operands.concatAttrStrings('constructor')
1113
1114        self.flags = self.operands.concatAttrLists('flags')
1115
1116        self.op_class = None
1117
1118        # Optional arguments are assumed to be either StaticInst flags
1119        # or an OpClass value.  To avoid having to import a complete
1120        # list of these values to match against, we do it ad-hoc
1121        # with regexps.
1122        for oa in opt_args:
1123            if instFlagRE.match(oa):
1124                self.flags.append(oa)
1125            elif opClassRE.match(oa):
1126                self.op_class = oa
1127            else:
1128                error('InstObjParams: optional arg "%s" not recognized '
1129                      'as StaticInst::Flag or OpClass.' % oa)
1130
1131        # Make a basic guess on the operand class if not set.
1132        # These are good enough for most cases.
1133        if not self.op_class:
1134            if 'IsStore' in self.flags:
1135                # The order matters here: 'IsFloating' and 'IsInteger' are
1136                # usually set in FP instructions because of the base
1137                # register
1138                if 'IsFloating' in self.flags:
1139                    self.op_class = 'FloatMemWriteOp'
1140                else:
1141                    self.op_class = 'MemWriteOp'
1142            elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1143                # The order matters here: 'IsFloating' and 'IsInteger' are
1144                # usually set in FP instructions because of the base
1145                # register
1146                if 'IsFloating' in self.flags:
1147                    self.op_class = 'FloatMemReadOp'
1148                else:
1149                    self.op_class = 'MemReadOp'
1150            elif 'IsFloating' in self.flags:
1151                self.op_class = 'FloatAddOp'
1152            else:
1153                self.op_class = 'IntAluOp'
1154
1155        # add flag initialization to contructor here to include
1156        # any flags added via opt_args
1157        self.constructor += makeFlagConstructor(self.flags)
1158
1159        # if 'IsFloating' is set, add call to the FP enable check
1160        # function (which should be provided by isa_desc via a declare)
1161        if 'IsFloating' in self.flags:
1162            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1163        else:
1164            self.fp_enable_check = ''
1165
1166##############
1167# Stack: a simple stack object.  Used for both formats (formatStack)
1168# and default cases (defaultStack).  Simply wraps a list to give more
1169# stack-like syntax and enable initialization with an argument list
1170# (as opposed to an argument that's a list).
1171
1172class Stack(list):
1173    def __init__(self, *items):
1174        list.__init__(self, items)
1175
1176    def push(self, item):
1177        self.append(item);
1178
1179    def top(self):
1180        return self[-1]
1181
1182# Format a file include stack backtrace as a string
1183def backtrace(filename_stack):
1184    fmt = "In file included from %s:"
1185    return "\n".join([fmt % f for f in filename_stack])
1186
1187
1188#######################
1189#
1190# LineTracker: track filenames along with line numbers in PLY lineno fields
1191#     PLY explicitly doesn't do anything with 'lineno' except propagate
1192#     it.  This class lets us tie filenames with the line numbers with a
1193#     minimum of disruption to existing increment code.
1194#
1195
1196class LineTracker(object):
1197    def __init__(self, filename, lineno=1):
1198        self.filename = filename
1199        self.lineno = lineno
1200
1201    # Overload '+=' for increments.  We need to create a new object on
1202    # each update else every token ends up referencing the same
1203    # constantly incrementing instance.
1204    def __iadd__(self, incr):
1205        return LineTracker(self.filename, self.lineno + incr)
1206
1207    def __str__(self):
1208        return "%s:%d" % (self.filename, self.lineno)
1209
1210    # In case there are places where someone really expects a number
1211    def __int__(self):
1212        return self.lineno
1213
1214
1215#######################
1216#
1217# ISA Parser
1218#   parses ISA DSL and emits C++ headers and source
1219#
1220
1221class ISAParser(Grammar):
1222    class CpuModel(object):
1223        def __init__(self, name, filename, includes, strings):
1224            self.name = name
1225            self.filename = filename
1226            self.includes = includes
1227            self.strings = strings
1228
1229    def __init__(self, output_dir):
1230        super(ISAParser, self).__init__()
1231        self.output_dir = output_dir
1232
1233        self.filename = None # for output file watermarking/scaremongering
1234
1235        self.cpuModels = [
1236            ISAParser.CpuModel('ExecContext',
1237                               'generic_cpu_exec.cc',
1238                               '#include "cpu/exec_context.hh"',
1239                               { "CPU_exec_context" : "ExecContext" }),
1240            ]
1241
1242        # variable to hold templates
1243        self.templateMap = {}
1244
1245        # This dictionary maps format name strings to Format objects.
1246        self.formatMap = {}
1247
1248        # Track open files and, if applicable, how many chunks it has been
1249        # split into so far.
1250        self.files = {}
1251        self.splits = {}
1252
1253        # isa_name / namespace identifier from namespace declaration.
1254        # before the namespace declaration, None.
1255        self.isa_name = None
1256        self.namespace = None
1257
1258        # The format stack.
1259        self.formatStack = Stack(NoFormat())
1260
1261        # The default case stack.
1262        self.defaultStack = Stack(None)
1263
1264        # Stack that tracks current file and line number.  Each
1265        # element is a tuple (filename, lineno) that records the
1266        # *current* filename and the line number in the *previous*
1267        # file where it was included.
1268        self.fileNameStack = Stack()
1269
1270        symbols = ('makeList', 're', 'string')
1271        self.exportContext = dict([(s, eval(s)) for s in symbols])
1272
1273        self.maxInstSrcRegs = 0
1274        self.maxInstDestRegs = 0
1275        self.maxMiscDestRegs = 0
1276
1277    def __getitem__(self, i):    # Allow object (self) to be
1278        return getattr(self, i)  # passed to %-substitutions
1279
1280    # Change the file suffix of a base filename:
1281    #   (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1282    def suffixize(self, s, sec):
1283        extn = re.compile('(\.[^\.]+)$') # isolate extension
1284        if self.namespace:
1285            return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1286        else:
1287            return extn.sub(r'-g\1.inc', s)
1288
1289    # Get the file object for emitting code into the specified section
1290    # (header, decoder, exec, decode_block).
1291    def get_file(self, section):
1292        if section == 'decode_block':
1293            filename = 'decode-method.cc.inc'
1294        else:
1295            if section == 'header':
1296                file = 'decoder.hh'
1297            else:
1298                file = '%s.cc' % section
1299            filename = self.suffixize(file, section)
1300        try:
1301            return self.files[filename]
1302        except KeyError: pass
1303
1304        f = self.open(filename)
1305        self.files[filename] = f
1306
1307        # The splittable files are the ones with many independent
1308        # per-instruction functions - the decoder's instruction constructors
1309        # and the instruction execution (execute()) methods. These both have
1310        # the suffix -ns.cc.inc, meaning they are within the namespace part
1311        # of the ISA, contain object-emitting C++ source, and are included
1312        # into other top-level files. These are the files that need special
1313        # #define's to allow parts of them to be compiled separately. Rather
1314        # than splitting the emissions into separate files, the monolithic
1315        # output of the ISA parser is maintained, but the value (or lack
1316        # thereof) of the __SPLIT definition during C preprocessing will
1317        # select the different chunks. If no 'split' directives are used,
1318        # the cpp emissions have no effect.
1319        if re.search('-ns.cc.inc$', filename):
1320            print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1321            self.splits[f] = 1
1322        # ensure requisite #include's
1323        elif filename == 'decoder-g.hh.inc':
1324            print >>f, '#include "base/bitfield.hh"'
1325
1326        return f
1327
1328    # Weave together the parts of the different output sections by
1329    # #include'ing them into some very short top-level .cc/.hh files.
1330    # These small files make it much clearer how this tool works, since
1331    # you directly see the chunks emitted as files that are #include'd.
1332    def write_top_level_files(self):
1333        dep = self.open('inc.d', bare=True)
1334
1335        # decoder header - everything depends on this
1336        file = 'decoder.hh'
1337        with self.open(file) as f:
1338            inc = []
1339
1340            fn = 'decoder-g.hh.inc'
1341            assert(fn in self.files)
1342            f.write('#include "%s"\n' % fn)
1343            inc.append(fn)
1344
1345            fn = 'decoder-ns.hh.inc'
1346            assert(fn in self.files)
1347            f.write('namespace %s {\n#include "%s"\n}\n'
1348                    % (self.namespace, fn))
1349            inc.append(fn)
1350
1351            print >>dep, file+':', ' '.join(inc)
1352
1353        # decoder method - cannot be split
1354        file = 'decoder.cc'
1355        with self.open(file) as f:
1356            inc = []
1357
1358            fn = 'decoder-g.cc.inc'
1359            assert(fn in self.files)
1360            f.write('#include "%s"\n' % fn)
1361            inc.append(fn)
1362
1363            fn = 'decoder.hh'
1364            f.write('#include "%s"\n' % fn)
1365            inc.append(fn)
1366
1367            fn = 'decode-method.cc.inc'
1368            # is guaranteed to have been written for parse to complete
1369            f.write('#include "%s"\n' % fn)
1370            inc.append(fn)
1371
1372            print >>dep, file+':', ' '.join(inc)
1373
1374        extn = re.compile('(\.[^\.]+)$')
1375
1376        # instruction constructors
1377        splits = self.splits[self.get_file('decoder')]
1378        file_ = 'inst-constrs.cc'
1379        for i in range(1, splits+1):
1380            if splits > 1:
1381                file = extn.sub(r'-%d\1' % i, file_)
1382            else:
1383                file = file_
1384            with self.open(file) as f:
1385                inc = []
1386
1387                fn = 'decoder-g.cc.inc'
1388                assert(fn in self.files)
1389                f.write('#include "%s"\n' % fn)
1390                inc.append(fn)
1391
1392                fn = 'decoder.hh'
1393                f.write('#include "%s"\n' % fn)
1394                inc.append(fn)
1395
1396                fn = 'decoder-ns.cc.inc'
1397                assert(fn in self.files)
1398                print >>f, 'namespace %s {' % self.namespace
1399                if splits > 1:
1400                    print >>f, '#define __SPLIT %u' % i
1401                print >>f, '#include "%s"' % fn
1402                print >>f, '}'
1403                inc.append(fn)
1404
1405                print >>dep, file+':', ' '.join(inc)
1406
1407        # instruction execution per-CPU model
1408        splits = self.splits[self.get_file('exec')]
1409        for cpu in self.cpuModels:
1410            for i in range(1, splits+1):
1411                if splits > 1:
1412                    file = extn.sub(r'_%d\1' % i, cpu.filename)
1413                else:
1414                    file = cpu.filename
1415                with self.open(file) as f:
1416                    inc = []
1417
1418                    fn = 'exec-g.cc.inc'
1419                    assert(fn in self.files)
1420                    f.write('#include "%s"\n' % fn)
1421                    inc.append(fn)
1422
1423                    f.write(cpu.includes+"\n")
1424
1425                    fn = 'decoder.hh'
1426                    f.write('#include "%s"\n' % fn)
1427                    inc.append(fn)
1428
1429                    fn = 'exec-ns.cc.inc'
1430                    assert(fn in self.files)
1431                    print >>f, 'namespace %s {' % self.namespace
1432                    print >>f, '#define CPU_EXEC_CONTEXT %s' \
1433                               % cpu.strings['CPU_exec_context']
1434                    if splits > 1:
1435                        print >>f, '#define __SPLIT %u' % i
1436                    print >>f, '#include "%s"' % fn
1437                    print >>f, '}'
1438                    inc.append(fn)
1439
1440                    inc.append("decoder.hh")
1441                    print >>dep, file+':', ' '.join(inc)
1442
1443        # max_inst_regs.hh
1444        self.update('max_inst_regs.hh',
1445                    '''namespace %(namespace)s {
1446    const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1447    const int MaxInstDestRegs = %(maxInstDestRegs)d;
1448    const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1449        print >>dep, 'max_inst_regs.hh:'
1450
1451        dep.close()
1452
1453
1454    scaremonger_template ='''// DO NOT EDIT
1455// This file was automatically generated from an ISA description:
1456//   %(filename)s
1457
1458''';
1459
1460    #####################################################################
1461    #
1462    #                                Lexer
1463    #
1464    # The PLY lexer module takes two things as input:
1465    # - A list of token names (the string list 'tokens')
1466    # - A regular expression describing a match for each token.  The
1467    #   regexp for token FOO can be provided in two ways:
1468    #   - as a string variable named t_FOO
1469    #   - as the doc string for a function named t_FOO.  In this case,
1470    #     the function is also executed, allowing an action to be
1471    #     associated with each token match.
1472    #
1473    #####################################################################
1474
1475    # Reserved words.  These are listed separately as they are matched
1476    # using the same regexp as generic IDs, but distinguished in the
1477    # t_ID() function.  The PLY documentation suggests this approach.
1478    reserved = (
1479        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1480        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1481        'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1482        )
1483
1484    # List of tokens.  The lex module requires this.
1485    tokens = reserved + (
1486        # identifier
1487        'ID',
1488
1489        # integer literal
1490        'INTLIT',
1491
1492        # string literal
1493        'STRLIT',
1494
1495        # code literal
1496        'CODELIT',
1497
1498        # ( ) [ ] { } < > , ; . : :: *
1499        'LPAREN', 'RPAREN',
1500        'LBRACKET', 'RBRACKET',
1501        'LBRACE', 'RBRACE',
1502        'LESS', 'GREATER', 'EQUALS',
1503        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1504        'ASTERISK',
1505
1506        # C preprocessor directives
1507        'CPPDIRECTIVE'
1508
1509    # The following are matched but never returned. commented out to
1510    # suppress PLY warning
1511        # newfile directive
1512    #    'NEWFILE',
1513
1514        # endfile directive
1515    #    'ENDFILE'
1516    )
1517
1518    # Regular expressions for token matching
1519    t_LPAREN           = r'\('
1520    t_RPAREN           = r'\)'
1521    t_LBRACKET         = r'\['
1522    t_RBRACKET         = r'\]'
1523    t_LBRACE           = r'\{'
1524    t_RBRACE           = r'\}'
1525    t_LESS             = r'\<'
1526    t_GREATER          = r'\>'
1527    t_EQUALS           = r'='
1528    t_COMMA            = r','
1529    t_SEMI             = r';'
1530    t_DOT              = r'\.'
1531    t_COLON            = r':'
1532    t_DBLCOLON         = r'::'
1533    t_ASTERISK         = r'\*'
1534
1535    # Identifiers and reserved words
1536    reserved_map = { }
1537    for r in reserved:
1538        reserved_map[r.lower()] = r
1539
1540    def t_ID(self, t):
1541        r'[A-Za-z_]\w*'
1542        t.type = self.reserved_map.get(t.value, 'ID')
1543        return t
1544
1545    # Integer literal
1546    def t_INTLIT(self, t):
1547        r'-?(0x[\da-fA-F]+)|\d+'
1548        try:
1549            t.value = int(t.value,0)
1550        except ValueError:
1551            error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1552            t.value = 0
1553        return t
1554
1555    # String literal.  Note that these use only single quotes, and
1556    # can span multiple lines.
1557    def t_STRLIT(self, t):
1558        r"(?m)'([^'])+'"
1559        # strip off quotes
1560        t.value = t.value[1:-1]
1561        t.lexer.lineno += t.value.count('\n')
1562        return t
1563
1564
1565    # "Code literal"... like a string literal, but delimiters are
1566    # '{{' and '}}' so they get formatted nicely under emacs c-mode
1567    def t_CODELIT(self, t):
1568        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1569        # strip off {{ & }}
1570        t.value = t.value[2:-2]
1571        t.lexer.lineno += t.value.count('\n')
1572        return t
1573
1574    def t_CPPDIRECTIVE(self, t):
1575        r'^\#[^\#].*\n'
1576        t.lexer.lineno += t.value.count('\n')
1577        return t
1578
1579    def t_NEWFILE(self, t):
1580        r'^\#\#newfile\s+"[^"]*"\n'
1581        self.fileNameStack.push(t.lexer.lineno)
1582        t.lexer.lineno = LineTracker(t.value[11:-2])
1583
1584    def t_ENDFILE(self, t):
1585        r'^\#\#endfile\n'
1586        t.lexer.lineno = self.fileNameStack.pop()
1587
1588    #
1589    # The functions t_NEWLINE, t_ignore, and t_error are
1590    # special for the lex module.
1591    #
1592
1593    # Newlines
1594    def t_NEWLINE(self, t):
1595        r'\n+'
1596        t.lexer.lineno += t.value.count('\n')
1597
1598    # Comments
1599    def t_comment(self, t):
1600        r'//.*'
1601
1602    # Completely ignored characters
1603    t_ignore = ' \t\x0c'
1604
1605    # Error handler
1606    def t_error(self, t):
1607        error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1608        t.skip(1)
1609
1610    #####################################################################
1611    #
1612    #                                Parser
1613    #
1614    # Every function whose name starts with 'p_' defines a grammar
1615    # rule.  The rule is encoded in the function's doc string, while
1616    # the function body provides the action taken when the rule is
1617    # matched.  The argument to each function is a list of the values
1618    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1619    # symbols on the RHS.  For tokens, the value is copied from the
1620    # t.value attribute provided by the lexer.  For non-terminals, the
1621    # value is assigned by the producing rule; i.e., the job of the
1622    # grammar rule function is to set the value for the non-terminal
1623    # on the LHS (by assigning to t[0]).
1624    #####################################################################
1625
1626    # The LHS of the first grammar rule is used as the start symbol
1627    # (in this case, 'specification').  Note that this rule enforces
1628    # that there will be exactly one namespace declaration, with 0 or
1629    # more global defs/decls before and after it.  The defs & decls
1630    # before the namespace decl will be outside the namespace; those
1631    # after will be inside.  The decoder function is always inside the
1632    # namespace.
1633    def p_specification(self, t):
1634        'specification : opt_defs_and_outputs top_level_decode_block'
1635
1636        for f in self.splits.iterkeys():
1637            f.write('\n#endif\n')
1638
1639        for f in self.files.itervalues(): # close ALL the files;
1640            f.close() # not doing so can cause compilation to fail
1641
1642        self.write_top_level_files()
1643
1644        t[0] = True
1645
1646    # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1647    # output statements. Its productions do the hard work of eventually
1648    # instantiating a GenCode, which are generally emitted (written to disk)
1649    # as soon as possible, except for the decode_block, which has to be
1650    # accumulated into one large function of nested switch/case blocks.
1651    def p_opt_defs_and_outputs_0(self, t):
1652        'opt_defs_and_outputs : empty'
1653
1654    def p_opt_defs_and_outputs_1(self, t):
1655        'opt_defs_and_outputs : defs_and_outputs'
1656
1657    def p_defs_and_outputs_0(self, t):
1658        'defs_and_outputs : def_or_output'
1659
1660    def p_defs_and_outputs_1(self, t):
1661        'defs_and_outputs : defs_and_outputs def_or_output'
1662
1663    # The list of possible definition/output statements.
1664    # They are all processed as they are seen.
1665    def p_def_or_output(self, t):
1666        '''def_or_output : name_decl
1667                         | def_format
1668                         | def_bitfield
1669                         | def_bitfield_struct
1670                         | def_template
1671                         | def_operand_types
1672                         | def_operands
1673                         | output
1674                         | global_let
1675                         | split'''
1676
1677    # Utility function used by both invocations of splitting - explicit
1678    # 'split' keyword and split() function inside "let {{ }};" blocks.
1679    def split(self, sec, write=False):
1680        assert(sec != 'header' and "header cannot be split")
1681
1682        f = self.get_file(sec)
1683        self.splits[f] += 1
1684        s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1685        if write:
1686            f.write(s)
1687        else:
1688            return s
1689
1690    # split output file to reduce compilation time
1691    def p_split(self, t):
1692        'split : SPLIT output_type SEMI'
1693        assert(self.isa_name and "'split' not allowed before namespace decl")
1694
1695        self.split(t[2], True)
1696
1697    def p_output_type(self, t):
1698        '''output_type : DECODER
1699                       | HEADER
1700                       | EXEC'''
1701        t[0] = t[1]
1702
1703    # ISA name declaration looks like "namespace <foo>;"
1704    def p_name_decl(self, t):
1705        'name_decl : NAMESPACE ID SEMI'
1706        assert(self.isa_name == None and "Only 1 namespace decl permitted")
1707        self.isa_name = t[2]
1708        self.namespace = t[2] + 'Inst'
1709
1710    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1711    # directly to the appropriate output section.
1712
1713    # Massage output block by substituting in template definitions and
1714    # bit operators.  We handle '%'s embedded in the string that don't
1715    # indicate template substitutions (or CPU-specific symbols, which
1716    # get handled in GenCode) by doubling them first so that the
1717    # format operation will reduce them back to single '%'s.
1718    def process_output(self, s):
1719        s = self.protectNonSubstPercents(s)
1720        # protects cpu-specific symbols too
1721        s = self.protectCpuSymbols(s)
1722        return substBitOps(s % self.templateMap)
1723
1724    def p_output(self, t):
1725        'output : OUTPUT output_type CODELIT SEMI'
1726        kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1727        GenCode(self, **kwargs).emit()
1728
1729    # global let blocks 'let {{...}}' (Python code blocks) are
1730    # executed directly when seen.  Note that these execute in a
1731    # special variable context 'exportContext' to prevent the code
1732    # from polluting this script's namespace.
1733    def p_global_let(self, t):
1734        'global_let : LET CODELIT SEMI'
1735        def _split(sec):
1736            return self.split(sec)
1737        self.updateExportContext()
1738        self.exportContext["header_output"] = ''
1739        self.exportContext["decoder_output"] = ''
1740        self.exportContext["exec_output"] = ''
1741        self.exportContext["decode_block"] = ''
1742        self.exportContext["split"] = _split
1743        split_setup = '''
1744def wrap(func):
1745    def split(sec):
1746        globals()[sec + '_output'] += func(sec)
1747    return split
1748split = wrap(split)
1749del wrap
1750'''
1751        # This tricky setup (immediately above) allows us to just write
1752        # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1753        # will automatically be added to the exec_output variable. The inner
1754        # Python execution environment doesn't know about the split points,
1755        # so we carefully inject and wrap a closure that can retrieve the
1756        # next split's #define from the parser and add it to the current
1757        # emission-in-progress.
1758        try:
1759            exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1760        except Exception, exc:
1761            if debug:
1762                raise
1763            error(t.lineno(1), 'In global let block: %s' % exc)
1764        GenCode(self,
1765                header_output=self.exportContext["header_output"],
1766                decoder_output=self.exportContext["decoder_output"],
1767                exec_output=self.exportContext["exec_output"],
1768                decode_block=self.exportContext["decode_block"]).emit()
1769
1770    # Define the mapping from operand type extensions to C++ types and
1771    # bit widths (stored in operandTypeMap).
1772    def p_def_operand_types(self, t):
1773        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1774        try:
1775            self.operandTypeMap = eval('{' + t[3] + '}')
1776        except Exception, exc:
1777            if debug:
1778                raise
1779            error(t.lineno(1),
1780                  'In def operand_types: %s' % exc)
1781
1782    # Define the mapping from operand names to operand classes and
1783    # other traits.  Stored in operandNameMap.
1784    def p_def_operands(self, t):
1785        'def_operands : DEF OPERANDS CODELIT SEMI'
1786        if not hasattr(self, 'operandTypeMap'):
1787            error(t.lineno(1),
1788                  'error: operand types must be defined before operands')
1789        try:
1790            user_dict = eval('{' + t[3] + '}', self.exportContext)
1791        except Exception, exc:
1792            if debug:
1793                raise
1794            error(t.lineno(1), 'In def operands: %s' % exc)
1795        self.buildOperandNameMap(user_dict, t.lexer.lineno)
1796
1797    # A bitfield definition looks like:
1798    # 'def [signed] bitfield <ID> [<first>:<last>]'
1799    # This generates a preprocessor macro in the output file.
1800    def p_def_bitfield_0(self, t):
1801        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1802        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1803        if (t[2] == 'signed'):
1804            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1805        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1806        GenCode(self, header_output=hash_define).emit()
1807
1808    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1809    def p_def_bitfield_1(self, t):
1810        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1811        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1812        if (t[2] == 'signed'):
1813            expr = 'sext<%d>(%s)' % (1, expr)
1814        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1815        GenCode(self, header_output=hash_define).emit()
1816
1817    # alternate form for structure member: 'def bitfield <ID> <ID>'
1818    def p_def_bitfield_struct(self, t):
1819        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1820        if (t[2] != ''):
1821            error(t.lineno(1),
1822                  'error: structure bitfields are always unsigned.')
1823        expr = 'machInst.%s' % t[5]
1824        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1825        GenCode(self, header_output=hash_define).emit()
1826
1827    def p_id_with_dot_0(self, t):
1828        'id_with_dot : ID'
1829        t[0] = t[1]
1830
1831    def p_id_with_dot_1(self, t):
1832        'id_with_dot : ID DOT id_with_dot'
1833        t[0] = t[1] + t[2] + t[3]
1834
1835    def p_opt_signed_0(self, t):
1836        'opt_signed : SIGNED'
1837        t[0] = t[1]
1838
1839    def p_opt_signed_1(self, t):
1840        'opt_signed : empty'
1841        t[0] = ''
1842
1843    def p_def_template(self, t):
1844        'def_template : DEF TEMPLATE ID CODELIT SEMI'
1845        if t[3] in self.templateMap:
1846            print "warning: template %s already defined" % t[3]
1847        self.templateMap[t[3]] = Template(self, t[4])
1848
1849    # An instruction format definition looks like
1850    # "def format <fmt>(<params>) {{...}};"
1851    def p_def_format(self, t):
1852        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1853        (id, params, code) = (t[3], t[5], t[7])
1854        self.defFormat(id, params, code, t.lexer.lineno)
1855
1856    # The formal parameter list for an instruction format is a
1857    # possibly empty list of comma-separated parameters.  Positional
1858    # (standard, non-keyword) parameters must come first, followed by
1859    # keyword parameters, followed by a '*foo' parameter that gets
1860    # excess positional arguments (as in Python).  Each of these three
1861    # parameter categories is optional.
1862    #
1863    # Note that we do not support the '**foo' parameter for collecting
1864    # otherwise undefined keyword args.  Otherwise the parameter list
1865    # is (I believe) identical to what is supported in Python.
1866    #
1867    # The param list generates a tuple, where the first element is a
1868    # list of the positional params and the second element is a dict
1869    # containing the keyword params.
1870    def p_param_list_0(self, t):
1871        'param_list : positional_param_list COMMA nonpositional_param_list'
1872        t[0] = t[1] + t[3]
1873
1874    def p_param_list_1(self, t):
1875        '''param_list : positional_param_list
1876                      | nonpositional_param_list'''
1877        t[0] = t[1]
1878
1879    def p_positional_param_list_0(self, t):
1880        'positional_param_list : empty'
1881        t[0] = []
1882
1883    def p_positional_param_list_1(self, t):
1884        'positional_param_list : ID'
1885        t[0] = [t[1]]
1886
1887    def p_positional_param_list_2(self, t):
1888        'positional_param_list : positional_param_list COMMA ID'
1889        t[0] = t[1] + [t[3]]
1890
1891    def p_nonpositional_param_list_0(self, t):
1892        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1893        t[0] = t[1] + t[3]
1894
1895    def p_nonpositional_param_list_1(self, t):
1896        '''nonpositional_param_list : keyword_param_list
1897                                    | excess_args_param'''
1898        t[0] = t[1]
1899
1900    def p_keyword_param_list_0(self, t):
1901        'keyword_param_list : keyword_param'
1902        t[0] = [t[1]]
1903
1904    def p_keyword_param_list_1(self, t):
1905        'keyword_param_list : keyword_param_list COMMA keyword_param'
1906        t[0] = t[1] + [t[3]]
1907
1908    def p_keyword_param(self, t):
1909        'keyword_param : ID EQUALS expr'
1910        t[0] = t[1] + ' = ' + t[3].__repr__()
1911
1912    def p_excess_args_param(self, t):
1913        'excess_args_param : ASTERISK ID'
1914        # Just concatenate them: '*ID'.  Wrap in list to be consistent
1915        # with positional_param_list and keyword_param_list.
1916        t[0] = [t[1] + t[2]]
1917
1918    # End of format definition-related rules.
1919    ##############
1920
1921    #
1922    # A decode block looks like:
1923    #       decode <field1> [, <field2>]* [default <inst>] { ... }
1924    #
1925    def p_top_level_decode_block(self, t):
1926        'top_level_decode_block : decode_block'
1927        codeObj = t[1]
1928        codeObj.wrap_decode_block('''
1929StaticInstPtr
1930%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1931{
1932    using namespace %(namespace)s;
1933''' % self, '}')
1934
1935        codeObj.emit()
1936
1937    def p_decode_block(self, t):
1938        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1939        default_defaults = self.defaultStack.pop()
1940        codeObj = t[5]
1941        # use the "default defaults" only if there was no explicit
1942        # default statement in decode_stmt_list
1943        if not codeObj.has_decode_default:
1944            codeObj += default_defaults
1945        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1946        t[0] = codeObj
1947
1948    # The opt_default statement serves only to push the "default
1949    # defaults" onto defaultStack.  This value will be used by nested
1950    # decode blocks, and used and popped off when the current
1951    # decode_block is processed (in p_decode_block() above).
1952    def p_opt_default_0(self, t):
1953        'opt_default : empty'
1954        # no default specified: reuse the one currently at the top of
1955        # the stack
1956        self.defaultStack.push(self.defaultStack.top())
1957        # no meaningful value returned
1958        t[0] = None
1959
1960    def p_opt_default_1(self, t):
1961        'opt_default : DEFAULT inst'
1962        # push the new default
1963        codeObj = t[2]
1964        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1965        self.defaultStack.push(codeObj)
1966        # no meaningful value returned
1967        t[0] = None
1968
1969    def p_decode_stmt_list_0(self, t):
1970        'decode_stmt_list : decode_stmt'
1971        t[0] = t[1]
1972
1973    def p_decode_stmt_list_1(self, t):
1974        'decode_stmt_list : decode_stmt decode_stmt_list'
1975        if (t[1].has_decode_default and t[2].has_decode_default):
1976            error(t.lineno(1), 'Two default cases in decode block')
1977        t[0] = t[1] + t[2]
1978
1979    #
1980    # Decode statement rules
1981    #
1982    # There are four types of statements allowed in a decode block:
1983    # 1. Format blocks 'format <foo> { ... }'
1984    # 2. Nested decode blocks
1985    # 3. Instruction definitions.
1986    # 4. C preprocessor directives.
1987
1988
1989    # Preprocessor directives found in a decode statement list are
1990    # passed through to the output, replicated to all of the output
1991    # code streams.  This works well for ifdefs, so we can ifdef out
1992    # both the declarations and the decode cases generated by an
1993    # instruction definition.  Handling them as part of the grammar
1994    # makes it easy to keep them in the right place with respect to
1995    # the code generated by the other statements.
1996    def p_decode_stmt_cpp(self, t):
1997        'decode_stmt : CPPDIRECTIVE'
1998        t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1999
2000    # A format block 'format <foo> { ... }' sets the default
2001    # instruction format used to handle instruction definitions inside
2002    # the block.  This format can be overridden by using an explicit
2003    # format on the instruction definition or with a nested format
2004    # block.
2005    def p_decode_stmt_format(self, t):
2006        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
2007        # The format will be pushed on the stack when 'push_format_id'
2008        # is processed (see below).  Once the parser has recognized
2009        # the full production (though the right brace), we're done
2010        # with the format, so now we can pop it.
2011        self.formatStack.pop()
2012        t[0] = t[4]
2013
2014    # This rule exists so we can set the current format (& push the
2015    # stack) when we recognize the format name part of the format
2016    # block.
2017    def p_push_format_id(self, t):
2018        'push_format_id : ID'
2019        try:
2020            self.formatStack.push(self.formatMap[t[1]])
2021            t[0] = ('', '// format %s' % t[1])
2022        except KeyError:
2023            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2024
2025    # Nested decode block: if the value of the current field matches
2026    # the specified constant(s), do a nested decode on some other field.
2027    def p_decode_stmt_decode(self, t):
2028        'decode_stmt : case_list COLON decode_block'
2029        case_list = t[1]
2030        codeObj = t[3]
2031        # just wrap the decoding code from the block as a case in the
2032        # outer switch statement.
2033        codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2034        codeObj.has_decode_default = (case_list == ['default:'])
2035        t[0] = codeObj
2036
2037    # Instruction definition (finally!).
2038    def p_decode_stmt_inst(self, t):
2039        'decode_stmt : case_list COLON inst SEMI'
2040        case_list = t[1]
2041        codeObj = t[3]
2042        codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2043        codeObj.has_decode_default = (case_list == ['default:'])
2044        t[0] = codeObj
2045
2046    # The constant list for a decode case label must be non-empty, and must
2047    # either be the keyword 'default', or made up of one or more
2048    # comma-separated integer literals or strings which evaluate to
2049    # constants when compiled as C++.
2050    def p_case_list_0(self, t):
2051        'case_list : DEFAULT'
2052        t[0] = ['default:']
2053
2054    def prep_int_lit_case_label(self, lit):
2055        if lit >= 2**32:
2056            return 'case ULL(%#x): ' % lit
2057        else:
2058            return 'case %#x: ' % lit
2059
2060    def prep_str_lit_case_label(self, lit):
2061        return 'case %s: ' % lit
2062
2063    def p_case_list_1(self, t):
2064        'case_list : INTLIT'
2065        t[0] = [self.prep_int_lit_case_label(t[1])]
2066
2067    def p_case_list_2(self, t):
2068        'case_list : STRLIT'
2069        t[0] = [self.prep_str_lit_case_label(t[1])]
2070
2071    def p_case_list_3(self, t):
2072        'case_list : case_list COMMA INTLIT'
2073        t[0] = t[1]
2074        t[0].append(self.prep_int_lit_case_label(t[3]))
2075
2076    def p_case_list_4(self, t):
2077        'case_list : case_list COMMA STRLIT'
2078        t[0] = t[1]
2079        t[0].append(self.prep_str_lit_case_label(t[3]))
2080
2081    # Define an instruction using the current instruction format
2082    # (specified by an enclosing format block).
2083    # "<mnemonic>(<args>)"
2084    def p_inst_0(self, t):
2085        'inst : ID LPAREN arg_list RPAREN'
2086        # Pass the ID and arg list to the current format class to deal with.
2087        currentFormat = self.formatStack.top()
2088        codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2089        args = ','.join(map(str, t[3]))
2090        args = re.sub('(?m)^', '//', args)
2091        args = re.sub('^//', '', args)
2092        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2093        codeObj.prepend_all(comment)
2094        t[0] = codeObj
2095
2096    # Define an instruction using an explicitly specified format:
2097    # "<fmt>::<mnemonic>(<args>)"
2098    def p_inst_1(self, t):
2099        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2100        try:
2101            format = self.formatMap[t[1]]
2102        except KeyError:
2103            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2104
2105        codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2106        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2107        codeObj.prepend_all(comment)
2108        t[0] = codeObj
2109
2110    # The arg list generates a tuple, where the first element is a
2111    # list of the positional args and the second element is a dict
2112    # containing the keyword args.
2113    def p_arg_list_0(self, t):
2114        'arg_list : positional_arg_list COMMA keyword_arg_list'
2115        t[0] = ( t[1], t[3] )
2116
2117    def p_arg_list_1(self, t):
2118        'arg_list : positional_arg_list'
2119        t[0] = ( t[1], {} )
2120
2121    def p_arg_list_2(self, t):
2122        'arg_list : keyword_arg_list'
2123        t[0] = ( [], t[1] )
2124
2125    def p_positional_arg_list_0(self, t):
2126        'positional_arg_list : empty'
2127        t[0] = []
2128
2129    def p_positional_arg_list_1(self, t):
2130        'positional_arg_list : expr'
2131        t[0] = [t[1]]
2132
2133    def p_positional_arg_list_2(self, t):
2134        'positional_arg_list : positional_arg_list COMMA expr'
2135        t[0] = t[1] + [t[3]]
2136
2137    def p_keyword_arg_list_0(self, t):
2138        'keyword_arg_list : keyword_arg'
2139        t[0] = t[1]
2140
2141    def p_keyword_arg_list_1(self, t):
2142        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2143        t[0] = t[1]
2144        t[0].update(t[3])
2145
2146    def p_keyword_arg(self, t):
2147        'keyword_arg : ID EQUALS expr'
2148        t[0] = { t[1] : t[3] }
2149
2150    #
2151    # Basic expressions.  These constitute the argument values of
2152    # "function calls" (i.e. instruction definitions in the decode
2153    # block) and default values for formal parameters of format
2154    # functions.
2155    #
2156    # Right now, these are either strings, integers, or (recursively)
2157    # lists of exprs (using Python square-bracket list syntax).  Note
2158    # that bare identifiers are trated as string constants here (since
2159    # there isn't really a variable namespace to refer to).
2160    #
2161    def p_expr_0(self, t):
2162        '''expr : ID
2163                | INTLIT
2164                | STRLIT
2165                | CODELIT'''
2166        t[0] = t[1]
2167
2168    def p_expr_1(self, t):
2169        '''expr : LBRACKET list_expr RBRACKET'''
2170        t[0] = t[2]
2171
2172    def p_list_expr_0(self, t):
2173        'list_expr : expr'
2174        t[0] = [t[1]]
2175
2176    def p_list_expr_1(self, t):
2177        'list_expr : list_expr COMMA expr'
2178        t[0] = t[1] + [t[3]]
2179
2180    def p_list_expr_2(self, t):
2181        'list_expr : empty'
2182        t[0] = []
2183
2184    #
2185    # Empty production... use in other rules for readability.
2186    #
2187    def p_empty(self, t):
2188        'empty :'
2189        pass
2190
2191    # Parse error handler.  Note that the argument here is the
2192    # offending *token*, not a grammar symbol (hence the need to use
2193    # t.value)
2194    def p_error(self, t):
2195        if t:
2196            error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2197        else:
2198            error("unknown syntax error")
2199
2200    # END OF GRAMMAR RULES
2201
2202    def updateExportContext(self):
2203
2204        # create a continuation that allows us to grab the current parser
2205        def wrapInstObjParams(*args):
2206            return InstObjParams(self, *args)
2207        self.exportContext['InstObjParams'] = wrapInstObjParams
2208        self.exportContext.update(self.templateMap)
2209
2210    def defFormat(self, id, params, code, lineno):
2211        '''Define a new format'''
2212
2213        # make sure we haven't already defined this one
2214        if id in self.formatMap:
2215            error(lineno, 'format %s redefined.' % id)
2216
2217        # create new object and store in global map
2218        self.formatMap[id] = Format(id, params, code)
2219
2220    def expandCpuSymbolsToDict(self, template):
2221        '''Expand template with CPU-specific references into a
2222        dictionary with an entry for each CPU model name.  The entry
2223        key is the model name and the corresponding value is the
2224        template with the CPU-specific refs substituted for that
2225        model.'''
2226
2227        # Protect '%'s that don't go with CPU-specific terms
2228        t = re.sub(r'%(?!\(CPU_)', '%%', template)
2229        result = {}
2230        for cpu in self.cpuModels:
2231            result[cpu.name] = t % cpu.strings
2232        return result
2233
2234    def expandCpuSymbolsToString(self, template):
2235        '''*If* the template has CPU-specific references, return a
2236        single string containing a copy of the template for each CPU
2237        model with the corresponding values substituted in.  If the
2238        template has no CPU-specific references, it is returned
2239        unmodified.'''
2240
2241        if template.find('%(CPU_') != -1:
2242            return reduce(lambda x,y: x+y,
2243                          self.expandCpuSymbolsToDict(template).values())
2244        else:
2245            return template
2246
2247    def protectCpuSymbols(self, template):
2248        '''Protect CPU-specific references by doubling the
2249        corresponding '%'s (in preparation for substituting a different
2250        set of references into the template).'''
2251
2252        return re.sub(r'%(?=\(CPU_)', '%%', template)
2253
2254    def protectNonSubstPercents(self, s):
2255        '''Protect any non-dict-substitution '%'s in a format string
2256        (i.e. those not followed by '(')'''
2257
2258        return re.sub(r'%(?!\()', '%%', s)
2259
2260    def buildOperandNameMap(self, user_dict, lineno):
2261        operand_name = {}
2262        for op_name, val in user_dict.iteritems():
2263
2264            # Check if extra attributes have been specified.
2265            if len(val) > 9:
2266                error(lineno, 'error: too many attributes for operand "%s"' %
2267                      base_cls_name)
2268
2269            # Pad val with None in case optional args are missing
2270            val += (None, None, None, None)
2271            base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2272            read_code, write_code, read_predicate, write_predicate = val[:9]
2273
2274            # Canonical flag structure is a triple of lists, where each list
2275            # indicates the set of flags implied by this operand always, when
2276            # used as a source, and when used as a dest, respectively.
2277            # For simplicity this can be initialized using a variety of fairly
2278            # obvious shortcuts; we convert these to canonical form here.
2279            if not flags:
2280                # no flags specified (e.g., 'None')
2281                flags = ( [], [], [] )
2282            elif isinstance(flags, str):
2283                # a single flag: assumed to be unconditional
2284                flags = ( [ flags ], [], [] )
2285            elif isinstance(flags, list):
2286                # a list of flags: also assumed to be unconditional
2287                flags = ( flags, [], [] )
2288            elif isinstance(flags, tuple):
2289                # it's a tuple: it should be a triple,
2290                # but each item could be a single string or a list
2291                (uncond_flags, src_flags, dest_flags) = flags
2292                flags = (makeList(uncond_flags),
2293                         makeList(src_flags), makeList(dest_flags))
2294
2295            # Accumulate attributes of new operand class in tmp_dict
2296            tmp_dict = {}
2297            attrList = ['reg_spec', 'flags', 'sort_pri',
2298                        'read_code', 'write_code',
2299                        'read_predicate', 'write_predicate']
2300            if dflt_ext:
2301                dflt_ctype = self.operandTypeMap[dflt_ext]
2302                attrList.extend(['dflt_ctype', 'dflt_ext'])
2303            for attr in attrList:
2304                tmp_dict[attr] = eval(attr)
2305            tmp_dict['base_name'] = op_name
2306
2307            # New class name will be e.g. "IntReg_Ra"
2308            cls_name = base_cls_name + '_' + op_name
2309            # Evaluate string arg to get class object.  Note that the
2310            # actual base class for "IntReg" is "IntRegOperand", i.e. we
2311            # have to append "Operand".
2312            try:
2313                base_cls = eval(base_cls_name + 'Operand')
2314            except NameError:
2315                error(lineno,
2316                      'error: unknown operand base class "%s"' % base_cls_name)
2317            # The following statement creates a new class called
2318            # <cls_name> as a subclass of <base_cls> with the attributes
2319            # in tmp_dict, just as if we evaluated a class declaration.
2320            operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2321
2322        self.operandNameMap = operand_name
2323
2324        # Define operand variables.
2325        operands = user_dict.keys()
2326        extensions = self.operandTypeMap.keys()
2327
2328        operandsREString = r'''
2329        (?<!\w)      # neg. lookbehind assertion: prevent partial matches
2330        ((%s)(?:_(%s))?)   # match: operand with optional '_' then suffix
2331        (?!\w)       # neg. lookahead assertion: prevent partial matches
2332        ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2333
2334        self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2335
2336        # Same as operandsREString, but extension is mandatory, and only two
2337        # groups are returned (base and ext, not full name as above).
2338        # Used for subtituting '_' for '.' to make C++ identifiers.
2339        operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2340            % (string.join(operands, '|'), string.join(extensions, '|'))
2341
2342        self.operandsWithExtRE = \
2343            re.compile(operandsWithExtREString, re.MULTILINE)
2344
2345    def substMungedOpNames(self, code):
2346        '''Munge operand names in code string to make legal C++
2347        variable names.  This means getting rid of the type extension
2348        if any.  Will match base_name attribute of Operand object.)'''
2349        return self.operandsWithExtRE.sub(r'\1', code)
2350
2351    def mungeSnippet(self, s):
2352        '''Fix up code snippets for final substitution in templates.'''
2353        if isinstance(s, str):
2354            return self.substMungedOpNames(substBitOps(s))
2355        else:
2356            return s
2357
2358    def open(self, name, bare=False):
2359        '''Open the output file for writing and include scary warning.'''
2360        filename = os.path.join(self.output_dir, name)
2361        f = open(filename, 'w')
2362        if f:
2363            if not bare:
2364                f.write(ISAParser.scaremonger_template % self)
2365        return f
2366
2367    def update(self, file, contents):
2368        '''Update the output file only.  Scons should handle the case when
2369        the new contents are unchanged using its built-in hash feature.'''
2370        f = self.open(file)
2371        f.write(contents)
2372        f.close()
2373
2374    # This regular expression matches '##include' directives
2375    includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2376                           re.MULTILINE)
2377
2378    def replace_include(self, matchobj, dirname):
2379        """Function to replace a matched '##include' directive with the
2380        contents of the specified file (with nested ##includes
2381        replaced recursively).  'matchobj' is an re match object
2382        (from a match of includeRE) and 'dirname' is the directory
2383        relative to which the file path should be resolved."""
2384
2385        fname = matchobj.group('filename')
2386        full_fname = os.path.normpath(os.path.join(dirname, fname))
2387        contents = '##newfile "%s"\n%s\n##endfile\n' % \
2388                   (full_fname, self.read_and_flatten(full_fname))
2389        return contents
2390
2391    def read_and_flatten(self, filename):
2392        """Read a file and recursively flatten nested '##include' files."""
2393
2394        current_dir = os.path.dirname(filename)
2395        try:
2396            contents = open(filename).read()
2397        except IOError:
2398            error('Error including file "%s"' % filename)
2399
2400        self.fileNameStack.push(LineTracker(filename))
2401
2402        # Find any includes and include them
2403        def replace(matchobj):
2404            return self.replace_include(matchobj, current_dir)
2405        contents = self.includeRE.sub(replace, contents)
2406
2407        self.fileNameStack.pop()
2408        return contents
2409
2410    AlreadyGenerated = {}
2411
2412    def _parse_isa_desc(self, isa_desc_file):
2413        '''Read in and parse the ISA description.'''
2414
2415        # The build system can end up running the ISA parser twice: once to
2416        # finalize the build dependencies, and then to actually generate
2417        # the files it expects (in src/arch/$ARCH/generated). This code
2418        # doesn't do anything different either time, however; the SCons
2419        # invocations just expect different things. Since this code runs
2420        # within SCons, we can just remember that we've already run and
2421        # not perform a completely unnecessary run, since the ISA parser's
2422        # effect is idempotent.
2423        if isa_desc_file in ISAParser.AlreadyGenerated:
2424            return
2425
2426        # grab the last three path components of isa_desc_file
2427        self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2428
2429        # Read file and (recursively) all included files into a string.
2430        # PLY requires that the input be in a single string so we have to
2431        # do this up front.
2432        isa_desc = self.read_and_flatten(isa_desc_file)
2433
2434        # Initialize lineno tracker
2435        self.lex.lineno = LineTracker(isa_desc_file)
2436
2437        # Parse.
2438        self.parse_string(isa_desc)
2439
2440        ISAParser.AlreadyGenerated[isa_desc_file] = None
2441
2442    def parse_isa_desc(self, *args, **kwargs):
2443        try:
2444            self._parse_isa_desc(*args, **kwargs)
2445        except ISAParserError, e:
2446            print backtrace(self.fileNameStack)
2447            print "At %s:" % e.lineno
2448            print e
2449            sys.exit(1)
2450
2451# Called as script: get args from command line.
2452# Args are: <isa desc file> <output dir>
2453if __name__ == '__main__':
2454    ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2455