isa_parser.py revision 10934:5af8f40d8f2c
1# Copyright (c) 2014 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64    return re.sub(r'(?m)^(?!#)', '  ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation.  Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation.  Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84    # get rid of blank lines first
85    s = re.sub(r'(?m)^\s*\n', '', s);
86    if (s != '' and re.match(r'[ \t]', s[0])):
87        s = 'if 1:\n' + s
88    return s
89
90class ISAParserError(Exception):
91    """Error handler for parser errors"""
92    def __init__(self, first, second=None):
93        if second is None:
94            self.lineno = 0
95            self.string = first
96        else:
97            if hasattr(first, 'lexer'):
98                first = first.lexer.lineno
99            self.lineno = first
100            self.string = second
101
102    def display(self, filename_stack, print_traceback=debug):
103        # Output formatted to work under Emacs compile-mode.  Optional
104        # 'print_traceback' arg, if set to True, prints a Python stack
105        # backtrace too (can be handy when trying to debug the parser
106        # itself).
107
108        spaces = ""
109        for (filename, line) in filename_stack[:-1]:
110            print "%sIn file included from %s:" % (spaces, filename)
111            spaces += "  "
112
113        # Print a Python stack backtrace if requested.
114        if print_traceback or not self.lineno:
115            traceback.print_exc()
116
117        line_str = "%s:" % (filename_stack[-1][0], )
118        if self.lineno:
119            line_str += "%d:" % (self.lineno, )
120
121        return "%s%s %s" % (spaces, line_str, self.string)
122
123    def exit(self, filename_stack, print_traceback=debug):
124        # Just call exit.
125
126        sys.exit(self.display(filename_stack, print_traceback))
127
128def error(*args):
129    raise ISAParserError(*args)
130
131####################
132# Template objects.
133#
134# Template objects are format strings that allow substitution from
135# the attribute spaces of other objects (e.g. InstObjParams instances).
136
137labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
138
139class Template(object):
140    def __init__(self, parser, t):
141        self.parser = parser
142        self.template = t
143
144    def subst(self, d):
145        myDict = None
146
147        # Protect non-Python-dict substitutions (e.g. if there's a printf
148        # in the templated C++ code)
149        template = self.parser.protectNonSubstPercents(self.template)
150        # CPU-model-specific substitutions are handled later (in GenCode).
151        template = self.parser.protectCpuSymbols(template)
152
153        # Build a dict ('myDict') to use for the template substitution.
154        # Start with the template namespace.  Make a copy since we're
155        # going to modify it.
156        myDict = self.parser.templateMap.copy()
157
158        if isinstance(d, InstObjParams):
159            # If we're dealing with an InstObjParams object, we need
160            # to be a little more sophisticated.  The instruction-wide
161            # parameters are already formed, but the parameters which
162            # are only function wide still need to be generated.
163            compositeCode = ''
164
165            myDict.update(d.__dict__)
166            # The "operands" and "snippets" attributes of the InstObjParams
167            # objects are for internal use and not substitution.
168            del myDict['operands']
169            del myDict['snippets']
170
171            snippetLabels = [l for l in labelRE.findall(template)
172                             if d.snippets.has_key(l)]
173
174            snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
175                             for s in snippetLabels])
176
177            myDict.update(snippets)
178
179            compositeCode = ' '.join(map(str, snippets.values()))
180
181            # Add in template itself in case it references any
182            # operands explicitly (like Mem)
183            compositeCode += ' ' + template
184
185            operands = SubOperandList(self.parser, compositeCode, d.operands)
186
187            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
188            if operands.readPC or operands.setPC:
189                myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
190
191            # In case there are predicated register reads and write, declare
192            # the variables for register indicies. It is being assumed that
193            # all the operands in the OperandList are also in the
194            # SubOperandList and in the same order. Otherwise, it is
195            # expected that predication would not be used for the operands.
196            if operands.predRead:
197                myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
198            if operands.predWrite:
199                myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
200
201            is_src = lambda op: op.is_src
202            is_dest = lambda op: op.is_dest
203
204            myDict['op_src_decl'] = \
205                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
206            myDict['op_dest_decl'] = \
207                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
208            if operands.readPC:
209                myDict['op_src_decl'] += \
210                    'TheISA::PCState __parserAutoPCState;\n'
211            if operands.setPC:
212                myDict['op_dest_decl'] += \
213                    'TheISA::PCState __parserAutoPCState;\n'
214
215            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
216            if operands.readPC:
217                myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
218                                  myDict['op_rd']
219
220            # Compose the op_wb string. If we're going to write back the
221            # PC state because we changed some of its elements, we'll need to
222            # do that as early as possible. That allows later uncoordinated
223            # modifications to the PC to layer appropriately.
224            reordered = list(operands.items)
225            reordered.reverse()
226            op_wb_str = ''
227            pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
228            for op_desc in reordered:
229                if op_desc.isPCPart() and op_desc.is_dest:
230                    op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
231                    pcWbStr = ''
232                else:
233                    op_wb_str = op_desc.op_wb + op_wb_str
234            myDict['op_wb'] = op_wb_str
235
236        elif isinstance(d, dict):
237            # if the argument is a dictionary, we just use it.
238            myDict.update(d)
239        elif hasattr(d, '__dict__'):
240            # if the argument is an object, we use its attribute map.
241            myDict.update(d.__dict__)
242        else:
243            raise TypeError, "Template.subst() arg must be or have dictionary"
244        return template % myDict
245
246    # Convert to string.  This handles the case when a template with a
247    # CPU-specific term gets interpolated into another template or into
248    # an output block.
249    def __str__(self):
250        return self.parser.expandCpuSymbolsToString(self.template)
251
252################
253# Format object.
254#
255# A format object encapsulates an instruction format.  It must provide
256# a defineInst() method that generates the code for an instruction
257# definition.
258
259class Format(object):
260    def __init__(self, id, params, code):
261        self.id = id
262        self.params = params
263        label = 'def format ' + id
264        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
265        param_list = string.join(params, ", ")
266        f = '''def defInst(_code, _context, %s):
267                my_locals = vars().copy()
268                exec _code in _context, my_locals
269                return my_locals\n''' % param_list
270        c = compile(f, label + ' wrapper', 'exec')
271        exec c
272        self.func = defInst
273
274    def defineInst(self, parser, name, args, lineno):
275        parser.updateExportContext()
276        context = parser.exportContext.copy()
277        if len(name):
278            Name = name[0].upper()
279            if len(name) > 1:
280                Name += name[1:]
281        context.update({ 'name' : name, 'Name' : Name })
282        try:
283            vars = self.func(self.user_code, context, *args[0], **args[1])
284        except Exception, exc:
285            if debug:
286                raise
287            error(lineno, 'error defining "%s": %s.' % (name, exc))
288        for k in vars.keys():
289            if k not in ('header_output', 'decoder_output',
290                         'exec_output', 'decode_block'):
291                del vars[k]
292        return GenCode(parser, **vars)
293
294# Special null format to catch an implicit-format instruction
295# definition outside of any format block.
296class NoFormat(object):
297    def __init__(self):
298        self.defaultInst = ''
299
300    def defineInst(self, parser, name, args, lineno):
301        error(lineno,
302              'instruction definition "%s" with no active format!' % name)
303
304###############
305# GenCode class
306#
307# The GenCode class encapsulates generated code destined for various
308# output files.  The header_output and decoder_output attributes are
309# strings containing code destined for decoder.hh and decoder.cc
310# respectively.  The decode_block attribute contains code to be
311# incorporated in the decode function itself (that will also end up in
312# decoder.cc).  The exec_output attribute is a dictionary with a key
313# for each CPU model name; the value associated with a particular key
314# is the string of code for that CPU model's exec.cc file.  The
315# has_decode_default attribute is used in the decode block to allow
316# explicit default clauses to override default default clauses.
317
318class GenCode(object):
319    # Constructor.  At this point we substitute out all CPU-specific
320    # symbols.  For the exec output, these go into the per-model
321    # dictionary.  For all other output types they get collapsed into
322    # a single string.
323    def __init__(self, parser,
324                 header_output = '', decoder_output = '', exec_output = '',
325                 decode_block = '', has_decode_default = False):
326        self.parser = parser
327        self.header_output = parser.expandCpuSymbolsToString(header_output)
328        self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
329        self.exec_output = exec_output
330        self.decode_block = decode_block
331        self.has_decode_default = has_decode_default
332
333    # Write these code chunks out to the filesystem.  They will be properly
334    # interwoven by the write_top_level_files().
335    def emit(self):
336        if self.header_output:
337            self.parser.get_file('header').write(self.header_output)
338        if self.decoder_output:
339            self.parser.get_file('decoder').write(self.decoder_output)
340        if self.exec_output:
341            self.parser.get_file('exec').write(self.exec_output)
342        if self.decode_block:
343            self.parser.get_file('decode_block').write(self.decode_block)
344
345    # Override '+' operator: generate a new GenCode object that
346    # concatenates all the individual strings in the operands.
347    def __add__(self, other):
348        return GenCode(self.parser,
349                       self.header_output + other.header_output,
350                       self.decoder_output + other.decoder_output,
351                       self.exec_output + other.exec_output,
352                       self.decode_block + other.decode_block,
353                       self.has_decode_default or other.has_decode_default)
354
355    # Prepend a string (typically a comment) to all the strings.
356    def prepend_all(self, pre):
357        self.header_output = pre + self.header_output
358        self.decoder_output  = pre + self.decoder_output
359        self.decode_block = pre + self.decode_block
360        self.exec_output  = pre + self.exec_output
361
362    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
363    # and 'break;').  Used to build the big nested switch statement.
364    def wrap_decode_block(self, pre, post = ''):
365        self.decode_block = pre + indent(self.decode_block) + post
366
367#####################################################################
368#
369#                      Bitfield Operator Support
370#
371#####################################################################
372
373bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
374
375bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
376bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
377
378def substBitOps(code):
379    # first convert single-bit selectors to two-index form
380    # i.e., <n> --> <n:n>
381    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
382    # simple case: selector applied to ID (name)
383    # i.e., foo<a:b> --> bits(foo, a, b)
384    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
385    # if selector is applied to expression (ending in ')'),
386    # we need to search backward for matching '('
387    match = bitOpExprRE.search(code)
388    while match:
389        exprEnd = match.start()
390        here = exprEnd - 1
391        nestLevel = 1
392        while nestLevel > 0:
393            if code[here] == '(':
394                nestLevel -= 1
395            elif code[here] == ')':
396                nestLevel += 1
397            here -= 1
398            if here < 0:
399                sys.exit("Didn't find '('!")
400        exprStart = here+1
401        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
402                                         match.group(1), match.group(2))
403        code = code[:exprStart] + newExpr + code[match.end():]
404        match = bitOpExprRE.search(code)
405    return code
406
407
408#####################################################################
409#
410#                             Code Parser
411#
412# The remaining code is the support for automatically extracting
413# instruction characteristics from pseudocode.
414#
415#####################################################################
416
417# Force the argument to be a list.  Useful for flags, where a caller
418# can specify a singleton flag or a list of flags.  Also usful for
419# converting tuples to lists so they can be modified.
420def makeList(arg):
421    if isinstance(arg, list):
422        return arg
423    elif isinstance(arg, tuple):
424        return list(arg)
425    elif not arg:
426        return []
427    else:
428        return [ arg ]
429
430class Operand(object):
431    '''Base class for operand descriptors.  An instance of this class
432    (or actually a class derived from this one) represents a specific
433    operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
434    derived classes encapsulates the traits of a particular operand
435    type (e.g., "32-bit integer register").'''
436
437    def buildReadCode(self, func = None):
438        subst_dict = {"name": self.base_name,
439                      "func": func,
440                      "reg_idx": self.reg_spec,
441                      "ctype": self.ctype}
442        if hasattr(self, 'src_reg_idx'):
443            subst_dict['op_idx'] = self.src_reg_idx
444        code = self.read_code % subst_dict
445        return '%s = %s;\n' % (self.base_name, code)
446
447    def buildWriteCode(self, func = None):
448        subst_dict = {"name": self.base_name,
449                      "func": func,
450                      "reg_idx": self.reg_spec,
451                      "ctype": self.ctype,
452                      "final_val": self.base_name}
453        if hasattr(self, 'dest_reg_idx'):
454            subst_dict['op_idx'] = self.dest_reg_idx
455        code = self.write_code % subst_dict
456        return '''
457        {
458            %s final_val = %s;
459            %s;
460            if (traceData) { traceData->setData(final_val); }
461        }''' % (self.dflt_ctype, self.base_name, code)
462
463    def __init__(self, parser, full_name, ext, is_src, is_dest):
464        self.full_name = full_name
465        self.ext = ext
466        self.is_src = is_src
467        self.is_dest = is_dest
468        # The 'effective extension' (eff_ext) is either the actual
469        # extension, if one was explicitly provided, or the default.
470        if ext:
471            self.eff_ext = ext
472        elif hasattr(self, 'dflt_ext'):
473            self.eff_ext = self.dflt_ext
474
475        if hasattr(self, 'eff_ext'):
476            self.ctype = parser.operandTypeMap[self.eff_ext]
477
478    # Finalize additional fields (primarily code fields).  This step
479    # is done separately since some of these fields may depend on the
480    # register index enumeration that hasn't been performed yet at the
481    # time of __init__(). The register index enumeration is affected
482    # by predicated register reads/writes. Hence, we forward the flags
483    # that indicate whether or not predication is in use.
484    def finalize(self, predRead, predWrite):
485        self.flags = self.getFlags()
486        self.constructor = self.makeConstructor(predRead, predWrite)
487        self.op_decl = self.makeDecl()
488
489        if self.is_src:
490            self.op_rd = self.makeRead(predRead)
491            self.op_src_decl = self.makeDecl()
492        else:
493            self.op_rd = ''
494            self.op_src_decl = ''
495
496        if self.is_dest:
497            self.op_wb = self.makeWrite(predWrite)
498            self.op_dest_decl = self.makeDecl()
499        else:
500            self.op_wb = ''
501            self.op_dest_decl = ''
502
503    def isMem(self):
504        return 0
505
506    def isReg(self):
507        return 0
508
509    def isFloatReg(self):
510        return 0
511
512    def isIntReg(self):
513        return 0
514
515    def isCCReg(self):
516        return 0
517
518    def isVectorReg(self):
519        return 0
520
521    def isControlReg(self):
522        return 0
523
524    def isPCState(self):
525        return 0
526
527    def isPCPart(self):
528        return self.isPCState() and self.reg_spec
529
530    def hasReadPred(self):
531        return self.read_predicate != None
532
533    def hasWritePred(self):
534        return self.write_predicate != None
535
536    def getFlags(self):
537        # note the empty slice '[:]' gives us a copy of self.flags[0]
538        # instead of a reference to it
539        my_flags = self.flags[0][:]
540        if self.is_src:
541            my_flags += self.flags[1]
542        if self.is_dest:
543            my_flags += self.flags[2]
544        return my_flags
545
546    def makeDecl(self):
547        # Note that initializations in the declarations are solely
548        # to avoid 'uninitialized variable' errors from the compiler.
549        return self.ctype + ' ' + self.base_name + ' = 0;\n';
550
551class IntRegOperand(Operand):
552    def isReg(self):
553        return 1
554
555    def isIntReg(self):
556        return 1
557
558    def makeConstructor(self, predRead, predWrite):
559        c_src = ''
560        c_dest = ''
561
562        if self.is_src:
563            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
564            if self.hasReadPred():
565                c_src = '\n\tif (%s) {%s\n\t}' % \
566                        (self.read_predicate, c_src)
567
568        if self.is_dest:
569            c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
570                    (self.reg_spec)
571            c_dest += '\n\t_numIntDestRegs++;'
572            if self.hasWritePred():
573                c_dest = '\n\tif (%s) {%s\n\t}' % \
574                         (self.write_predicate, c_dest)
575
576        return c_src + c_dest
577
578    def makeRead(self, predRead):
579        if (self.ctype == 'float' or self.ctype == 'double'):
580            error('Attempt to read integer register as FP')
581        if self.read_code != None:
582            return self.buildReadCode('readIntRegOperand')
583
584        int_reg_val = ''
585        if predRead:
586            int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
587            if self.hasReadPred():
588                int_reg_val = '(%s) ? %s : 0' % \
589                              (self.read_predicate, int_reg_val)
590        else:
591            int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
592
593        return '%s = %s;\n' % (self.base_name, int_reg_val)
594
595    def makeWrite(self, predWrite):
596        if (self.ctype == 'float' or self.ctype == 'double'):
597            error('Attempt to write integer register as FP')
598        if self.write_code != None:
599            return self.buildWriteCode('setIntRegOperand')
600
601        if predWrite:
602            wp = 'true'
603            if self.hasWritePred():
604                wp = self.write_predicate
605
606            wcond = 'if (%s)' % (wp)
607            windex = '_destIndex++'
608        else:
609            wcond = ''
610            windex = '%d' % self.dest_reg_idx
611
612        wb = '''
613        %s
614        {
615            %s final_val = %s;
616            xc->setIntRegOperand(this, %s, final_val);\n
617            if (traceData) { traceData->setData(final_val); }
618        }''' % (wcond, self.ctype, self.base_name, windex)
619
620        return wb
621
622class FloatRegOperand(Operand):
623    def isReg(self):
624        return 1
625
626    def isFloatReg(self):
627        return 1
628
629    def makeConstructor(self, predRead, predWrite):
630        c_src = ''
631        c_dest = ''
632
633        if self.is_src:
634            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
635                    (self.reg_spec)
636
637        if self.is_dest:
638            c_dest = \
639              '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
640              (self.reg_spec)
641            c_dest += '\n\t_numFPDestRegs++;'
642
643        return c_src + c_dest
644
645    def makeRead(self, predRead):
646        bit_select = 0
647        if (self.ctype == 'float' or self.ctype == 'double'):
648            func = 'readFloatRegOperand'
649        else:
650            func = 'readFloatRegOperandBits'
651        if self.read_code != None:
652            return self.buildReadCode(func)
653
654        if predRead:
655            rindex = '_sourceIndex++'
656        else:
657            rindex = '%d' % self.src_reg_idx
658
659        return '%s = xc->%s(this, %s);\n' % \
660            (self.base_name, func, rindex)
661
662    def makeWrite(self, predWrite):
663        if (self.ctype == 'float' or self.ctype == 'double'):
664            func = 'setFloatRegOperand'
665        else:
666            func = 'setFloatRegOperandBits'
667        if self.write_code != None:
668            return self.buildWriteCode(func)
669
670        if predWrite:
671            wp = '_destIndex++'
672        else:
673            wp = '%d' % self.dest_reg_idx
674        wp = 'xc->%s(this, %s, final_val);' % (func, wp)
675
676        wb = '''
677        {
678            %s final_val = %s;
679            %s\n
680            if (traceData) { traceData->setData(final_val); }
681        }''' % (self.ctype, self.base_name, wp)
682        return wb
683
684class CCRegOperand(Operand):
685    def isReg(self):
686        return 1
687
688    def isCCReg(self):
689        return 1
690
691    def makeConstructor(self, predRead, predWrite):
692        c_src = ''
693        c_dest = ''
694
695        if self.is_src:
696            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
697                     (self.reg_spec)
698            if self.hasReadPred():
699                c_src = '\n\tif (%s) {%s\n\t}' % \
700                        (self.read_predicate, c_src)
701
702        if self.is_dest:
703            c_dest = \
704              '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
705              (self.reg_spec)
706            c_dest += '\n\t_numCCDestRegs++;'
707            if self.hasWritePred():
708                c_dest = '\n\tif (%s) {%s\n\t}' % \
709                         (self.write_predicate, c_dest)
710
711        return c_src + c_dest
712
713    def makeRead(self, predRead):
714        if (self.ctype == 'float' or self.ctype == 'double'):
715            error('Attempt to read condition-code register as FP')
716        if self.read_code != None:
717            return self.buildReadCode('readCCRegOperand')
718
719        int_reg_val = ''
720        if predRead:
721            int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
722            if self.hasReadPred():
723                int_reg_val = '(%s) ? %s : 0' % \
724                              (self.read_predicate, int_reg_val)
725        else:
726            int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
727
728        return '%s = %s;\n' % (self.base_name, int_reg_val)
729
730    def makeWrite(self, predWrite):
731        if (self.ctype == 'float' or self.ctype == 'double'):
732            error('Attempt to write condition-code register as FP')
733        if self.write_code != None:
734            return self.buildWriteCode('setCCRegOperand')
735
736        if predWrite:
737            wp = 'true'
738            if self.hasWritePred():
739                wp = self.write_predicate
740
741            wcond = 'if (%s)' % (wp)
742            windex = '_destIndex++'
743        else:
744            wcond = ''
745            windex = '%d' % self.dest_reg_idx
746
747        wb = '''
748        %s
749        {
750            %s final_val = %s;
751            xc->setCCRegOperand(this, %s, final_val);\n
752            if (traceData) { traceData->setData(final_val); }
753        }''' % (wcond, self.ctype, self.base_name, windex)
754
755        return wb
756
757class VectorRegOperand(Operand):
758    def isReg(self):
759        return 1
760
761    def isVectorReg(self):
762        return 1
763
764    def __init__(self, parser, full_name, ext, is_src, is_dest):
765        ## Vector registers are always treated as source registers since
766        ## not the whole of them might be written, in which case we need
767        ## to retain the earlier value.
768        super(VectorRegOperand, self).__init__(parser, full_name, ext,
769                                               True, is_dest)
770        self.size = 0
771
772    def finalize(self, predRead, predWrite):
773        self.flags = self.getFlags()
774        self.constructor = self.makeConstructor(predRead, predWrite)
775        self.op_decl = self.makeDecl()
776
777        if self.is_src:
778            self.op_rd = self.makeRead(predRead)
779            self.op_src_decl = self.makeDecl()
780        else:
781            self.op_rd = ''
782            self.op_src_decl = ''
783
784        if self.is_dest:
785            self.op_wb = self.makeWrite(predWrite)
786            self.op_dest_decl = self.makeDecl()
787        else:
788            self.op_wb = ''
789            self.op_dest_decl = ''
790
791    def makeConstructor(self, predRead, predWrite):
792        c_src = ''
793        c_dest = ''
794
795        if self.is_src:
796            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + Vector_Reg_Base;' % \
797                    (self.reg_spec)
798            if self.hasReadPred():
799                c_src = '\n\tif (%s) {%s\n\t}' % \
800                        (self.read_predicate, c_src)
801
802        if self.is_dest:
803            c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s + Vector_Reg_Base;' % \
804                    (self.reg_spec)
805            c_dest += '\n\t_numVectorDestRegs++;'
806            if self.hasWritePred():
807                c_dest = '\n\tif (%s) {%s\n\t}' % \
808                         (self.write_predicate, c_dest)
809
810        return c_src + c_dest
811
812    def makeRead(self, predRead):
813        if self.read_code != None:
814            return self.buildReadCode('readVectorRegOperand')
815
816        vector_reg_val = ''
817        if predRead:
818            vector_reg_val = 'xc->readVectorRegOperand(this, _sourceIndex++)'
819            if self.hasReadPred():
820                vector_reg_val = '(%s) ? %s : 0' % \
821                              (self.read_predicate, vector_reg_val)
822        else:
823            vector_reg_val = 'xc->readVectorRegOperand(this, %d)' % \
824                             self.src_reg_idx
825
826        return '%s = %s;\n' % (self.base_name, vector_reg_val)
827
828    def makeWrite(self, predWrite):
829        if self.write_code != None:
830            return self.buildWriteCode('setVectorRegOperand')
831
832        if predWrite:
833            wp = 'true'
834            if self.hasWritePred():
835                wp = self.write_predicate
836
837            wcond = 'if (%s)' % (wp)
838            windex = '_destIndex++'
839        else:
840            wcond = ''
841            windex = '%d' % self.dest_reg_idx
842
843        wb = '''
844        %s
845        {
846            TheISA::VectorReg final_val = %s;
847            xc->setVectorRegOperand(this, %s, final_val);\n
848            if (traceData) { traceData->setData(final_val); }
849        }''' % (wcond, self.base_name, windex)
850
851        return wb
852
853    def makeDecl(self):
854        ctype = 'TheISA::VectorReg'
855        return '%s %s;\n' % (ctype, self.base_name)
856
857class ControlRegOperand(Operand):
858    def isReg(self):
859        return 1
860
861    def isControlReg(self):
862        return 1
863
864    def makeConstructor(self, predRead, predWrite):
865        c_src = ''
866        c_dest = ''
867
868        if self.is_src:
869            c_src = \
870              '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
871              (self.reg_spec)
872
873        if self.is_dest:
874            c_dest = \
875              '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
876              (self.reg_spec)
877
878        return c_src + c_dest
879
880    def makeRead(self, predRead):
881        bit_select = 0
882        if (self.ctype == 'float' or self.ctype == 'double'):
883            error('Attempt to read control register as FP')
884        if self.read_code != None:
885            return self.buildReadCode('readMiscRegOperand')
886
887        if predRead:
888            rindex = '_sourceIndex++'
889        else:
890            rindex = '%d' % self.src_reg_idx
891
892        return '%s = xc->readMiscRegOperand(this, %s);\n' % \
893            (self.base_name, rindex)
894
895    def makeWrite(self, predWrite):
896        if (self.ctype == 'float' or self.ctype == 'double'):
897            error('Attempt to write control register as FP')
898        if self.write_code != None:
899            return self.buildWriteCode('setMiscRegOperand')
900
901        if predWrite:
902            windex = '_destIndex++'
903        else:
904            windex = '%d' % self.dest_reg_idx
905
906        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
907             (windex, self.base_name)
908        wb += 'if (traceData) { traceData->setData(%s); }' % \
909              self.base_name
910
911        return wb
912
913class MemOperand(Operand):
914    def isMem(self):
915        return 1
916
917    def makeConstructor(self, predRead, predWrite):
918        return ''
919
920    def makeDecl(self):
921        # Note that initializations in the declarations are solely
922        # to avoid 'uninitialized variable' errors from the compiler.
923        # Declare memory data variable.
924        if 'IsVector' in self.flags:
925            return 'TheISA::VectorReg %s;\n' % self.base_name
926        else:
927            return '%s %s = 0;\n' % (self.ctype, self.base_name)
928
929    def makeRead(self, predRead):
930        if self.read_code != None:
931            return self.buildReadCode()
932        return ''
933
934    def makeWrite(self, predWrite):
935        if self.write_code != None:
936            return self.buildWriteCode()
937        return ''
938
939class PCStateOperand(Operand):
940    def makeConstructor(self, predRead, predWrite):
941        return ''
942
943    def makeRead(self, predRead):
944        if self.reg_spec:
945            # A component of the PC state.
946            return '%s = __parserAutoPCState.%s();\n' % \
947                (self.base_name, self.reg_spec)
948        else:
949            # The whole PC state itself.
950            return '%s = xc->pcState();\n' % self.base_name
951
952    def makeWrite(self, predWrite):
953        if self.reg_spec:
954            # A component of the PC state.
955            return '__parserAutoPCState.%s(%s);\n' % \
956                (self.reg_spec, self.base_name)
957        else:
958            # The whole PC state itself.
959            return 'xc->pcState(%s);\n' % self.base_name
960
961    def makeDecl(self):
962        ctype = 'TheISA::PCState'
963        if self.isPCPart():
964            ctype = self.ctype
965        # Note that initializations in the declarations are solely
966        # to avoid 'uninitialized variable' errors from the compiler.
967        return '%s %s = 0;\n' % (ctype, self.base_name)
968
969    def isPCState(self):
970        return 1
971
972class OperandList(object):
973    '''Find all the operands in the given code block.  Returns an operand
974    descriptor list (instance of class OperandList).'''
975    def __init__(self, parser, code):
976        self.items = []
977        self.bases = {}
978        # delete strings and comments so we don't match on operands inside
979        for regEx in (stringRE, commentRE):
980            code = regEx.sub('', code)
981        # search for operands
982        next_pos = 0
983        while 1:
984            match = parser.operandsRE.search(code, next_pos)
985            if not match:
986                # no more matches: we're done
987                break
988            op = match.groups()
989            # regexp groups are operand full name, base, and extension
990            (op_full, op_base, op_ext) = op
991            # if the token following the operand is an assignment, this is
992            # a destination (LHS), else it's a source (RHS)
993            is_dest = (assignRE.match(code, match.end()) != None)
994            is_src = not is_dest
995            # see if we've already seen this one
996            op_desc = self.find_base(op_base)
997            if op_desc:
998                if op_desc.ext != op_ext:
999                    error('Inconsistent extensions for operand %s' % \
1000                          op_base)
1001                op_desc.is_src = op_desc.is_src or is_src
1002                op_desc.is_dest = op_desc.is_dest or is_dest
1003            else:
1004                # new operand: create new descriptor
1005                op_desc = parser.operandNameMap[op_base](parser,
1006                    op_full, op_ext, is_src, is_dest)
1007                self.append(op_desc)
1008            # start next search after end of current match
1009            next_pos = match.end()
1010        self.sort()
1011        # enumerate source & dest register operands... used in building
1012        # constructor later
1013        self.numSrcRegs = 0
1014        self.numDestRegs = 0
1015        self.numFPDestRegs = 0
1016        self.numIntDestRegs = 0
1017        self.numCCDestRegs = 0
1018        self.numVectorDestRegs = 0
1019        self.numMiscDestRegs = 0
1020        self.memOperand = None
1021
1022        # Flags to keep track if one or more operands are to be read/written
1023        # conditionally.
1024        self.predRead = False
1025        self.predWrite = False
1026
1027        for op_desc in self.items:
1028            if op_desc.isReg():
1029                if op_desc.is_src:
1030                    op_desc.src_reg_idx = self.numSrcRegs
1031                    self.numSrcRegs += 1
1032                if op_desc.is_dest:
1033                    op_desc.dest_reg_idx = self.numDestRegs
1034                    self.numDestRegs += 1
1035                    if op_desc.isFloatReg():
1036                        self.numFPDestRegs += 1
1037                    elif op_desc.isIntReg():
1038                        self.numIntDestRegs += 1
1039                    elif op_desc.isCCReg():
1040                        self.numCCDestRegs += 1
1041                    elif op_desc.isVectorReg():
1042                        self.numVectorDestRegs += 1
1043                    elif op_desc.isControlReg():
1044                        self.numMiscDestRegs += 1
1045            elif op_desc.isMem():
1046                if self.memOperand:
1047                    error("Code block has more than one memory operand.")
1048                self.memOperand = op_desc
1049
1050            # Check if this operand has read/write predication. If true, then
1051            # the microop will dynamically index source/dest registers.
1052            self.predRead = self.predRead or op_desc.hasReadPred()
1053            self.predWrite = self.predWrite or op_desc.hasWritePred()
1054
1055        if parser.maxInstSrcRegs < self.numSrcRegs:
1056            parser.maxInstSrcRegs = self.numSrcRegs
1057        if parser.maxInstDestRegs < self.numDestRegs:
1058            parser.maxInstDestRegs = self.numDestRegs
1059        if parser.maxMiscDestRegs < self.numMiscDestRegs:
1060            parser.maxMiscDestRegs = self.numMiscDestRegs
1061
1062        # now make a final pass to finalize op_desc fields that may depend
1063        # on the register enumeration
1064        for op_desc in self.items:
1065            op_desc.finalize(self.predRead, self.predWrite)
1066
1067    def __len__(self):
1068        return len(self.items)
1069
1070    def __getitem__(self, index):
1071        return self.items[index]
1072
1073    def append(self, op_desc):
1074        self.items.append(op_desc)
1075        self.bases[op_desc.base_name] = op_desc
1076
1077    def find_base(self, base_name):
1078        # like self.bases[base_name], but returns None if not found
1079        # (rather than raising exception)
1080        return self.bases.get(base_name)
1081
1082    # internal helper function for concat[Some]Attr{Strings|Lists}
1083    def __internalConcatAttrs(self, attr_name, filter, result):
1084        for op_desc in self.items:
1085            if filter(op_desc):
1086                result += getattr(op_desc, attr_name)
1087        return result
1088
1089    # return a single string that is the concatenation of the (string)
1090    # values of the specified attribute for all operands
1091    def concatAttrStrings(self, attr_name):
1092        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1093
1094    # like concatAttrStrings, but only include the values for the operands
1095    # for which the provided filter function returns true
1096    def concatSomeAttrStrings(self, filter, attr_name):
1097        return self.__internalConcatAttrs(attr_name, filter, '')
1098
1099    # return a single list that is the concatenation of the (list)
1100    # values of the specified attribute for all operands
1101    def concatAttrLists(self, attr_name):
1102        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1103
1104    # like concatAttrLists, but only include the values for the operands
1105    # for which the provided filter function returns true
1106    def concatSomeAttrLists(self, filter, attr_name):
1107        return self.__internalConcatAttrs(attr_name, filter, [])
1108
1109    def sort(self):
1110        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1111
1112class SubOperandList(OperandList):
1113    '''Find all the operands in the given code block.  Returns an operand
1114    descriptor list (instance of class OperandList).'''
1115    def __init__(self, parser, code, master_list):
1116        self.items = []
1117        self.bases = {}
1118        # delete strings and comments so we don't match on operands inside
1119        for regEx in (stringRE, commentRE):
1120            code = regEx.sub('', code)
1121        # search for operands
1122        next_pos = 0
1123        while 1:
1124            match = parser.operandsRE.search(code, next_pos)
1125            if not match:
1126                # no more matches: we're done
1127                break
1128            op = match.groups()
1129            # regexp groups are operand full name, base, and extension
1130            (op_full, op_base, op_ext) = op
1131            # find this op in the master list
1132            op_desc = master_list.find_base(op_base)
1133            if not op_desc:
1134                error('Found operand %s which is not in the master list!' \
1135                      ' This is an internal error' % op_base)
1136            else:
1137                # See if we've already found this operand
1138                op_desc = self.find_base(op_base)
1139                if not op_desc:
1140                    # if not, add a reference to it to this sub list
1141                    self.append(master_list.bases[op_base])
1142
1143            # start next search after end of current match
1144            next_pos = match.end()
1145        self.sort()
1146        self.memOperand = None
1147        # Whether the whole PC needs to be read so parts of it can be accessed
1148        self.readPC = False
1149        # Whether the whole PC needs to be written after parts of it were
1150        # changed
1151        self.setPC = False
1152        # Whether this instruction manipulates the whole PC or parts of it.
1153        # Mixing the two is a bad idea and flagged as an error.
1154        self.pcPart = None
1155
1156        # Flags to keep track if one or more operands are to be read/written
1157        # conditionally.
1158        self.predRead = False
1159        self.predWrite = False
1160
1161        for op_desc in self.items:
1162            if op_desc.isPCPart():
1163                self.readPC = True
1164                if op_desc.is_dest:
1165                    self.setPC = True
1166
1167            if op_desc.isPCState():
1168                if self.pcPart is not None:
1169                    if self.pcPart and not op_desc.isPCPart() or \
1170                            not self.pcPart and op_desc.isPCPart():
1171                        error("Mixed whole and partial PC state operands.")
1172                self.pcPart = op_desc.isPCPart()
1173
1174            if op_desc.isMem():
1175                if self.memOperand:
1176                    error("Code block has more than one memory operand.")
1177                self.memOperand = op_desc
1178
1179            # Check if this operand has read/write predication. If true, then
1180            # the microop will dynamically index source/dest registers.
1181            self.predRead = self.predRead or op_desc.hasReadPred()
1182            self.predWrite = self.predWrite or op_desc.hasWritePred()
1183
1184# Regular expression object to match C++ strings
1185stringRE = re.compile(r'"([^"\\]|\\.)*"')
1186
1187# Regular expression object to match C++ comments
1188# (used in findOperands())
1189commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1190        re.DOTALL | re.MULTILINE)
1191
1192# Regular expression object to match assignment statements
1193# (used in findOperands())
1194assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1195
1196def makeFlagConstructor(flag_list):
1197    if len(flag_list) == 0:
1198        return ''
1199    # filter out repeated flags
1200    flag_list.sort()
1201    i = 1
1202    while i < len(flag_list):
1203        if flag_list[i] == flag_list[i-1]:
1204            del flag_list[i]
1205        else:
1206            i += 1
1207    pre = '\n\tflags['
1208    post = '] = true;'
1209    code = pre + string.join(flag_list, post + pre) + post
1210    return code
1211
1212# Assume all instruction flags are of the form 'IsFoo'
1213instFlagRE = re.compile(r'Is.*')
1214
1215# OpClass constants end in 'Op' except No_OpClass
1216opClassRE = re.compile(r'.*Op|No_OpClass')
1217
1218class InstObjParams(object):
1219    def __init__(self, parser, mnem, class_name, base_class = '',
1220                 snippets = {}, opt_args = []):
1221        self.mnemonic = mnem
1222        self.class_name = class_name
1223        self.base_class = base_class
1224        if not isinstance(snippets, dict):
1225            snippets = {'code' : snippets}
1226        compositeCode = ' '.join(map(str, snippets.values()))
1227        self.snippets = snippets
1228
1229        self.operands = OperandList(parser, compositeCode)
1230
1231        # The header of the constructor declares the variables to be used
1232        # in the body of the constructor.
1233        header = ''
1234        header += '\n\t_numSrcRegs = 0;'
1235        header += '\n\t_numDestRegs = 0;'
1236        header += '\n\t_numFPDestRegs = 0;'
1237        header += '\n\t_numIntDestRegs = 0;'
1238        header += '\n\t_numCCDestRegs = 0;'
1239        header += '\n\t_numVectorDestRegs = 0;'
1240
1241        self.constructor = header + \
1242                           self.operands.concatAttrStrings('constructor')
1243
1244        self.flags = self.operands.concatAttrLists('flags')
1245
1246        self.op_class = None
1247
1248        # Optional arguments are assumed to be either StaticInst flags
1249        # or an OpClass value.  To avoid having to import a complete
1250        # list of these values to match against, we do it ad-hoc
1251        # with regexps.
1252        for oa in opt_args:
1253            if instFlagRE.match(oa):
1254                self.flags.append(oa)
1255            elif opClassRE.match(oa):
1256                self.op_class = oa
1257            else:
1258                error('InstObjParams: optional arg "%s" not recognized '
1259                      'as StaticInst::Flag or OpClass.' % oa)
1260
1261        # Make a basic guess on the operand class if not set.
1262        # These are good enough for most cases.
1263        if not self.op_class:
1264            if 'IsStore' in self.flags:
1265                self.op_class = 'MemWriteOp'
1266            elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1267                self.op_class = 'MemReadOp'
1268            elif 'IsFloating' in self.flags:
1269                self.op_class = 'FloatAddOp'
1270            else:
1271                self.op_class = 'IntAluOp'
1272
1273        # add flag initialization to contructor here to include
1274        # any flags added via opt_args
1275        self.constructor += makeFlagConstructor(self.flags)
1276
1277        # if 'IsFloating' is set, add call to the FP enable check
1278        # function (which should be provided by isa_desc via a declare)
1279        if 'IsFloating' in self.flags:
1280            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1281        else:
1282            self.fp_enable_check = ''
1283
1284##############
1285# Stack: a simple stack object.  Used for both formats (formatStack)
1286# and default cases (defaultStack).  Simply wraps a list to give more
1287# stack-like syntax and enable initialization with an argument list
1288# (as opposed to an argument that's a list).
1289
1290class Stack(list):
1291    def __init__(self, *items):
1292        list.__init__(self, items)
1293
1294    def push(self, item):
1295        self.append(item);
1296
1297    def top(self):
1298        return self[-1]
1299
1300#######################
1301#
1302# ISA Parser
1303#   parses ISA DSL and emits C++ headers and source
1304#
1305
1306class ISAParser(Grammar):
1307    class CpuModel(object):
1308        def __init__(self, name, filename, includes, strings):
1309            self.name = name
1310            self.filename = filename
1311            self.includes = includes
1312            self.strings = strings
1313
1314    def __init__(self, output_dir):
1315        super(ISAParser, self).__init__()
1316        self.output_dir = output_dir
1317
1318        self.filename = None # for output file watermarking/scaremongering
1319
1320        self.cpuModels = [
1321            ISAParser.CpuModel('ExecContext',
1322                               'generic_cpu_exec.cc',
1323                               '#include "cpu/exec_context.hh"',
1324                               { "CPU_exec_context" : "ExecContext" }),
1325            ]
1326
1327        # variable to hold templates
1328        self.templateMap = {}
1329
1330        # This dictionary maps format name strings to Format objects.
1331        self.formatMap = {}
1332
1333        # Track open files and, if applicable, how many chunks it has been
1334        # split into so far.
1335        self.files = {}
1336        self.splits = {}
1337
1338        # isa_name / namespace identifier from namespace declaration.
1339        # before the namespace declaration, None.
1340        self.isa_name = None
1341        self.namespace = None
1342
1343        # The format stack.
1344        self.formatStack = Stack(NoFormat())
1345
1346        # The default case stack.
1347        self.defaultStack = Stack(None)
1348
1349        # Stack that tracks current file and line number.  Each
1350        # element is a tuple (filename, lineno) that records the
1351        # *current* filename and the line number in the *previous*
1352        # file where it was included.
1353        self.fileNameStack = Stack()
1354
1355        symbols = ('makeList', 're', 'string')
1356        self.exportContext = dict([(s, eval(s)) for s in symbols])
1357
1358        self.maxInstSrcRegs = 0
1359        self.maxInstDestRegs = 0
1360        self.maxMiscDestRegs = 0
1361
1362    def __getitem__(self, i):    # Allow object (self) to be
1363        return getattr(self, i)  # passed to %-substitutions
1364
1365    # Change the file suffix of a base filename:
1366    #   (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1367    def suffixize(self, s, sec):
1368        extn = re.compile('(\.[^\.]+)$') # isolate extension
1369        if self.namespace:
1370            return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1371        else:
1372            return extn.sub(r'-g\1.inc', s)
1373
1374    # Get the file object for emitting code into the specified section
1375    # (header, decoder, exec, decode_block).
1376    def get_file(self, section):
1377        if section == 'decode_block':
1378            filename = 'decode-method.cc.inc'
1379        else:
1380            if section == 'header':
1381                file = 'decoder.hh'
1382            else:
1383                file = '%s.cc' % section
1384            filename = self.suffixize(file, section)
1385        try:
1386            return self.files[filename]
1387        except KeyError: pass
1388
1389        f = self.open(filename)
1390        self.files[filename] = f
1391
1392        # The splittable files are the ones with many independent
1393        # per-instruction functions - the decoder's instruction constructors
1394        # and the instruction execution (execute()) methods. These both have
1395        # the suffix -ns.cc.inc, meaning they are within the namespace part
1396        # of the ISA, contain object-emitting C++ source, and are included
1397        # into other top-level files. These are the files that need special
1398        # #define's to allow parts of them to be compiled separately. Rather
1399        # than splitting the emissions into separate files, the monolithic
1400        # output of the ISA parser is maintained, but the value (or lack
1401        # thereof) of the __SPLIT definition during C preprocessing will
1402        # select the different chunks. If no 'split' directives are used,
1403        # the cpp emissions have no effect.
1404        if re.search('-ns.cc.inc$', filename):
1405            print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1406            self.splits[f] = 1
1407        # ensure requisite #include's
1408        elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1409            print >>f, '#include "decoder.hh"'
1410        elif filename == 'decoder-g.hh.inc':
1411            print >>f, '#include "base/bitfield.hh"'
1412
1413        return f
1414
1415    # Weave together the parts of the different output sections by
1416    # #include'ing them into some very short top-level .cc/.hh files.
1417    # These small files make it much clearer how this tool works, since
1418    # you directly see the chunks emitted as files that are #include'd.
1419    def write_top_level_files(self):
1420        dep = self.open('inc.d', bare=True)
1421
1422        # decoder header - everything depends on this
1423        file = 'decoder.hh'
1424        with self.open(file) as f:
1425            inc = []
1426
1427            fn = 'decoder-g.hh.inc'
1428            assert(fn in self.files)
1429            f.write('#include "%s"\n' % fn)
1430            inc.append(fn)
1431
1432            fn = 'decoder-ns.hh.inc'
1433            assert(fn in self.files)
1434            f.write('namespace %s {\n#include "%s"\n}\n'
1435                    % (self.namespace, fn))
1436            inc.append(fn)
1437
1438            print >>dep, file+':', ' '.join(inc)
1439
1440        # decoder method - cannot be split
1441        file = 'decoder.cc'
1442        with self.open(file) as f:
1443            inc = []
1444
1445            fn = 'decoder-g.cc.inc'
1446            assert(fn in self.files)
1447            f.write('#include "%s"\n' % fn)
1448            inc.append(fn)
1449
1450            fn = 'decode-method.cc.inc'
1451            # is guaranteed to have been written for parse to complete
1452            f.write('#include "%s"\n' % fn)
1453            inc.append(fn)
1454
1455            inc.append("decoder.hh")
1456            print >>dep, file+':', ' '.join(inc)
1457
1458        extn = re.compile('(\.[^\.]+)$')
1459
1460        # instruction constructors
1461        splits = self.splits[self.get_file('decoder')]
1462        file_ = 'inst-constrs.cc'
1463        for i in range(1, splits+1):
1464            if splits > 1:
1465                file = extn.sub(r'-%d\1' % i, file_)
1466            else:
1467                file = file_
1468            with self.open(file) as f:
1469                inc = []
1470
1471                fn = 'decoder-g.cc.inc'
1472                assert(fn in self.files)
1473                f.write('#include "%s"\n' % fn)
1474                inc.append(fn)
1475
1476                fn = 'decoder-ns.cc.inc'
1477                assert(fn in self.files)
1478                print >>f, 'namespace %s {' % self.namespace
1479                if splits > 1:
1480                    print >>f, '#define __SPLIT %u' % i
1481                print >>f, '#include "%s"' % fn
1482                print >>f, '}'
1483                inc.append(fn)
1484
1485                inc.append("decoder.hh")
1486                print >>dep, file+':', ' '.join(inc)
1487
1488        # instruction execution per-CPU model
1489        splits = self.splits[self.get_file('exec')]
1490        for cpu in self.cpuModels:
1491            for i in range(1, splits+1):
1492                if splits > 1:
1493                    file = extn.sub(r'_%d\1' % i, cpu.filename)
1494                else:
1495                    file = cpu.filename
1496                with self.open(file) as f:
1497                    inc = []
1498
1499                    fn = 'exec-g.cc.inc'
1500                    assert(fn in self.files)
1501                    f.write('#include "%s"\n' % fn)
1502                    inc.append(fn)
1503
1504                    f.write(cpu.includes+"\n")
1505
1506                    fn = 'exec-ns.cc.inc'
1507                    assert(fn in self.files)
1508                    print >>f, 'namespace %s {' % self.namespace
1509                    print >>f, '#define CPU_EXEC_CONTEXT %s' \
1510                               % cpu.strings['CPU_exec_context']
1511                    if splits > 1:
1512                        print >>f, '#define __SPLIT %u' % i
1513                    print >>f, '#include "%s"' % fn
1514                    print >>f, '}'
1515                    inc.append(fn)
1516
1517                    inc.append("decoder.hh")
1518                    print >>dep, file+':', ' '.join(inc)
1519
1520        # max_inst_regs.hh
1521        self.update('max_inst_regs.hh',
1522                    '''namespace %(namespace)s {
1523    const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1524    const int MaxInstDestRegs = %(maxInstDestRegs)d;
1525    const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1526        print >>dep, 'max_inst_regs.hh:'
1527
1528        dep.close()
1529
1530
1531    scaremonger_template ='''// DO NOT EDIT
1532// This file was automatically generated from an ISA description:
1533//   %(filename)s
1534
1535''';
1536
1537    #####################################################################
1538    #
1539    #                                Lexer
1540    #
1541    # The PLY lexer module takes two things as input:
1542    # - A list of token names (the string list 'tokens')
1543    # - A regular expression describing a match for each token.  The
1544    #   regexp for token FOO can be provided in two ways:
1545    #   - as a string variable named t_FOO
1546    #   - as the doc string for a function named t_FOO.  In this case,
1547    #     the function is also executed, allowing an action to be
1548    #     associated with each token match.
1549    #
1550    #####################################################################
1551
1552    # Reserved words.  These are listed separately as they are matched
1553    # using the same regexp as generic IDs, but distinguished in the
1554    # t_ID() function.  The PLY documentation suggests this approach.
1555    reserved = (
1556        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1557        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1558        'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1559        )
1560
1561    # List of tokens.  The lex module requires this.
1562    tokens = reserved + (
1563        # identifier
1564        'ID',
1565
1566        # integer literal
1567        'INTLIT',
1568
1569        # string literal
1570        'STRLIT',
1571
1572        # code literal
1573        'CODELIT',
1574
1575        # ( ) [ ] { } < > , ; . : :: *
1576        'LPAREN', 'RPAREN',
1577        'LBRACKET', 'RBRACKET',
1578        'LBRACE', 'RBRACE',
1579        'LESS', 'GREATER', 'EQUALS',
1580        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1581        'ASTERISK',
1582
1583        # C preprocessor directives
1584        'CPPDIRECTIVE'
1585
1586    # The following are matched but never returned. commented out to
1587    # suppress PLY warning
1588        # newfile directive
1589    #    'NEWFILE',
1590
1591        # endfile directive
1592    #    'ENDFILE'
1593    )
1594
1595    # Regular expressions for token matching
1596    t_LPAREN           = r'\('
1597    t_RPAREN           = r'\)'
1598    t_LBRACKET         = r'\['
1599    t_RBRACKET         = r'\]'
1600    t_LBRACE           = r'\{'
1601    t_RBRACE           = r'\}'
1602    t_LESS             = r'\<'
1603    t_GREATER          = r'\>'
1604    t_EQUALS           = r'='
1605    t_COMMA            = r','
1606    t_SEMI             = r';'
1607    t_DOT              = r'\.'
1608    t_COLON            = r':'
1609    t_DBLCOLON         = r'::'
1610    t_ASTERISK         = r'\*'
1611
1612    # Identifiers and reserved words
1613    reserved_map = { }
1614    for r in reserved:
1615        reserved_map[r.lower()] = r
1616
1617    def t_ID(self, t):
1618        r'[A-Za-z_]\w*'
1619        t.type = self.reserved_map.get(t.value, 'ID')
1620        return t
1621
1622    # Integer literal
1623    def t_INTLIT(self, t):
1624        r'-?(0x[\da-fA-F]+)|\d+'
1625        try:
1626            t.value = int(t.value,0)
1627        except ValueError:
1628            error(t, 'Integer value "%s" too large' % t.value)
1629            t.value = 0
1630        return t
1631
1632    # String literal.  Note that these use only single quotes, and
1633    # can span multiple lines.
1634    def t_STRLIT(self, t):
1635        r"(?m)'([^'])+'"
1636        # strip off quotes
1637        t.value = t.value[1:-1]
1638        t.lexer.lineno += t.value.count('\n')
1639        return t
1640
1641
1642    # "Code literal"... like a string literal, but delimiters are
1643    # '{{' and '}}' so they get formatted nicely under emacs c-mode
1644    def t_CODELIT(self, t):
1645        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1646        # strip off {{ & }}
1647        t.value = t.value[2:-2]
1648        t.lexer.lineno += t.value.count('\n')
1649        return t
1650
1651    def t_CPPDIRECTIVE(self, t):
1652        r'^\#[^\#].*\n'
1653        t.lexer.lineno += t.value.count('\n')
1654        return t
1655
1656    def t_NEWFILE(self, t):
1657        r'^\#\#newfile\s+"[^"]*"'
1658        self.fileNameStack.push((t.value[11:-1], t.lexer.lineno))
1659        t.lexer.lineno = 0
1660
1661    def t_ENDFILE(self, t):
1662        r'^\#\#endfile'
1663        (old_filename, t.lexer.lineno) = self.fileNameStack.pop()
1664
1665    #
1666    # The functions t_NEWLINE, t_ignore, and t_error are
1667    # special for the lex module.
1668    #
1669
1670    # Newlines
1671    def t_NEWLINE(self, t):
1672        r'\n+'
1673        t.lexer.lineno += t.value.count('\n')
1674
1675    # Comments
1676    def t_comment(self, t):
1677        r'//.*'
1678
1679    # Completely ignored characters
1680    t_ignore = ' \t\x0c'
1681
1682    # Error handler
1683    def t_error(self, t):
1684        error(t, "illegal character '%s'" % t.value[0])
1685        t.skip(1)
1686
1687    #####################################################################
1688    #
1689    #                                Parser
1690    #
1691    # Every function whose name starts with 'p_' defines a grammar
1692    # rule.  The rule is encoded in the function's doc string, while
1693    # the function body provides the action taken when the rule is
1694    # matched.  The argument to each function is a list of the values
1695    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1696    # symbols on the RHS.  For tokens, the value is copied from the
1697    # t.value attribute provided by the lexer.  For non-terminals, the
1698    # value is assigned by the producing rule; i.e., the job of the
1699    # grammar rule function is to set the value for the non-terminal
1700    # on the LHS (by assigning to t[0]).
1701    #####################################################################
1702
1703    # The LHS of the first grammar rule is used as the start symbol
1704    # (in this case, 'specification').  Note that this rule enforces
1705    # that there will be exactly one namespace declaration, with 0 or
1706    # more global defs/decls before and after it.  The defs & decls
1707    # before the namespace decl will be outside the namespace; those
1708    # after will be inside.  The decoder function is always inside the
1709    # namespace.
1710    def p_specification(self, t):
1711        'specification : opt_defs_and_outputs top_level_decode_block'
1712
1713        for f in self.splits.iterkeys():
1714            f.write('\n#endif\n')
1715
1716        for f in self.files.itervalues(): # close ALL the files;
1717            f.close() # not doing so can cause compilation to fail
1718
1719        self.write_top_level_files()
1720
1721        t[0] = True
1722
1723    # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1724    # output statements. Its productions do the hard work of eventually
1725    # instantiating a GenCode, which are generally emitted (written to disk)
1726    # as soon as possible, except for the decode_block, which has to be
1727    # accumulated into one large function of nested switch/case blocks.
1728    def p_opt_defs_and_outputs_0(self, t):
1729        'opt_defs_and_outputs : empty'
1730
1731    def p_opt_defs_and_outputs_1(self, t):
1732        'opt_defs_and_outputs : defs_and_outputs'
1733
1734    def p_defs_and_outputs_0(self, t):
1735        'defs_and_outputs : def_or_output'
1736
1737    def p_defs_and_outputs_1(self, t):
1738        'defs_and_outputs : defs_and_outputs def_or_output'
1739
1740    # The list of possible definition/output statements.
1741    # They are all processed as they are seen.
1742    def p_def_or_output(self, t):
1743        '''def_or_output : name_decl
1744                         | def_format
1745                         | def_bitfield
1746                         | def_bitfield_struct
1747                         | def_template
1748                         | def_operand_types
1749                         | def_operands
1750                         | output
1751                         | global_let
1752                         | split'''
1753
1754    # Utility function used by both invocations of splitting - explicit
1755    # 'split' keyword and split() function inside "let {{ }};" blocks.
1756    def split(self, sec, write=False):
1757        assert(sec != 'header' and "header cannot be split")
1758
1759        f = self.get_file(sec)
1760        self.splits[f] += 1
1761        s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1762        if write:
1763            f.write(s)
1764        else:
1765            return s
1766
1767    # split output file to reduce compilation time
1768    def p_split(self, t):
1769        'split : SPLIT output_type SEMI'
1770        assert(self.isa_name and "'split' not allowed before namespace decl")
1771
1772        self.split(t[2], True)
1773
1774    def p_output_type(self, t):
1775        '''output_type : DECODER
1776                       | HEADER
1777                       | EXEC'''
1778        t[0] = t[1]
1779
1780    # ISA name declaration looks like "namespace <foo>;"
1781    def p_name_decl(self, t):
1782        'name_decl : NAMESPACE ID SEMI'
1783        assert(self.isa_name == None and "Only 1 namespace decl permitted")
1784        self.isa_name = t[2]
1785        self.namespace = t[2] + 'Inst'
1786
1787    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1788    # directly to the appropriate output section.
1789
1790    # Massage output block by substituting in template definitions and
1791    # bit operators.  We handle '%'s embedded in the string that don't
1792    # indicate template substitutions (or CPU-specific symbols, which
1793    # get handled in GenCode) by doubling them first so that the
1794    # format operation will reduce them back to single '%'s.
1795    def process_output(self, s):
1796        s = self.protectNonSubstPercents(s)
1797        # protects cpu-specific symbols too
1798        s = self.protectCpuSymbols(s)
1799        return substBitOps(s % self.templateMap)
1800
1801    def p_output(self, t):
1802        'output : OUTPUT output_type CODELIT SEMI'
1803        kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1804        GenCode(self, **kwargs).emit()
1805
1806    # global let blocks 'let {{...}}' (Python code blocks) are
1807    # executed directly when seen.  Note that these execute in a
1808    # special variable context 'exportContext' to prevent the code
1809    # from polluting this script's namespace.
1810    def p_global_let(self, t):
1811        'global_let : LET CODELIT SEMI'
1812        def _split(sec):
1813            return self.split(sec)
1814        self.updateExportContext()
1815        self.exportContext["header_output"] = ''
1816        self.exportContext["decoder_output"] = ''
1817        self.exportContext["exec_output"] = ''
1818        self.exportContext["decode_block"] = ''
1819        self.exportContext["split"] = _split
1820        split_setup = '''
1821def wrap(func):
1822    def split(sec):
1823        globals()[sec + '_output'] += func(sec)
1824    return split
1825split = wrap(split)
1826del wrap
1827'''
1828        # This tricky setup (immediately above) allows us to just write
1829        # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1830        # will automatically be added to the exec_output variable. The inner
1831        # Python execution environment doesn't know about the split points,
1832        # so we carefully inject and wrap a closure that can retrieve the
1833        # next split's #define from the parser and add it to the current
1834        # emission-in-progress.
1835        try:
1836            exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1837        except Exception, exc:
1838            if debug:
1839                raise
1840            error(t, 'error: %s in global let block "%s".' % (exc, t[2]))
1841        GenCode(self,
1842                header_output=self.exportContext["header_output"],
1843                decoder_output=self.exportContext["decoder_output"],
1844                exec_output=self.exportContext["exec_output"],
1845                decode_block=self.exportContext["decode_block"]).emit()
1846
1847    # Define the mapping from operand type extensions to C++ types and
1848    # bit widths (stored in operandTypeMap).
1849    def p_def_operand_types(self, t):
1850        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1851        try:
1852            self.operandTypeMap = eval('{' + t[3] + '}')
1853        except Exception, exc:
1854            if debug:
1855                raise
1856            error(t,
1857                  'error: %s in def operand_types block "%s".' % (exc, t[3]))
1858
1859    # Define the mapping from operand names to operand classes and
1860    # other traits.  Stored in operandNameMap.
1861    def p_def_operands(self, t):
1862        'def_operands : DEF OPERANDS CODELIT SEMI'
1863        if not hasattr(self, 'operandTypeMap'):
1864            error(t, 'error: operand types must be defined before operands')
1865        try:
1866            user_dict = eval('{' + t[3] + '}', self.exportContext)
1867        except Exception, exc:
1868            if debug:
1869                raise
1870            error(t, 'error: %s in def operands block "%s".' % (exc, t[3]))
1871        self.buildOperandNameMap(user_dict, t.lexer.lineno)
1872
1873    # A bitfield definition looks like:
1874    # 'def [signed] bitfield <ID> [<first>:<last>]'
1875    # This generates a preprocessor macro in the output file.
1876    def p_def_bitfield_0(self, t):
1877        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1878        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1879        if (t[2] == 'signed'):
1880            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1881        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1882        GenCode(self, header_output=hash_define).emit()
1883
1884    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1885    def p_def_bitfield_1(self, t):
1886        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1887        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1888        if (t[2] == 'signed'):
1889            expr = 'sext<%d>(%s)' % (1, expr)
1890        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1891        GenCode(self, header_output=hash_define).emit()
1892
1893    # alternate form for structure member: 'def bitfield <ID> <ID>'
1894    def p_def_bitfield_struct(self, t):
1895        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1896        if (t[2] != ''):
1897            error(t, 'error: structure bitfields are always unsigned.')
1898        expr = 'machInst.%s' % t[5]
1899        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1900        GenCode(self, header_output=hash_define).emit()
1901
1902    def p_id_with_dot_0(self, t):
1903        'id_with_dot : ID'
1904        t[0] = t[1]
1905
1906    def p_id_with_dot_1(self, t):
1907        'id_with_dot : ID DOT id_with_dot'
1908        t[0] = t[1] + t[2] + t[3]
1909
1910    def p_opt_signed_0(self, t):
1911        'opt_signed : SIGNED'
1912        t[0] = t[1]
1913
1914    def p_opt_signed_1(self, t):
1915        'opt_signed : empty'
1916        t[0] = ''
1917
1918    def p_def_template(self, t):
1919        'def_template : DEF TEMPLATE ID CODELIT SEMI'
1920        if t[3] in self.templateMap:
1921            print "warning: template %s already defined" % t[3]
1922        self.templateMap[t[3]] = Template(self, t[4])
1923
1924    # An instruction format definition looks like
1925    # "def format <fmt>(<params>) {{...}};"
1926    def p_def_format(self, t):
1927        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1928        (id, params, code) = (t[3], t[5], t[7])
1929        self.defFormat(id, params, code, t.lexer.lineno)
1930
1931    # The formal parameter list for an instruction format is a
1932    # possibly empty list of comma-separated parameters.  Positional
1933    # (standard, non-keyword) parameters must come first, followed by
1934    # keyword parameters, followed by a '*foo' parameter that gets
1935    # excess positional arguments (as in Python).  Each of these three
1936    # parameter categories is optional.
1937    #
1938    # Note that we do not support the '**foo' parameter for collecting
1939    # otherwise undefined keyword args.  Otherwise the parameter list
1940    # is (I believe) identical to what is supported in Python.
1941    #
1942    # The param list generates a tuple, where the first element is a
1943    # list of the positional params and the second element is a dict
1944    # containing the keyword params.
1945    def p_param_list_0(self, t):
1946        'param_list : positional_param_list COMMA nonpositional_param_list'
1947        t[0] = t[1] + t[3]
1948
1949    def p_param_list_1(self, t):
1950        '''param_list : positional_param_list
1951                      | nonpositional_param_list'''
1952        t[0] = t[1]
1953
1954    def p_positional_param_list_0(self, t):
1955        'positional_param_list : empty'
1956        t[0] = []
1957
1958    def p_positional_param_list_1(self, t):
1959        'positional_param_list : ID'
1960        t[0] = [t[1]]
1961
1962    def p_positional_param_list_2(self, t):
1963        'positional_param_list : positional_param_list COMMA ID'
1964        t[0] = t[1] + [t[3]]
1965
1966    def p_nonpositional_param_list_0(self, t):
1967        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1968        t[0] = t[1] + t[3]
1969
1970    def p_nonpositional_param_list_1(self, t):
1971        '''nonpositional_param_list : keyword_param_list
1972                                    | excess_args_param'''
1973        t[0] = t[1]
1974
1975    def p_keyword_param_list_0(self, t):
1976        'keyword_param_list : keyword_param'
1977        t[0] = [t[1]]
1978
1979    def p_keyword_param_list_1(self, t):
1980        'keyword_param_list : keyword_param_list COMMA keyword_param'
1981        t[0] = t[1] + [t[3]]
1982
1983    def p_keyword_param(self, t):
1984        'keyword_param : ID EQUALS expr'
1985        t[0] = t[1] + ' = ' + t[3].__repr__()
1986
1987    def p_excess_args_param(self, t):
1988        'excess_args_param : ASTERISK ID'
1989        # Just concatenate them: '*ID'.  Wrap in list to be consistent
1990        # with positional_param_list and keyword_param_list.
1991        t[0] = [t[1] + t[2]]
1992
1993    # End of format definition-related rules.
1994    ##############
1995
1996    #
1997    # A decode block looks like:
1998    #       decode <field1> [, <field2>]* [default <inst>] { ... }
1999    #
2000    def p_top_level_decode_block(self, t):
2001        'top_level_decode_block : decode_block'
2002        codeObj = t[1]
2003        codeObj.wrap_decode_block('''
2004StaticInstPtr
2005%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
2006{
2007    using namespace %(namespace)s;
2008''' % self, '}')
2009
2010        codeObj.emit()
2011
2012    def p_decode_block(self, t):
2013        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
2014        default_defaults = self.defaultStack.pop()
2015        codeObj = t[5]
2016        # use the "default defaults" only if there was no explicit
2017        # default statement in decode_stmt_list
2018        if not codeObj.has_decode_default:
2019            codeObj += default_defaults
2020        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
2021        t[0] = codeObj
2022
2023    # The opt_default statement serves only to push the "default
2024    # defaults" onto defaultStack.  This value will be used by nested
2025    # decode blocks, and used and popped off when the current
2026    # decode_block is processed (in p_decode_block() above).
2027    def p_opt_default_0(self, t):
2028        'opt_default : empty'
2029        # no default specified: reuse the one currently at the top of
2030        # the stack
2031        self.defaultStack.push(self.defaultStack.top())
2032        # no meaningful value returned
2033        t[0] = None
2034
2035    def p_opt_default_1(self, t):
2036        'opt_default : DEFAULT inst'
2037        # push the new default
2038        codeObj = t[2]
2039        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
2040        self.defaultStack.push(codeObj)
2041        # no meaningful value returned
2042        t[0] = None
2043
2044    def p_decode_stmt_list_0(self, t):
2045        'decode_stmt_list : decode_stmt'
2046        t[0] = t[1]
2047
2048    def p_decode_stmt_list_1(self, t):
2049        'decode_stmt_list : decode_stmt decode_stmt_list'
2050        if (t[1].has_decode_default and t[2].has_decode_default):
2051            error(t, 'Two default cases in decode block')
2052        t[0] = t[1] + t[2]
2053
2054    #
2055    # Decode statement rules
2056    #
2057    # There are four types of statements allowed in a decode block:
2058    # 1. Format blocks 'format <foo> { ... }'
2059    # 2. Nested decode blocks
2060    # 3. Instruction definitions.
2061    # 4. C preprocessor directives.
2062
2063
2064    # Preprocessor directives found in a decode statement list are
2065    # passed through to the output, replicated to all of the output
2066    # code streams.  This works well for ifdefs, so we can ifdef out
2067    # both the declarations and the decode cases generated by an
2068    # instruction definition.  Handling them as part of the grammar
2069    # makes it easy to keep them in the right place with respect to
2070    # the code generated by the other statements.
2071    def p_decode_stmt_cpp(self, t):
2072        'decode_stmt : CPPDIRECTIVE'
2073        t[0] = GenCode(self, t[1], t[1], t[1], t[1])
2074
2075    # A format block 'format <foo> { ... }' sets the default
2076    # instruction format used to handle instruction definitions inside
2077    # the block.  This format can be overridden by using an explicit
2078    # format on the instruction definition or with a nested format
2079    # block.
2080    def p_decode_stmt_format(self, t):
2081        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
2082        # The format will be pushed on the stack when 'push_format_id'
2083        # is processed (see below).  Once the parser has recognized
2084        # the full production (though the right brace), we're done
2085        # with the format, so now we can pop it.
2086        self.formatStack.pop()
2087        t[0] = t[4]
2088
2089    # This rule exists so we can set the current format (& push the
2090    # stack) when we recognize the format name part of the format
2091    # block.
2092    def p_push_format_id(self, t):
2093        'push_format_id : ID'
2094        try:
2095            self.formatStack.push(self.formatMap[t[1]])
2096            t[0] = ('', '// format %s' % t[1])
2097        except KeyError:
2098            error(t, 'instruction format "%s" not defined.' % t[1])
2099
2100    # Nested decode block: if the value of the current field matches
2101    # the specified constant(s), do a nested decode on some other field.
2102    def p_decode_stmt_decode(self, t):
2103        'decode_stmt : case_list COLON decode_block'
2104        case_list = t[1]
2105        codeObj = t[3]
2106        # just wrap the decoding code from the block as a case in the
2107        # outer switch statement.
2108        codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2109        codeObj.has_decode_default = (case_list == ['default:'])
2110        t[0] = codeObj
2111
2112    # Instruction definition (finally!).
2113    def p_decode_stmt_inst(self, t):
2114        'decode_stmt : case_list COLON inst SEMI'
2115        case_list = t[1]
2116        codeObj = t[3]
2117        codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2118        codeObj.has_decode_default = (case_list == ['default:'])
2119        t[0] = codeObj
2120
2121    # The constant list for a decode case label must be non-empty, and must
2122    # either be the keyword 'default', or made up of one or more
2123    # comma-separated integer literals or strings which evaluate to
2124    # constants when compiled as C++.
2125    def p_case_list_0(self, t):
2126        'case_list : DEFAULT'
2127        t[0] = ['default:']
2128
2129    def prep_int_lit_case_label(self, lit):
2130        if lit >= 2**32:
2131            return 'case ULL(%#x): ' % lit
2132        else:
2133            return 'case %#x: ' % lit
2134
2135    def prep_str_lit_case_label(self, lit):
2136        return 'case %s: ' % lit
2137
2138    def p_case_list_1(self, t):
2139        'case_list : INTLIT'
2140        t[0] = [self.prep_int_lit_case_label(t[1])]
2141
2142    def p_case_list_2(self, t):
2143        'case_list : STRLIT'
2144        t[0] = [self.prep_str_lit_case_label(t[1])]
2145
2146    def p_case_list_3(self, t):
2147        'case_list : case_list COMMA INTLIT'
2148        t[0] = t[1]
2149        t[0].append(self.prep_int_lit_case_label(t[3]))
2150
2151    def p_case_list_4(self, t):
2152        'case_list : case_list COMMA STRLIT'
2153        t[0] = t[1]
2154        t[0].append(self.prep_str_lit_case_label(t[3]))
2155
2156    # Define an instruction using the current instruction format
2157    # (specified by an enclosing format block).
2158    # "<mnemonic>(<args>)"
2159    def p_inst_0(self, t):
2160        'inst : ID LPAREN arg_list RPAREN'
2161        # Pass the ID and arg list to the current format class to deal with.
2162        currentFormat = self.formatStack.top()
2163        codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2164        args = ','.join(map(str, t[3]))
2165        args = re.sub('(?m)^', '//', args)
2166        args = re.sub('^//', '', args)
2167        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2168        codeObj.prepend_all(comment)
2169        t[0] = codeObj
2170
2171    # Define an instruction using an explicitly specified format:
2172    # "<fmt>::<mnemonic>(<args>)"
2173    def p_inst_1(self, t):
2174        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2175        try:
2176            format = self.formatMap[t[1]]
2177        except KeyError:
2178            error(t, 'instruction format "%s" not defined.' % t[1])
2179
2180        codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2181        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2182        codeObj.prepend_all(comment)
2183        t[0] = codeObj
2184
2185    # The arg list generates a tuple, where the first element is a
2186    # list of the positional args and the second element is a dict
2187    # containing the keyword args.
2188    def p_arg_list_0(self, t):
2189        'arg_list : positional_arg_list COMMA keyword_arg_list'
2190        t[0] = ( t[1], t[3] )
2191
2192    def p_arg_list_1(self, t):
2193        'arg_list : positional_arg_list'
2194        t[0] = ( t[1], {} )
2195
2196    def p_arg_list_2(self, t):
2197        'arg_list : keyword_arg_list'
2198        t[0] = ( [], t[1] )
2199
2200    def p_positional_arg_list_0(self, t):
2201        'positional_arg_list : empty'
2202        t[0] = []
2203
2204    def p_positional_arg_list_1(self, t):
2205        'positional_arg_list : expr'
2206        t[0] = [t[1]]
2207
2208    def p_positional_arg_list_2(self, t):
2209        'positional_arg_list : positional_arg_list COMMA expr'
2210        t[0] = t[1] + [t[3]]
2211
2212    def p_keyword_arg_list_0(self, t):
2213        'keyword_arg_list : keyword_arg'
2214        t[0] = t[1]
2215
2216    def p_keyword_arg_list_1(self, t):
2217        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2218        t[0] = t[1]
2219        t[0].update(t[3])
2220
2221    def p_keyword_arg(self, t):
2222        'keyword_arg : ID EQUALS expr'
2223        t[0] = { t[1] : t[3] }
2224
2225    #
2226    # Basic expressions.  These constitute the argument values of
2227    # "function calls" (i.e. instruction definitions in the decode
2228    # block) and default values for formal parameters of format
2229    # functions.
2230    #
2231    # Right now, these are either strings, integers, or (recursively)
2232    # lists of exprs (using Python square-bracket list syntax).  Note
2233    # that bare identifiers are trated as string constants here (since
2234    # there isn't really a variable namespace to refer to).
2235    #
2236    def p_expr_0(self, t):
2237        '''expr : ID
2238                | INTLIT
2239                | STRLIT
2240                | CODELIT'''
2241        t[0] = t[1]
2242
2243    def p_expr_1(self, t):
2244        '''expr : LBRACKET list_expr RBRACKET'''
2245        t[0] = t[2]
2246
2247    def p_list_expr_0(self, t):
2248        'list_expr : expr'
2249        t[0] = [t[1]]
2250
2251    def p_list_expr_1(self, t):
2252        'list_expr : list_expr COMMA expr'
2253        t[0] = t[1] + [t[3]]
2254
2255    def p_list_expr_2(self, t):
2256        'list_expr : empty'
2257        t[0] = []
2258
2259    #
2260    # Empty production... use in other rules for readability.
2261    #
2262    def p_empty(self, t):
2263        'empty :'
2264        pass
2265
2266    # Parse error handler.  Note that the argument here is the
2267    # offending *token*, not a grammar symbol (hence the need to use
2268    # t.value)
2269    def p_error(self, t):
2270        if t:
2271            error(t, "syntax error at '%s'" % t.value)
2272        else:
2273            error("unknown syntax error")
2274
2275    # END OF GRAMMAR RULES
2276
2277    def updateExportContext(self):
2278
2279        # create a continuation that allows us to grab the current parser
2280        def wrapInstObjParams(*args):
2281            return InstObjParams(self, *args)
2282        self.exportContext['InstObjParams'] = wrapInstObjParams
2283        self.exportContext.update(self.templateMap)
2284
2285    def defFormat(self, id, params, code, lineno):
2286        '''Define a new format'''
2287
2288        # make sure we haven't already defined this one
2289        if id in self.formatMap:
2290            error(lineno, 'format %s redefined.' % id)
2291
2292        # create new object and store in global map
2293        self.formatMap[id] = Format(id, params, code)
2294
2295    def expandCpuSymbolsToDict(self, template):
2296        '''Expand template with CPU-specific references into a
2297        dictionary with an entry for each CPU model name.  The entry
2298        key is the model name and the corresponding value is the
2299        template with the CPU-specific refs substituted for that
2300        model.'''
2301
2302        # Protect '%'s that don't go with CPU-specific terms
2303        t = re.sub(r'%(?!\(CPU_)', '%%', template)
2304        result = {}
2305        for cpu in self.cpuModels:
2306            result[cpu.name] = t % cpu.strings
2307        return result
2308
2309    def expandCpuSymbolsToString(self, template):
2310        '''*If* the template has CPU-specific references, return a
2311        single string containing a copy of the template for each CPU
2312        model with the corresponding values substituted in.  If the
2313        template has no CPU-specific references, it is returned
2314        unmodified.'''
2315
2316        if template.find('%(CPU_') != -1:
2317            return reduce(lambda x,y: x+y,
2318                          self.expandCpuSymbolsToDict(template).values())
2319        else:
2320            return template
2321
2322    def protectCpuSymbols(self, template):
2323        '''Protect CPU-specific references by doubling the
2324        corresponding '%'s (in preparation for substituting a different
2325        set of references into the template).'''
2326
2327        return re.sub(r'%(?=\(CPU_)', '%%', template)
2328
2329    def protectNonSubstPercents(self, s):
2330        '''Protect any non-dict-substitution '%'s in a format string
2331        (i.e. those not followed by '(')'''
2332
2333        return re.sub(r'%(?!\()', '%%', s)
2334
2335    def buildOperandNameMap(self, user_dict, lineno):
2336        operand_name = {}
2337        for op_name, val in user_dict.iteritems():
2338
2339            # Check if extra attributes have been specified.
2340            if len(val) > 9:
2341                error(lineno, 'error: too many attributes for operand "%s"' %
2342                      base_cls_name)
2343
2344            # Pad val with None in case optional args are missing
2345            val += (None, None, None, None)
2346            base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2347            read_code, write_code, read_predicate, write_predicate = val[:9]
2348
2349            # Canonical flag structure is a triple of lists, where each list
2350            # indicates the set of flags implied by this operand always, when
2351            # used as a source, and when used as a dest, respectively.
2352            # For simplicity this can be initialized using a variety of fairly
2353            # obvious shortcuts; we convert these to canonical form here.
2354            if not flags:
2355                # no flags specified (e.g., 'None')
2356                flags = ( [], [], [] )
2357            elif isinstance(flags, str):
2358                # a single flag: assumed to be unconditional
2359                flags = ( [ flags ], [], [] )
2360            elif isinstance(flags, list):
2361                # a list of flags: also assumed to be unconditional
2362                flags = ( flags, [], [] )
2363            elif isinstance(flags, tuple):
2364                # it's a tuple: it should be a triple,
2365                # but each item could be a single string or a list
2366                (uncond_flags, src_flags, dest_flags) = flags
2367                flags = (makeList(uncond_flags),
2368                         makeList(src_flags), makeList(dest_flags))
2369
2370            # Accumulate attributes of new operand class in tmp_dict
2371            tmp_dict = {}
2372            attrList = ['reg_spec', 'flags', 'sort_pri',
2373                        'read_code', 'write_code',
2374                        'read_predicate', 'write_predicate']
2375            if dflt_ext:
2376                dflt_ctype = self.operandTypeMap[dflt_ext]
2377                attrList.extend(['dflt_ctype', 'dflt_ext'])
2378            for attr in attrList:
2379                tmp_dict[attr] = eval(attr)
2380            tmp_dict['base_name'] = op_name
2381
2382            # New class name will be e.g. "IntReg_Ra"
2383            cls_name = base_cls_name + '_' + op_name
2384            # Evaluate string arg to get class object.  Note that the
2385            # actual base class for "IntReg" is "IntRegOperand", i.e. we
2386            # have to append "Operand".
2387            try:
2388                base_cls = eval(base_cls_name + 'Operand')
2389            except NameError:
2390                error(lineno,
2391                      'error: unknown operand base class "%s"' % base_cls_name)
2392            # The following statement creates a new class called
2393            # <cls_name> as a subclass of <base_cls> with the attributes
2394            # in tmp_dict, just as if we evaluated a class declaration.
2395            operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2396
2397        self.operandNameMap = operand_name
2398
2399        # Define operand variables.
2400        operands = user_dict.keys()
2401        extensions = self.operandTypeMap.keys()
2402
2403        operandsREString = r'''
2404        (?<!\w)      # neg. lookbehind assertion: prevent partial matches
2405        ((%s)(?:_(%s))?(?:\[\w+\])?)   # match: operand with optional '_'
2406        # then suffix, and then an optional array index.
2407        (?!\w)       # neg. lookahead assertion: prevent partial matches
2408        ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2409
2410        self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2411
2412        # Same as operandsREString, but extension is mandatory, and only two
2413        # groups are returned (base and ext, not full name as above).
2414        # Used for subtituting '_' for '.' to make C++ identifiers.
2415        operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2416            % (string.join(operands, '|'), string.join(extensions, '|'))
2417
2418        self.operandsWithExtRE = \
2419            re.compile(operandsWithExtREString, re.MULTILINE)
2420
2421    def substMungedOpNames(self, code):
2422        '''Munge operand names in code string to make legal C++
2423        variable names.  This means getting rid of the type extension
2424        if any.  Will match base_name attribute of Operand object.)'''
2425        return self.operandsWithExtRE.sub(r'\1', code)
2426
2427    def mungeSnippet(self, s):
2428        '''Fix up code snippets for final substitution in templates.'''
2429        if isinstance(s, str):
2430            return self.substMungedOpNames(substBitOps(s))
2431        else:
2432            return s
2433
2434    def open(self, name, bare=False):
2435        '''Open the output file for writing and include scary warning.'''
2436        filename = os.path.join(self.output_dir, name)
2437        f = open(filename, 'w')
2438        if f:
2439            if not bare:
2440                f.write(ISAParser.scaremonger_template % self)
2441        return f
2442
2443    def update(self, file, contents):
2444        '''Update the output file only.  Scons should handle the case when
2445        the new contents are unchanged using its built-in hash feature.'''
2446        f = self.open(file)
2447        f.write(contents)
2448        f.close()
2449
2450    # This regular expression matches '##include' directives
2451    includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2452                           re.MULTILINE)
2453
2454    def replace_include(self, matchobj, dirname):
2455        """Function to replace a matched '##include' directive with the
2456        contents of the specified file (with nested ##includes
2457        replaced recursively).  'matchobj' is an re match object
2458        (from a match of includeRE) and 'dirname' is the directory
2459        relative to which the file path should be resolved."""
2460
2461        fname = matchobj.group('filename')
2462        full_fname = os.path.normpath(os.path.join(dirname, fname))
2463        contents = '##newfile "%s"\n%s\n##endfile\n' % \
2464                   (full_fname, self.read_and_flatten(full_fname))
2465        return contents
2466
2467    def read_and_flatten(self, filename):
2468        """Read a file and recursively flatten nested '##include' files."""
2469
2470        current_dir = os.path.dirname(filename)
2471        try:
2472            contents = open(filename).read()
2473        except IOError:
2474            error('Error including file "%s"' % filename)
2475
2476        self.fileNameStack.push((filename, 0))
2477
2478        # Find any includes and include them
2479        def replace(matchobj):
2480            return self.replace_include(matchobj, current_dir)
2481        contents = self.includeRE.sub(replace, contents)
2482
2483        self.fileNameStack.pop()
2484        return contents
2485
2486    AlreadyGenerated = {}
2487
2488    def _parse_isa_desc(self, isa_desc_file):
2489        '''Read in and parse the ISA description.'''
2490
2491        # The build system can end up running the ISA parser twice: once to
2492        # finalize the build dependencies, and then to actually generate
2493        # the files it expects (in src/arch/$ARCH/generated). This code
2494        # doesn't do anything different either time, however; the SCons
2495        # invocations just expect different things. Since this code runs
2496        # within SCons, we can just remember that we've already run and
2497        # not perform a completely unnecessary run, since the ISA parser's
2498        # effect is idempotent.
2499        if isa_desc_file in ISAParser.AlreadyGenerated:
2500            return
2501
2502        # grab the last three path components of isa_desc_file
2503        self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2504
2505        # Read file and (recursively) all included files into a string.
2506        # PLY requires that the input be in a single string so we have to
2507        # do this up front.
2508        isa_desc = self.read_and_flatten(isa_desc_file)
2509
2510        # Initialize filename stack with outer file.
2511        self.fileNameStack.push((isa_desc_file, 0))
2512
2513        # Parse.
2514        self.parse_string(isa_desc)
2515
2516        ISAParser.AlreadyGenerated[isa_desc_file] = None
2517
2518    def parse_isa_desc(self, *args, **kwargs):
2519        try:
2520            self._parse_isa_desc(*args, **kwargs)
2521        except ISAParserError, e:
2522            e.exit(self.fileNameStack)
2523
2524# Called as script: get args from command line.
2525# Args are: <isa desc file> <output dir>
2526if __name__ == '__main__':
2527    ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2528