isa_parser.py revision 2155
1#! /usr/bin/env python
2
3# Copyright (c) 2003-2005 The Regents of The University of Michigan
4# All rights reserved.
5#
6# Redistribution and use in source and binary forms, with or without
7# modification, are permitted provided that the following conditions are
8# met: redistributions of source code must retain the above copyright
9# notice, this list of conditions and the following disclaimer;
10# redistributions in binary form must reproduce the above copyright
11# notice, this list of conditions and the following disclaimer in the
12# documentation and/or other materials provided with the distribution;
13# neither the name of the copyright holders nor the names of its
14# contributors may be used to endorse or promote products derived from
15# this software without specific prior written permission.
16#
17# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29import os
30import sys
31import re
32import string
33import traceback
34# get type names
35from types import *
36
37# Prepend the directory where the PLY lex & yacc modules are found
38# to the search path.  Assumes we're compiling in a subdirectory
39# of 'build' in the current tree.
40sys.path[0:0] = [os.environ['M5_EXT'] + '/ply']
41
42import lex
43import yacc
44
45#####################################################################
46#
47#                                Lexer
48#
49# The PLY lexer module takes two things as input:
50# - A list of token names (the string list 'tokens')
51# - A regular expression describing a match for each token.  The
52#   regexp for token FOO can be provided in two ways:
53#   - as a string variable named t_FOO
54#   - as the doc string for a function named t_FOO.  In this case,
55#     the function is also executed, allowing an action to be
56#     associated with each token match.
57#
58#####################################################################
59
60# Reserved words.  These are listed separately as they are matched
61# using the same regexp as generic IDs, but distinguished in the
62# t_ID() function.  The PLY documentation suggests this approach.
63reserved = (
64    'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
65    'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
66    'OUTPUT', 'SIGNED', 'TEMPLATE'
67    )
68
69# List of tokens.  The lex module requires this.
70tokens = reserved + (
71    # identifier
72    'ID',
73
74    # integer literal
75    'INTLIT',
76
77    # string literal
78    'STRLIT',
79
80    # code literal
81    'CODELIT',
82
83    # ( ) [ ] { } < > , ; : :: *
84    'LPAREN', 'RPAREN',
85    'LBRACKET', 'RBRACKET',
86    'LBRACE', 'RBRACE',
87    'LESS', 'GREATER', 'EQUALS',
88    'COMMA', 'SEMI', 'COLON', 'DBLCOLON',
89    'ASTERISK',
90
91    # C preprocessor directives
92    'CPPDIRECTIVE'
93
94# The following are matched but never returned. commented out to
95# suppress PLY warning
96    # newfile directive
97#    'NEWFILE',
98
99    # endfile directive
100#    'ENDFILE'
101)
102
103# Regular expressions for token matching
104t_LPAREN           = r'\('
105t_RPAREN           = r'\)'
106t_LBRACKET         = r'\['
107t_RBRACKET         = r'\]'
108t_LBRACE           = r'\{'
109t_RBRACE           = r'\}'
110t_LESS             = r'\<'
111t_GREATER          = r'\>'
112t_EQUALS           = r'='
113t_COMMA            = r','
114t_SEMI             = r';'
115t_COLON            = r':'
116t_DBLCOLON         = r'::'
117t_ASTERISK	   = r'\*'
118
119# Identifiers and reserved words
120reserved_map = { }
121for r in reserved:
122    reserved_map[r.lower()] = r
123
124def t_ID(t):
125    r'[A-Za-z_]\w*'
126    t.type = reserved_map.get(t.value,'ID')
127    return t
128
129# Integer literal
130def t_INTLIT(t):
131    r'(0x[\da-fA-F]+)|\d+'
132    try:
133        t.value = int(t.value,0)
134    except ValueError:
135        error(t.lineno, 'Integer value "%s" too large' % t.value)
136        t.value = 0
137    return t
138
139# String literal.  Note that these use only single quotes, and
140# can span multiple lines.
141def t_STRLIT(t):
142    r"(?m)'([^'])+'"
143    # strip off quotes
144    t.value = t.value[1:-1]
145    t.lineno += t.value.count('\n')
146    return t
147
148
149# "Code literal"... like a string literal, but delimiters are
150# '{{' and '}}' so they get formatted nicely under emacs c-mode
151def t_CODELIT(t):
152    r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
153    # strip off {{ & }}
154    t.value = t.value[2:-2]
155    t.lineno += t.value.count('\n')
156    return t
157
158def t_CPPDIRECTIVE(t):
159    r'^\#[^\#].*\n'
160    t.lineno += t.value.count('\n')
161    return t
162
163def t_NEWFILE(t):
164    r'^\#\#newfile\s+"[\w/.-]*"'
165    global fileNameStack
166    fileNameStack.append((t.value[11:-1], t.lineno))
167    t.lineno = 0
168
169def t_ENDFILE(t):
170    r'^\#\#endfile'
171    (filename, t.lineno) = fileNameStack.pop()
172
173#
174# The functions t_NEWLINE, t_ignore, and t_error are
175# special for the lex module.
176#
177
178# Newlines
179def t_NEWLINE(t):
180    r'\n+'
181    t.lineno += t.value.count('\n')
182
183# Comments
184def t_comment(t):
185    r'//.*'
186
187# Completely ignored characters
188t_ignore           = ' \t\x0c'
189
190# Error handler
191def t_error(t):
192    error(t.lineno, "illegal character '%s'" % t.value[0])
193    t.skip(1)
194
195# Build the lexer
196lex.lex()
197
198#####################################################################
199#
200#                                Parser
201#
202# Every function whose name starts with 'p_' defines a grammar rule.
203# The rule is encoded in the function's doc string, while the
204# function body provides the action taken when the rule is matched.
205# The argument to each function is a list of the values of the
206# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
207# on the RHS.  For tokens, the value is copied from the t.value
208# attribute provided by the lexer.  For non-terminals, the value
209# is assigned by the producing rule; i.e., the job of the grammar
210# rule function is to set the value for the non-terminal on the LHS
211# (by assigning to t[0]).
212#####################################################################
213
214# The LHS of the first grammar rule is used as the start symbol
215# (in this case, 'specification').  Note that this rule enforces
216# that there will be exactly one namespace declaration, with 0 or more
217# global defs/decls before and after it.  The defs & decls before
218# the namespace decl will be outside the namespace; those after
219# will be inside.  The decoder function is always inside the namespace.
220def p_specification(t):
221    'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
222    global_code = t[1]
223    isa_name = t[2]
224    namespace = isa_name + "Inst"
225    # wrap the decode block as a function definition
226    t[4].wrap_decode_block('''
227StaticInstPtr
228%(isa_name)s::decodeInst(%(isa_name)s::MachInst machInst)
229{
230    using namespace %(namespace)s;
231''' % vars(), '}')
232    # both the latter output blocks and the decode block are in the namespace
233    namespace_code = t[3] + t[4]
234    # pass it all back to the caller of yacc.parse()
235    t[0] = (isa_name, namespace, global_code, namespace_code)
236
237# ISA name declaration looks like "namespace <foo>;"
238def p_name_decl(t):
239    'name_decl : NAMESPACE ID SEMI'
240    t[0] = t[2]
241
242# 'opt_defs_and_outputs' is a possibly empty sequence of
243# def and/or output statements.
244def p_opt_defs_and_outputs_0(t):
245    'opt_defs_and_outputs : empty'
246    t[0] = GenCode()
247
248def p_opt_defs_and_outputs_1(t):
249    'opt_defs_and_outputs : defs_and_outputs'
250    t[0] = t[1]
251
252def p_defs_and_outputs_0(t):
253    'defs_and_outputs : def_or_output'
254    t[0] = t[1]
255
256def p_defs_and_outputs_1(t):
257    'defs_and_outputs : defs_and_outputs def_or_output'
258    t[0] = t[1] + t[2]
259
260# The list of possible definition/output statements.
261def p_def_or_output(t):
262    '''def_or_output : def_format
263                     | def_bitfield
264                     | def_template
265                     | def_operand_types
266                     | def_operands
267                     | output_header
268                     | output_decoder
269                     | output_exec
270                     | global_let'''
271    t[0] = t[1]
272
273# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
274# directly to the appropriate output section.
275
276
277# Protect any non-dict-substitution '%'s in a format string
278# (i.e. those not followed by '(')
279def protect_non_subst_percents(s):
280    return re.sub(r'%(?!\()', '%%', s)
281
282# Massage output block by substituting in template definitions and bit
283# operators.  We handle '%'s embedded in the string that don't
284# indicate template substitutions (or CPU-specific symbols, which get
285# handled in GenCode) by doubling them first so that the format
286# operation will reduce them back to single '%'s.
287def process_output(s):
288    s = protect_non_subst_percents(s)
289    # protects cpu-specific symbols too
290    s = protect_cpu_symbols(s)
291    return substBitOps(s % templateMap)
292
293def p_output_header(t):
294    'output_header : OUTPUT HEADER CODELIT SEMI'
295    t[0] = GenCode(header_output = process_output(t[3]))
296
297def p_output_decoder(t):
298    'output_decoder : OUTPUT DECODER CODELIT SEMI'
299    t[0] = GenCode(decoder_output = process_output(t[3]))
300
301def p_output_exec(t):
302    'output_exec : OUTPUT EXEC CODELIT SEMI'
303    t[0] = GenCode(exec_output = process_output(t[3]))
304
305# global let blocks 'let {{...}}' (Python code blocks) are executed
306# directly when seen.  Note that these execute in a special variable
307# context 'exportContext' to prevent the code from polluting this
308# script's namespace.
309def p_global_let(t):
310    'global_let : LET CODELIT SEMI'
311    updateExportContext()
312    try:
313        exec fixPythonIndentation(t[2]) in exportContext
314    except Exception, exc:
315        error(t.lineno(1),
316              'error: %s in global let block "%s".' % (exc, t[2]))
317    t[0] = GenCode() # contributes nothing to the output C++ file
318
319# Define the mapping from operand type extensions to C++ types and bit
320# widths (stored in operandTypeMap).
321def p_def_operand_types(t):
322    'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
323    try:
324        userDict = eval('{' + t[3] + '}')
325    except Exception, exc:
326        error(t.lineno(1),
327              'error: %s in def operand_types block "%s".' % (exc, t[3]))
328    buildOperandTypeMap(userDict, t.lineno(1))
329    t[0] = GenCode() # contributes nothing to the output C++ file
330
331# Define the mapping from operand names to operand classes and other
332# traits.  Stored in operandNameMap.
333def p_def_operands(t):
334    'def_operands : DEF OPERANDS CODELIT SEMI'
335    if not globals().has_key('operandTypeMap'):
336        error(t.lineno(1),
337              'error: operand types must be defined before operands')
338    try:
339        userDict = eval('{' + t[3] + '}')
340    except Exception, exc:
341        error(t.lineno(1),
342              'error: %s in def operands block "%s".' % (exc, t[3]))
343    buildOperandNameMap(userDict, t.lineno(1))
344    t[0] = GenCode() # contributes nothing to the output C++ file
345
346# A bitfield definition looks like:
347# 'def [signed] bitfield <ID> [<first>:<last>]'
348# This generates a preprocessor macro in the output file.
349def p_def_bitfield_0(t):
350    'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
351    expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
352    if (t[2] == 'signed'):
353        expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
354    hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
355    t[0] = GenCode(header_output = hash_define)
356
357# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
358def p_def_bitfield_1(t):
359    'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
360    expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
361    if (t[2] == 'signed'):
362        expr = 'sext<%d>(%s)' % (1, expr)
363    hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
364    t[0] = GenCode(header_output = hash_define)
365
366def p_opt_signed_0(t):
367    'opt_signed : SIGNED'
368    t[0] = t[1]
369
370def p_opt_signed_1(t):
371    'opt_signed : empty'
372    t[0] = ''
373
374# Global map variable to hold templates
375templateMap = {}
376
377def p_def_template(t):
378    'def_template : DEF TEMPLATE ID CODELIT SEMI'
379    templateMap[t[3]] = Template(t[4])
380    t[0] = GenCode()
381
382# An instruction format definition looks like
383# "def format <fmt>(<params>) {{...}};"
384def p_def_format(t):
385    'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
386    (id, params, code) = (t[3], t[5], t[7])
387    defFormat(id, params, code, t.lineno(1))
388    t[0] = GenCode()
389
390# The formal parameter list for an instruction format is a possibly
391# empty list of comma-separated parameters.  Positional (standard,
392# non-keyword) parameters must come first, followed by keyword
393# parameters, followed by a '*foo' parameter that gets excess
394# positional arguments (as in Python).  Each of these three parameter
395# categories is optional.
396#
397# Note that we do not support the '**foo' parameter for collecting
398# otherwise undefined keyword args.  Otherwise the parameter list is
399# (I believe) identical to what is supported in Python.
400#
401# The param list generates a tuple, where the first element is a list of
402# the positional params and the second element is a dict containing the
403# keyword params.
404def p_param_list_0(t):
405    'param_list : positional_param_list COMMA nonpositional_param_list'
406    t[0] = t[1] + t[3]
407
408def p_param_list_1(t):
409    '''param_list : positional_param_list
410                  | nonpositional_param_list'''
411    t[0] = t[1]
412
413def p_positional_param_list_0(t):
414    'positional_param_list : empty'
415    t[0] = []
416
417def p_positional_param_list_1(t):
418    'positional_param_list : ID'
419    t[0] = [t[1]]
420
421def p_positional_param_list_2(t):
422    'positional_param_list : positional_param_list COMMA ID'
423    t[0] = t[1] + [t[3]]
424
425def p_nonpositional_param_list_0(t):
426    'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
427    t[0] = t[1] + t[3]
428
429def p_nonpositional_param_list_1(t):
430    '''nonpositional_param_list : keyword_param_list
431                                | excess_args_param'''
432    t[0] = t[1]
433
434def p_keyword_param_list_0(t):
435    'keyword_param_list : keyword_param'
436    t[0] = [t[1]]
437
438def p_keyword_param_list_1(t):
439    'keyword_param_list : keyword_param_list COMMA keyword_param'
440    t[0] = t[1] + [t[3]]
441
442def p_keyword_param(t):
443    'keyword_param : ID EQUALS expr'
444    t[0] = t[1] + ' = ' + t[3].__repr__()
445
446def p_excess_args_param(t):
447    'excess_args_param : ASTERISK ID'
448    # Just concatenate them: '*ID'.  Wrap in list to be consistent
449    # with positional_param_list and keyword_param_list.
450    t[0] = [t[1] + t[2]]
451
452# End of format definition-related rules.
453##############
454
455#
456# A decode block looks like:
457#	decode <field1> [, <field2>]* [default <inst>] { ... }
458#
459def p_decode_block(t):
460    'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
461    default_defaults = defaultStack.pop()
462    codeObj = t[5]
463    # use the "default defaults" only if there was no explicit
464    # default statement in decode_stmt_list
465    if not codeObj.has_decode_default:
466        codeObj += default_defaults
467    codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
468    t[0] = codeObj
469
470# The opt_default statement serves only to push the "default defaults"
471# onto defaultStack.  This value will be used by nested decode blocks,
472# and used and popped off when the current decode_block is processed
473# (in p_decode_block() above).
474def p_opt_default_0(t):
475    'opt_default : empty'
476    # no default specified: reuse the one currently at the top of the stack
477    defaultStack.push(defaultStack.top())
478    # no meaningful value returned
479    t[0] = None
480
481def p_opt_default_1(t):
482    'opt_default : DEFAULT inst'
483    # push the new default
484    codeObj = t[2]
485    codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
486    defaultStack.push(codeObj)
487    # no meaningful value returned
488    t[0] = None
489
490def p_decode_stmt_list_0(t):
491    'decode_stmt_list : decode_stmt'
492    t[0] = t[1]
493
494def p_decode_stmt_list_1(t):
495    'decode_stmt_list : decode_stmt decode_stmt_list'
496    if (t[1].has_decode_default and t[2].has_decode_default):
497        error(t.lineno(1), 'Two default cases in decode block')
498    t[0] = t[1] + t[2]
499
500#
501# Decode statement rules
502#
503# There are four types of statements allowed in a decode block:
504# 1. Format blocks 'format <foo> { ... }'
505# 2. Nested decode blocks
506# 3. Instruction definitions.
507# 4. C preprocessor directives.
508
509
510# Preprocessor directives found in a decode statement list are passed
511# through to the output, replicated to all of the output code
512# streams.  This works well for ifdefs, so we can ifdef out both the
513# declarations and the decode cases generated by an instruction
514# definition.  Handling them as part of the grammar makes it easy to
515# keep them in the right place with respect to the code generated by
516# the other statements.
517def p_decode_stmt_cpp(t):
518    'decode_stmt : CPPDIRECTIVE'
519    t[0] = GenCode(t[1], t[1], t[1], t[1])
520
521# A format block 'format <foo> { ... }' sets the default instruction
522# format used to handle instruction definitions inside the block.
523# This format can be overridden by using an explicit format on the
524# instruction definition or with a nested format block.
525def p_decode_stmt_format(t):
526    'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
527    # The format will be pushed on the stack when 'push_format_id' is
528    # processed (see below).  Once the parser has recognized the full
529    # production (though the right brace), we're done with the format,
530    # so now we can pop it.
531    formatStack.pop()
532    t[0] = t[4]
533
534# This rule exists so we can set the current format (& push the stack)
535# when we recognize the format name part of the format block.
536def p_push_format_id(t):
537    'push_format_id : ID'
538    try:
539        formatStack.push(formatMap[t[1]])
540        t[0] = ('', '// format %s' % t[1])
541    except KeyError:
542        error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
543
544# Nested decode block: if the value of the current field matches the
545# specified constant, do a nested decode on some other field.
546def p_decode_stmt_decode(t):
547    'decode_stmt : case_label COLON decode_block'
548    label = t[1]
549    codeObj = t[3]
550    # just wrap the decoding code from the block as a case in the
551    # outer switch statement.
552    codeObj.wrap_decode_block('\n%s:\n' % label)
553    codeObj.has_decode_default = (label == 'default')
554    t[0] = codeObj
555
556# Instruction definition (finally!).
557def p_decode_stmt_inst(t):
558    'decode_stmt : case_label COLON inst SEMI'
559    label = t[1]
560    codeObj = t[3]
561    codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
562    codeObj.has_decode_default = (label == 'default')
563    t[0] = codeObj
564
565# The case label is either a list of one or more constants or 'default'
566def p_case_label_0(t):
567    'case_label : intlit_list'
568    t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
569
570def p_case_label_1(t):
571    'case_label : DEFAULT'
572    t[0] = 'default'
573
574#
575# The constant list for a decode case label must be non-empty, but may have
576# one or more comma-separated integer literals in it.
577#
578def p_intlit_list_0(t):
579    'intlit_list : INTLIT'
580    t[0] = [t[1]]
581
582def p_intlit_list_1(t):
583    'intlit_list : intlit_list COMMA INTLIT'
584    t[0] = t[1]
585    t[0].append(t[3])
586
587# Define an instruction using the current instruction format (specified
588# by an enclosing format block).
589# "<mnemonic>(<args>)"
590def p_inst_0(t):
591    'inst : ID LPAREN arg_list RPAREN'
592    # Pass the ID and arg list to the current format class to deal with.
593    currentFormat = formatStack.top()
594    codeObj = currentFormat.defineInst(t[1], t[3], t.lineno(1))
595    args = ','.join(map(str, t[3]))
596    args = re.sub('(?m)^', '//', args)
597    args = re.sub('^//', '', args)
598    comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
599    codeObj.prepend_all(comment)
600    t[0] = codeObj
601
602# Define an instruction using an explicitly specified format:
603# "<fmt>::<mnemonic>(<args>)"
604def p_inst_1(t):
605    'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
606    try:
607        format = formatMap[t[1]]
608    except KeyError:
609        error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
610    codeObj = format.defineInst(t[3], t[5], t.lineno(1))
611    comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
612    codeObj.prepend_all(comment)
613    t[0] = codeObj
614
615# The arg list generates a tuple, where the first element is a list of
616# the positional args and the second element is a dict containing the
617# keyword args.
618def p_arg_list_0(t):
619    'arg_list : positional_arg_list COMMA keyword_arg_list'
620    t[0] = ( t[1], t[3] )
621
622def p_arg_list_1(t):
623    'arg_list : positional_arg_list'
624    t[0] = ( t[1], {} )
625
626def p_arg_list_2(t):
627    'arg_list : keyword_arg_list'
628    t[0] = ( [], t[1] )
629
630def p_positional_arg_list_0(t):
631    'positional_arg_list : empty'
632    t[0] = []
633
634def p_positional_arg_list_1(t):
635    'positional_arg_list : expr'
636    t[0] = [t[1]]
637
638def p_positional_arg_list_2(t):
639    'positional_arg_list : positional_arg_list COMMA expr'
640    t[0] = t[1] + [t[3]]
641
642def p_keyword_arg_list_0(t):
643    'keyword_arg_list : keyword_arg'
644    t[0] = t[1]
645
646def p_keyword_arg_list_1(t):
647    'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
648    t[0] = t[1]
649    t[0].update(t[3])
650
651def p_keyword_arg(t):
652    'keyword_arg : ID EQUALS expr'
653    t[0] = { t[1] : t[3] }
654
655#
656# Basic expressions.  These constitute the argument values of
657# "function calls" (i.e. instruction definitions in the decode block)
658# and default values for formal parameters of format functions.
659#
660# Right now, these are either strings, integers, or (recursively)
661# lists of exprs (using Python square-bracket list syntax).  Note that
662# bare identifiers are trated as string constants here (since there
663# isn't really a variable namespace to refer to).
664#
665def p_expr_0(t):
666    '''expr : ID
667            | INTLIT
668            | STRLIT
669            | CODELIT'''
670    t[0] = t[1]
671
672def p_expr_1(t):
673    '''expr : LBRACKET list_expr RBRACKET'''
674    t[0] = t[2]
675
676def p_list_expr_0(t):
677    'list_expr : expr'
678    t[0] = [t[1]]
679
680def p_list_expr_1(t):
681    'list_expr : list_expr COMMA expr'
682    t[0] = t[1] + [t[3]]
683
684def p_list_expr_2(t):
685    'list_expr : empty'
686    t[0] = []
687
688#
689# Empty production... use in other rules for readability.
690#
691def p_empty(t):
692    'empty :'
693    pass
694
695# Parse error handler.  Note that the argument here is the offending
696# *token*, not a grammar symbol (hence the need to use t.value)
697def p_error(t):
698    if t:
699        error(t.lineno, "syntax error at '%s'" % t.value)
700    else:
701        error_bt(0, "unknown syntax error")
702
703# END OF GRAMMAR RULES
704#
705# Now build the parser.
706yacc.yacc()
707
708
709#####################################################################
710#
711#                           Support Classes
712#
713#####################################################################
714
715# Expand template with CPU-specific references into a dictionary with
716# an entry for each CPU model name.  The entry key is the model name
717# and the corresponding value is the template with the CPU-specific
718# refs substituted for that model.
719def expand_cpu_symbols_to_dict(template):
720    # Protect '%'s that don't go with CPU-specific terms
721    t = re.sub(r'%(?!\(CPU_)', '%%', template)
722    result = {}
723    for cpu in cpu_models:
724        result[cpu.name] = t % cpu.strings
725    return result
726
727# *If* the template has CPU-specific references, return a single
728# string containing a copy of the template for each CPU model with the
729# corresponding values substituted in.  If the template has no
730# CPU-specific references, it is returned unmodified.
731def expand_cpu_symbols_to_string(template):
732    if template.find('%(CPU_') != -1:
733        return reduce(lambda x,y: x+y,
734                      expand_cpu_symbols_to_dict(template).values())
735    else:
736        return template
737
738# Protect CPU-specific references by doubling the corresponding '%'s
739# (in preparation for substituting a different set of references into
740# the template).
741def protect_cpu_symbols(template):
742    return re.sub(r'%(?=\(CPU_)', '%%', template)
743
744###############
745# GenCode class
746#
747# The GenCode class encapsulates generated code destined for various
748# output files.  The header_output and decoder_output attributes are
749# strings containing code destined for decoder.hh and decoder.cc
750# respectively.  The decode_block attribute contains code to be
751# incorporated in the decode function itself (that will also end up in
752# decoder.cc).  The exec_output attribute is a dictionary with a key
753# for each CPU model name; the value associated with a particular key
754# is the string of code for that CPU model's exec.cc file.  The
755# has_decode_default attribute is used in the decode block to allow
756# explicit default clauses to override default default clauses.
757
758class GenCode:
759    # Constructor.  At this point we substitute out all CPU-specific
760    # symbols.  For the exec output, these go into the per-model
761    # dictionary.  For all other output types they get collapsed into
762    # a single string.
763    def __init__(self,
764                 header_output = '', decoder_output = '', exec_output = '',
765                 decode_block = '', has_decode_default = False):
766        self.header_output = expand_cpu_symbols_to_string(header_output)
767        self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
768        if isinstance(exec_output, dict):
769            self.exec_output = exec_output
770        elif isinstance(exec_output, str):
771            # If the exec_output arg is a single string, we replicate
772            # it for each of the CPU models, substituting and
773            # %(CPU_foo)s params appropriately.
774            self.exec_output = expand_cpu_symbols_to_dict(exec_output)
775        self.decode_block = expand_cpu_symbols_to_string(decode_block)
776        self.has_decode_default = has_decode_default
777
778    # Override '+' operator: generate a new GenCode object that
779    # concatenates all the individual strings in the operands.
780    def __add__(self, other):
781        exec_output = {}
782        for cpu in cpu_models:
783            n = cpu.name
784            exec_output[n] = self.exec_output[n] + other.exec_output[n]
785        return GenCode(self.header_output + other.header_output,
786                       self.decoder_output + other.decoder_output,
787                       exec_output,
788                       self.decode_block + other.decode_block,
789                       self.has_decode_default or other.has_decode_default)
790
791    # Prepend a string (typically a comment) to all the strings.
792    def prepend_all(self, pre):
793        self.header_output = pre + self.header_output
794        self.decoder_output  = pre + self.decoder_output
795        self.decode_block = pre + self.decode_block
796        for cpu in cpu_models:
797            self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
798
799    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
800    # and 'break;').  Used to build the big nested switch statement.
801    def wrap_decode_block(self, pre, post = ''):
802        self.decode_block = pre + indent(self.decode_block) + post
803
804################
805# Format object.
806#
807# A format object encapsulates an instruction format.  It must provide
808# a defineInst() method that generates the code for an instruction
809# definition.
810
811exportContextSymbols = ('InstObjParams', 'CodeBlock',
812                        'makeList', 're', 'string')
813
814exportContext = {}
815
816def updateExportContext():
817    exportContext.update(exportDict(*exportContextSymbols))
818    exportContext.update(templateMap)
819
820def exportDict(*symNames):
821    return dict([(s, eval(s)) for s in symNames])
822
823
824class Format:
825    def __init__(self, id, params, code):
826        # constructor: just save away arguments
827        self.id = id
828        self.params = params
829        label = 'def format ' + id
830        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
831        param_list = string.join(params, ", ")
832        f = '''def defInst(_code, _context, %s):
833                my_locals = vars().copy()
834                exec _code in _context, my_locals
835                return my_locals\n''' % param_list
836        c = compile(f, label + ' wrapper', 'exec')
837        exec c
838        self.func = defInst
839
840    def defineInst(self, name, args, lineno):
841        context = {}
842        updateExportContext()
843        context.update(exportContext)
844        context.update({ 'name': name, 'Name': string.capitalize(name) })
845        try:
846            vars = self.func(self.user_code, context, *args[0], **args[1])
847        except Exception, exc:
848            error(lineno, 'error defining "%s": %s.' % (name, exc))
849        for k in vars.keys():
850            if k not in ('header_output', 'decoder_output',
851                         'exec_output', 'decode_block'):
852                del vars[k]
853        return GenCode(**vars)
854
855# Special null format to catch an implicit-format instruction
856# definition outside of any format block.
857class NoFormat:
858    def __init__(self):
859        self.defaultInst = ''
860
861    def defineInst(self, name, args, lineno):
862        error(lineno,
863              'instruction definition "%s" with no active format!' % name)
864
865# This dictionary maps format name strings to Format objects.
866formatMap = {}
867
868# Define a new format
869def defFormat(id, params, code, lineno):
870    # make sure we haven't already defined this one
871    if formatMap.get(id, None) != None:
872        error(lineno, 'format %s redefined.' % id)
873    # create new object and store in global map
874    formatMap[id] = Format(id, params, code)
875
876
877##############
878# Stack: a simple stack object.  Used for both formats (formatStack)
879# and default cases (defaultStack).  Simply wraps a list to give more
880# stack-like syntax and enable initialization with an argument list
881# (as opposed to an argument that's a list).
882
883class Stack(list):
884    def __init__(self, *items):
885        list.__init__(self, items)
886
887    def push(self, item):
888        self.append(item);
889
890    def top(self):
891        return self[-1]
892
893# The global format stack.
894formatStack = Stack(NoFormat())
895
896# The global default case stack.
897defaultStack = Stack( None )
898
899###################
900# Utility functions
901
902#
903# Indent every line in string 's' by two spaces
904# (except preprocessor directives).
905# Used to make nested code blocks look pretty.
906#
907def indent(s):
908    return re.sub(r'(?m)^(?!#)', '  ', s)
909
910#
911# Munge a somewhat arbitrarily formatted piece of Python code
912# (e.g. from a format 'let' block) into something whose indentation
913# will get by the Python parser.
914#
915# The two keys here are that Python will give a syntax error if
916# there's any whitespace at the beginning of the first line, and that
917# all lines at the same lexical nesting level must have identical
918# indentation.  Unfortunately the way code literals work, an entire
919# let block tends to have some initial indentation.  Rather than
920# trying to figure out what that is and strip it off, we prepend 'if
921# 1:' to make the let code the nested block inside the if (and have
922# the parser automatically deal with the indentation for us).
923#
924# We don't want to do this if (1) the code block is empty or (2) the
925# first line of the block doesn't have any whitespace at the front.
926
927def fixPythonIndentation(s):
928    # get rid of blank lines first
929    s = re.sub(r'(?m)^\s*\n', '', s);
930    if (s != '' and re.match(r'[ \t]', s[0])):
931        s = 'if 1:\n' + s
932    return s
933
934# Error handler.  Just call exit.  Output formatted to work under
935# Emacs compile-mode.  This function should be called when errors due
936# to user input are detected (as opposed to parser bugs).
937def error(lineno, string):
938    spaces = ""
939    for (filename, line) in fileNameStack[0:-1]:
940        print spaces + "In file included from " + filename
941        spaces += "  "
942    # Uncomment the following line to get a Python stack backtrace for
943    # these errors too.  Can be handy when trying to debug the parser.
944    # traceback.print_exc()
945    sys.exit(spaces + "%s:%d: %s" % (fileNameStack[-1][0], lineno, string))
946
947# Like error(), but include a Python stack backtrace (for processing
948# Python exceptions).  This function should be called for errors that
949# appear to be bugs in the parser itself.
950def error_bt(lineno, string):
951    traceback.print_exc()
952    print >> sys.stderr, "%s:%d: %s" % (input_filename, lineno, string)
953    sys.exit(1)
954
955
956#####################################################################
957#
958#                      Bitfield Operator Support
959#
960#####################################################################
961
962bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
963
964bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
965bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
966
967def substBitOps(code):
968    # first convert single-bit selectors to two-index form
969    # i.e., <n> --> <n:n>
970    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
971    # simple case: selector applied to ID (name)
972    # i.e., foo<a:b> --> bits(foo, a, b)
973    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
974    # if selector is applied to expression (ending in ')'),
975    # we need to search backward for matching '('
976    match = bitOpExprRE.search(code)
977    while match:
978        exprEnd = match.start()
979        here = exprEnd - 1
980        nestLevel = 1
981        while nestLevel > 0:
982            if code[here] == '(':
983                nestLevel -= 1
984            elif code[here] == ')':
985                nestLevel += 1
986            here -= 1
987            if here < 0:
988                sys.exit("Didn't find '('!")
989        exprStart = here+1
990        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
991                                         match.group(1), match.group(2))
992        code = code[:exprStart] + newExpr + code[match.end():]
993        match = bitOpExprRE.search(code)
994    return code
995
996
997####################
998# Template objects.
999#
1000# Template objects are format strings that allow substitution from
1001# the attribute spaces of other objects (e.g. InstObjParams instances).
1002
1003class Template:
1004    def __init__(self, t):
1005        self.template = t
1006
1007    def subst(self, d):
1008        # Start with the template namespace.  Make a copy since we're
1009        # going to modify it.
1010        myDict = templateMap.copy()
1011        # if the argument is a dictionary, we just use it.
1012        if isinstance(d, dict):
1013            myDict.update(d)
1014        # if the argument is an object, we use its attribute map.
1015        elif hasattr(d, '__dict__'):
1016            myDict.update(d.__dict__)
1017        else:
1018            raise TypeError, "Template.subst() arg must be or have dictionary"
1019        # Protect non-Python-dict substitutions (e.g. if there's a printf
1020        # in the templated C++ code)
1021        template = protect_non_subst_percents(self.template)
1022        # CPU-model-specific substitutions are handled later (in GenCode).
1023        template = protect_cpu_symbols(template)
1024        return template % myDict
1025
1026    # Convert to string.  This handles the case when a template with a
1027    # CPU-specific term gets interpolated into another template or into
1028    # an output block.
1029    def __str__(self):
1030        return expand_cpu_symbols_to_string(self.template)
1031
1032#####################################################################
1033#
1034#                             Code Parser
1035#
1036# The remaining code is the support for automatically extracting
1037# instruction characteristics from pseudocode.
1038#
1039#####################################################################
1040
1041# Force the argument to be a list.  Useful for flags, where a caller
1042# can specify a singleton flag or a list of flags.  Also usful for
1043# converting tuples to lists so they can be modified.
1044def makeList(arg):
1045    if isinstance(arg, list):
1046        return arg
1047    elif isinstance(arg, tuple):
1048        return list(arg)
1049    elif not arg:
1050        return []
1051    else:
1052        return [ arg ]
1053
1054# Generate operandTypeMap from the user's 'def operand_types'
1055# statement.
1056def buildOperandTypeMap(userDict, lineno):
1057    global operandTypeMap
1058    operandTypeMap = {}
1059    for (ext, (desc, size)) in userDict.iteritems():
1060        if desc == 'signed int':
1061            ctype = 'int%d_t' % size
1062            is_signed = 1
1063        elif desc == 'unsigned int':
1064            ctype = 'uint%d_t' % size
1065            is_signed = 0
1066        elif desc == 'float':
1067            is_signed = 1	# shouldn't really matter
1068            if size == 32:
1069                ctype = 'float'
1070            elif size == 64:
1071                ctype = 'double'
1072        if ctype == '':
1073            error(0, 'Unrecognized type description "%s" in userDict')
1074        operandTypeMap[ext] = (size, ctype, is_signed)
1075
1076#
1077#
1078#
1079# Base class for operand descriptors.  An instance of this class (or
1080# actually a class derived from this one) represents a specific
1081# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
1082# derived classes encapsulates the traits of a particular operand type
1083# (e.g., "32-bit integer register").
1084#
1085class Operand(object):
1086    def __init__(self, full_name, ext, is_src, is_dest):
1087        self.full_name = full_name
1088        self.ext = ext
1089        self.is_src = is_src
1090        self.is_dest = is_dest
1091        # The 'effective extension' (eff_ext) is either the actual
1092        # extension, if one was explicitly provided, or the default.
1093        if ext:
1094            self.eff_ext = ext
1095        else:
1096            self.eff_ext = self.dflt_ext
1097
1098        (self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
1099
1100        # note that mem_acc_size is undefined for non-mem operands...
1101        # template must be careful not to use it if it doesn't apply.
1102        if self.isMem():
1103            self.mem_acc_size = self.makeAccSize()
1104            self.mem_acc_type = self.ctype
1105
1106    # Finalize additional fields (primarily code fields).  This step
1107    # is done separately since some of these fields may depend on the
1108    # register index enumeration that hasn't been performed yet at the
1109    # time of __init__().
1110    def finalize(self):
1111        self.flags = self.getFlags()
1112        self.constructor = self.makeConstructor()
1113        self.op_decl = self.makeDecl()
1114
1115        if self.is_src:
1116            self.op_rd = self.makeRead()
1117            self.op_src_decl = self.makeDecl()
1118        else:
1119            self.op_rd = ''
1120            self.op_src_decl = ''
1121
1122        if self.is_dest:
1123            self.op_wb = self.makeWrite()
1124            self.op_dest_decl = self.makeDecl()
1125        else:
1126            self.op_wb = ''
1127            self.op_dest_decl = ''
1128
1129    def isMem(self):
1130        return 0
1131
1132    def isReg(self):
1133        return 0
1134
1135    def isFloatReg(self):
1136        return 0
1137
1138    def isIntReg(self):
1139        return 0
1140
1141    def isControlReg(self):
1142        return 0
1143
1144    def getFlags(self):
1145        # note the empty slice '[:]' gives us a copy of self.flags[0]
1146        # instead of a reference to it
1147        my_flags = self.flags[0][:]
1148        if self.is_src:
1149            my_flags += self.flags[1]
1150        if self.is_dest:
1151            my_flags += self.flags[2]
1152        return my_flags
1153
1154    def makeDecl(self):
1155        # Note that initializations in the declarations are solely
1156        # to avoid 'uninitialized variable' errors from the compiler.
1157        return self.ctype + ' ' + self.base_name + ' = 0;\n';
1158
1159class IntRegOperand(Operand):
1160    def isReg(self):
1161        return 1
1162
1163    def isIntReg(self):
1164        return 1
1165
1166    def makeConstructor(self):
1167        c = ''
1168        if self.is_src:
1169            c += '\n\t_srcRegIdx[%d] = %s;' % \
1170                 (self.src_reg_idx, self.reg_spec)
1171        if self.is_dest:
1172            c += '\n\t_destRegIdx[%d] = %s;' % \
1173                 (self.dest_reg_idx, self.reg_spec)
1174        return c
1175
1176    def makeRead(self):
1177        if (self.ctype == 'float' or self.ctype == 'double'):
1178            error(0, 'Attempt to read integer register as FP')
1179        if (self.size == self.dflt_size):
1180            return '%s = xc->readIntReg(this, %d);\n' % \
1181                   (self.base_name, self.src_reg_idx)
1182        else:
1183            return '%s = bits(xc->readIntReg(this, %d), %d, 0);\n' % \
1184                   (self.base_name, self.src_reg_idx, self.size-1)
1185
1186    def makeWrite(self):
1187        if (self.ctype == 'float' or self.ctype == 'double'):
1188            error(0, 'Attempt to write integer register as FP')
1189        if (self.size != self.dflt_size and self.is_signed):
1190            final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1191        else:
1192            final_val = self.base_name
1193        wb = '''
1194        {
1195            %s final_val = %s;
1196            xc->setIntReg(this, %d, final_val);\n
1197            if (traceData) { traceData->setData(final_val); }
1198        }''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
1199        return wb
1200
1201class FloatRegOperand(Operand):
1202    def isReg(self):
1203        return 1
1204
1205    def isFloatReg(self):
1206        return 1
1207
1208    def makeConstructor(self):
1209        c = ''
1210        if self.is_src:
1211            c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
1212                 (self.src_reg_idx, self.reg_spec)
1213        if self.is_dest:
1214            c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
1215                 (self.dest_reg_idx, self.reg_spec)
1216        return c
1217
1218    def makeRead(self):
1219        bit_select = 0
1220        if (self.ctype == 'float'):
1221            func = 'readFloatRegSingle'
1222        elif (self.ctype == 'double'):
1223            func = 'readFloatRegDouble'
1224        else:
1225            func = 'readFloatRegInt'
1226            if (self.size != self.dflt_size):
1227                bit_select = 1
1228        base = 'xc->%s(this, %d)' % \
1229               (func, self.src_reg_idx)
1230        if bit_select:
1231            return '%s = bits(%s, %d, 0);\n' % \
1232                   (self.base_name, base, self.size-1)
1233        else:
1234            return '%s = %s;\n' % (self.base_name, base)
1235
1236    def makeWrite(self):
1237        final_val = self.base_name
1238        final_ctype = self.ctype
1239        if (self.ctype == 'float'):
1240            func = 'setFloatRegSingle'
1241        elif (self.ctype == 'double'):
1242            func = 'setFloatRegDouble'
1243        else:
1244            func = 'setFloatRegInt'
1245            final_ctype = 'uint%d_t' % self.dflt_size
1246            if (self.size != self.dflt_size and self.is_signed):
1247                final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
1248        wb = '''
1249        {
1250            %s final_val = %s;
1251            xc->%s(this, %d, final_val);\n
1252            if (traceData) { traceData->setData(final_val); }
1253        }''' % (final_ctype, final_val, func, self.dest_reg_idx)
1254        return wb
1255
1256class ControlRegOperand(Operand):
1257    def isReg(self):
1258        return 1
1259
1260    def isControlReg(self):
1261        return 1
1262
1263    def makeConstructor(self):
1264        c = ''
1265        if self.is_src:
1266            c += '\n\t_srcRegIdx[%d] = %s_DepTag;' % \
1267                 (self.src_reg_idx, self.reg_spec)
1268        if self.is_dest:
1269            c += '\n\t_destRegIdx[%d] = %s_DepTag;' % \
1270                 (self.dest_reg_idx, self.reg_spec)
1271        return c
1272
1273    def makeRead(self):
1274        bit_select = 0
1275        if (self.ctype == 'float' or self.ctype == 'double'):
1276            error(0, 'Attempt to read control register as FP')
1277        base = 'xc->read%s()' % self.reg_spec
1278        if self.size == self.dflt_size:
1279            return '%s = %s;\n' % (self.base_name, base)
1280        else:
1281            return '%s = bits(%s, %d, 0);\n' % \
1282                   (self.base_name, base, self.size-1)
1283
1284    def makeWrite(self):
1285        if (self.ctype == 'float' or self.ctype == 'double'):
1286            error(0, 'Attempt to write control register as FP')
1287        wb = 'xc->set%s(%s);\n' % (self.reg_spec, self.base_name)
1288        wb += 'if (traceData) { traceData->setData(%s); }' % \
1289              self.base_name
1290        return wb
1291
1292class MemOperand(Operand):
1293    def isMem(self):
1294        return 1
1295
1296    def makeConstructor(self):
1297        return ''
1298
1299    def makeDecl(self):
1300        # Note that initializations in the declarations are solely
1301        # to avoid 'uninitialized variable' errors from the compiler.
1302        # Declare memory data variable.
1303        c = '%s %s = 0;\n' % (self.ctype, self.base_name)
1304        return c
1305
1306    def makeRead(self):
1307        return ''
1308
1309    def makeWrite(self):
1310        return ''
1311
1312    # Return the memory access size *in bits*, suitable for
1313    # forming a type via "uint%d_t".  Divide by 8 if you want bytes.
1314    def makeAccSize(self):
1315        return self.size
1316
1317
1318class NPCOperand(Operand):
1319    def makeConstructor(self):
1320        return ''
1321
1322    def makeRead(self):
1323        return '%s = xc->readPC() + 4;\n' % self.base_name
1324
1325    def makeWrite(self):
1326        return 'xc->setNextPC(%s);\n' % self.base_name
1327
1328class NNPCOperand(Operand):
1329    def makeConstructor(self):
1330        return ''
1331
1332    def makeRead(self):
1333        return '%s = xc->readPC() + 8;\n' % self.base_name
1334
1335    def makeWrite(self):
1336        return 'xc->setNextNPC(%s);\n' % self.base_name
1337
1338def buildOperandNameMap(userDict, lineno):
1339    global operandNameMap
1340    operandNameMap = {}
1341    for (op_name, val) in userDict.iteritems():
1342        (base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
1343        (dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
1344        # Canonical flag structure is a triple of lists, where each list
1345        # indicates the set of flags implied by this operand always, when
1346        # used as a source, and when used as a dest, respectively.
1347        # For simplicity this can be initialized using a variety of fairly
1348        # obvious shortcuts; we convert these to canonical form here.
1349        if not flags:
1350            # no flags specified (e.g., 'None')
1351            flags = ( [], [], [] )
1352        elif isinstance(flags, str):
1353            # a single flag: assumed to be unconditional
1354            flags = ( [ flags ], [], [] )
1355        elif isinstance(flags, list):
1356            # a list of flags: also assumed to be unconditional
1357            flags = ( flags, [], [] )
1358        elif isinstance(flags, tuple):
1359            # it's a tuple: it should be a triple,
1360            # but each item could be a single string or a list
1361            (uncond_flags, src_flags, dest_flags) = flags
1362            flags = (makeList(uncond_flags),
1363                     makeList(src_flags), makeList(dest_flags))
1364        # Accumulate attributes of new operand class in tmp_dict
1365        tmp_dict = {}
1366        for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
1367                     'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
1368            tmp_dict[attr] = eval(attr)
1369        tmp_dict['base_name'] = op_name
1370        # New class name will be e.g. "IntReg_Ra"
1371        cls_name = base_cls_name + '_' + op_name
1372        # Evaluate string arg to get class object.  Note that the
1373        # actual base class for "IntReg" is "IntRegOperand", i.e. we
1374        # have to append "Operand".
1375        try:
1376            base_cls = eval(base_cls_name + 'Operand')
1377        except NameError:
1378            error(lineno,
1379                  'error: unknown operand base class "%s"' % base_cls_name)
1380        # The following statement creates a new class called
1381        # <cls_name> as a subclass of <base_cls> with the attributes
1382        # in tmp_dict, just as if we evaluated a class declaration.
1383        operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
1384
1385    # Define operand variables.
1386    operands = userDict.keys()
1387
1388    operandsREString = (r'''
1389    (?<![\w\.])	     # neg. lookbehind assertion: prevent partial matches
1390    ((%s)(?:\.(\w+))?)   # match: operand with optional '.' then suffix
1391    (?![\w\.])	     # neg. lookahead assertion: prevent partial matches
1392    '''
1393                        % string.join(operands, '|'))
1394
1395    global operandsRE
1396    operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
1397
1398    # Same as operandsREString, but extension is mandatory, and only two
1399    # groups are returned (base and ext, not full name as above).
1400    # Used for subtituting '_' for '.' to make C++ identifiers.
1401    operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
1402                               % string.join(operands, '|'))
1403
1404    global operandsWithExtRE
1405    operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
1406
1407
1408class OperandList:
1409
1410    # Find all the operands in the given code block.  Returns an operand
1411    # descriptor list (instance of class OperandList).
1412    def __init__(self, code):
1413        self.items = []
1414        self.bases = {}
1415        # delete comments so we don't match on reg specifiers inside
1416        code = commentRE.sub('', code)
1417        # search for operands
1418        next_pos = 0
1419        while 1:
1420            match = operandsRE.search(code, next_pos)
1421            if not match:
1422                # no more matches: we're done
1423                break
1424            op = match.groups()
1425            # regexp groups are operand full name, base, and extension
1426            (op_full, op_base, op_ext) = op
1427            # if the token following the operand is an assignment, this is
1428            # a destination (LHS), else it's a source (RHS)
1429            is_dest = (assignRE.match(code, match.end()) != None)
1430            is_src = not is_dest
1431            # see if we've already seen this one
1432            op_desc = self.find_base(op_base)
1433            if op_desc:
1434                if op_desc.ext != op_ext:
1435                    error(0, 'Inconsistent extensions for operand %s' % \
1436                          op_base)
1437                op_desc.is_src = op_desc.is_src or is_src
1438                op_desc.is_dest = op_desc.is_dest or is_dest
1439            else:
1440                # new operand: create new descriptor
1441                op_desc = operandNameMap[op_base](op_full, op_ext,
1442                                                  is_src, is_dest)
1443                self.append(op_desc)
1444            # start next search after end of current match
1445            next_pos = match.end()
1446        self.sort()
1447        # enumerate source & dest register operands... used in building
1448        # constructor later
1449        self.numSrcRegs = 0
1450        self.numDestRegs = 0
1451        self.numFPDestRegs = 0
1452        self.numIntDestRegs = 0
1453        self.memOperand = None
1454        for op_desc in self.items:
1455            if op_desc.isReg():
1456                if op_desc.is_src:
1457                    op_desc.src_reg_idx = self.numSrcRegs
1458                    self.numSrcRegs += 1
1459                if op_desc.is_dest:
1460                    op_desc.dest_reg_idx = self.numDestRegs
1461                    self.numDestRegs += 1
1462                    if op_desc.isFloatReg():
1463                        self.numFPDestRegs += 1
1464                    elif op_desc.isIntReg():
1465                        self.numIntDestRegs += 1
1466            elif op_desc.isMem():
1467                if self.memOperand:
1468                    error(0, "Code block has more than one memory operand.")
1469                self.memOperand = op_desc
1470        # now make a final pass to finalize op_desc fields that may depend
1471        # on the register enumeration
1472        for op_desc in self.items:
1473            op_desc.finalize()
1474
1475    def __len__(self):
1476        return len(self.items)
1477
1478    def __getitem__(self, index):
1479        return self.items[index]
1480
1481    def append(self, op_desc):
1482        self.items.append(op_desc)
1483        self.bases[op_desc.base_name] = op_desc
1484
1485    def find_base(self, base_name):
1486        # like self.bases[base_name], but returns None if not found
1487        # (rather than raising exception)
1488        return self.bases.get(base_name)
1489
1490    # internal helper function for concat[Some]Attr{Strings|Lists}
1491    def __internalConcatAttrs(self, attr_name, filter, result):
1492        for op_desc in self.items:
1493            if filter(op_desc):
1494                result += getattr(op_desc, attr_name)
1495        return result
1496
1497    # return a single string that is the concatenation of the (string)
1498    # values of the specified attribute for all operands
1499    def concatAttrStrings(self, attr_name):
1500        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
1501
1502    # like concatAttrStrings, but only include the values for the operands
1503    # for which the provided filter function returns true
1504    def concatSomeAttrStrings(self, filter, attr_name):
1505        return self.__internalConcatAttrs(attr_name, filter, '')
1506
1507    # return a single list that is the concatenation of the (list)
1508    # values of the specified attribute for all operands
1509    def concatAttrLists(self, attr_name):
1510        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
1511
1512    # like concatAttrLists, but only include the values for the operands
1513    # for which the provided filter function returns true
1514    def concatSomeAttrLists(self, filter, attr_name):
1515        return self.__internalConcatAttrs(attr_name, filter, [])
1516
1517    def sort(self):
1518        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
1519
1520# Regular expression object to match C++ comments
1521# (used in findOperands())
1522commentRE = re.compile(r'//.*\n')
1523
1524# Regular expression object to match assignment statements
1525# (used in findOperands())
1526assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
1527
1528# Munge operand names in code string to make legal C++ variable names.
1529# This means getting rid of the type extension if any.
1530# (Will match base_name attribute of Operand object.)
1531def substMungedOpNames(code):
1532    return operandsWithExtRE.sub(r'\1', code)
1533
1534def joinLists(t):
1535    return map(string.join, t)
1536
1537def makeFlagConstructor(flag_list):
1538    if len(flag_list) == 0:
1539        return ''
1540    # filter out repeated flags
1541    flag_list.sort()
1542    i = 1
1543    while i < len(flag_list):
1544        if flag_list[i] == flag_list[i-1]:
1545            del flag_list[i]
1546        else:
1547            i += 1
1548    pre = '\n\tflags['
1549    post = '] = true;'
1550    code = pre + string.join(flag_list, post + pre) + post
1551    return code
1552
1553class CodeBlock:
1554    def __init__(self, code):
1555        self.orig_code = code
1556        self.operands = OperandList(code)
1557        self.code = substMungedOpNames(substBitOps(code))
1558        self.constructor = self.operands.concatAttrStrings('constructor')
1559        self.constructor += \
1560                 '\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
1561        self.constructor += \
1562                 '\n\t_numDestRegs = %d;' % self.operands.numDestRegs
1563        self.constructor += \
1564                 '\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
1565        self.constructor += \
1566                 '\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
1567
1568        self.op_decl = self.operands.concatAttrStrings('op_decl')
1569
1570        is_src = lambda op: op.is_src
1571        is_dest = lambda op: op.is_dest
1572
1573        self.op_src_decl = \
1574                  self.operands.concatSomeAttrStrings(is_src, 'op_src_decl')
1575        self.op_dest_decl = \
1576                  self.operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
1577
1578        self.op_rd = self.operands.concatAttrStrings('op_rd')
1579        self.op_wb = self.operands.concatAttrStrings('op_wb')
1580
1581        self.flags = self.operands.concatAttrLists('flags')
1582
1583        if self.operands.memOperand:
1584            self.mem_acc_size = self.operands.memOperand.mem_acc_size
1585            self.mem_acc_type = self.operands.memOperand.mem_acc_type
1586
1587        # Make a basic guess on the operand class (function unit type).
1588        # These are good enough for most cases, and will be overridden
1589        # later otherwise.
1590        if 'IsStore' in self.flags:
1591            self.op_class = 'MemWriteOp'
1592        elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1593            self.op_class = 'MemReadOp'
1594        elif 'IsFloating' in self.flags:
1595            self.op_class = 'FloatAddOp'
1596        else:
1597            self.op_class = 'IntAluOp'
1598
1599# Assume all instruction flags are of the form 'IsFoo'
1600instFlagRE = re.compile(r'Is.*')
1601
1602# OpClass constants end in 'Op' except No_OpClass
1603opClassRE = re.compile(r'.*Op|No_OpClass')
1604
1605class InstObjParams:
1606    def __init__(self, mnem, class_name, base_class = '',
1607                 code_block = None, opt_args = []):
1608        self.mnemonic = mnem
1609        self.class_name = class_name
1610        self.base_class = base_class
1611        if code_block:
1612            for code_attr in code_block.__dict__.keys():
1613                setattr(self, code_attr, getattr(code_block, code_attr))
1614        else:
1615            self.constructor = ''
1616            self.flags = []
1617        # Optional arguments are assumed to be either StaticInst flags
1618        # or an OpClass value.  To avoid having to import a complete
1619        # list of these values to match against, we do it ad-hoc
1620        # with regexps.
1621        for oa in opt_args:
1622            if instFlagRE.match(oa):
1623                self.flags.append(oa)
1624            elif opClassRE.match(oa):
1625                self.op_class = oa
1626            else:
1627                error(0, 'InstObjParams: optional arg "%s" not recognized '
1628                      'as StaticInst::Flag or OpClass.' % oa)
1629
1630        # add flag initialization to contructor here to include
1631        # any flags added via opt_args
1632        self.constructor += makeFlagConstructor(self.flags)
1633
1634        # if 'IsFloating' is set, add call to the FP enable check
1635        # function (which should be provided by isa_desc via a declare)
1636        if 'IsFloating' in self.flags:
1637            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1638        else:
1639            self.fp_enable_check = ''
1640
1641#######################
1642#
1643# Output file template
1644#
1645
1646file_template = '''
1647/*
1648 * DO NOT EDIT THIS FILE!!!
1649 *
1650 * It was automatically generated from the ISA description in %(filename)s
1651 */
1652
1653%(includes)s
1654
1655%(global_output)s
1656
1657namespace %(namespace)s {
1658
1659%(namespace_output)s
1660
1661} // namespace %(namespace)s
1662
1663%(decode_function)s
1664'''
1665
1666
1667# Update the output file only if the new contents are different from
1668# the current contents.  Minimizes the files that need to be rebuilt
1669# after minor changes.
1670def update_if_needed(file, contents):
1671    update = False
1672    if os.access(file, os.R_OK):
1673        f = open(file, 'r')
1674        old_contents = f.read()
1675        f.close()
1676        if contents != old_contents:
1677            print 'Updating', file
1678            os.remove(file) # in case it's write-protected
1679            update = True
1680        else:
1681            print 'File', file, 'is unchanged'
1682    else:
1683        print 'Generating', file
1684        update = True
1685    if update:
1686        f = open(file, 'w')
1687        f.write(contents)
1688        f.close()
1689
1690# This regular expression matches include directives
1691includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
1692                       re.MULTILINE)
1693
1694def preprocess_isa_desc(isa_desc):
1695    # Find any includes and include them
1696    pos = 0
1697    while 1:
1698        m = includeRE.search(isa_desc, pos)
1699        if not m:
1700            break
1701        filename = m.group('filename')
1702        print 'Including file "%s"' % filename
1703        try:
1704            isa_desc = isa_desc[:m.start()] + \
1705                       '##newfile "' + filename + '"\n' + \
1706                       open(filename).read() + \
1707                       '##endfile\n' + \
1708                       isa_desc[m.end():]
1709        except IOError:
1710            error(0, 'Error including file "%s"' % (filename))
1711        pos = m.start()
1712    return isa_desc
1713
1714#
1715# Read in and parse the ISA description.
1716#
1717def parse_isa_desc(isa_desc_file, output_dir):
1718    # set a global var for the input filename... used in error messages
1719    global input_filename
1720    input_filename = isa_desc_file
1721    global fileNameStack
1722    fileNameStack = [(input_filename, 1)]
1723
1724    # Suck the ISA description file in.
1725    input = open(isa_desc_file)
1726    isa_desc = input.read()
1727    input.close()
1728
1729    # Perform Preprocessing
1730    isa_desc = preprocess_isa_desc(isa_desc)
1731
1732    # Parse it.
1733    (isa_name, namespace, global_code, namespace_code) = yacc.parse(isa_desc)
1734
1735    # grab the last three path components of isa_desc_file to put in
1736    # the output
1737    filename = '/'.join(isa_desc_file.split('/')[-3:])
1738
1739    # generate decoder.hh
1740    includes = '#include "base/bitfield.hh" // for bitfield support'
1741    global_output = global_code.header_output
1742    namespace_output = namespace_code.header_output
1743    decode_function = ''
1744    update_if_needed(output_dir + '/decoder.hh', file_template % vars())
1745
1746    # generate decoder.cc
1747    includes = '#include "decoder.hh"'
1748    global_output = global_code.decoder_output
1749    namespace_output = namespace_code.decoder_output
1750    # namespace_output += namespace_code.decode_block
1751    decode_function = namespace_code.decode_block
1752    update_if_needed(output_dir + '/decoder.cc', file_template % vars())
1753
1754    # generate per-cpu exec files
1755    for cpu in cpu_models:
1756        includes = '#include "decoder.hh"\n'
1757        includes += cpu.includes
1758        global_output = global_code.exec_output[cpu.name]
1759        namespace_output = namespace_code.exec_output[cpu.name]
1760        decode_function = ''
1761        update_if_needed(output_dir + '/' + cpu.filename,
1762                          file_template % vars())
1763
1764# global list of CpuModel objects (see cpu_models.py)
1765cpu_models = []
1766
1767# Called as script: get args from command line.
1768# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
1769if __name__ == '__main__':
1770    execfile(sys.argv[1])  # read in CpuModel definitions
1771    cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
1772    parse_isa_desc(sys.argv[2], sys.argv[3])
1773