isa_parser.py revision 11328
1# Copyright (c) 2014 ARM Limited
2# All rights reserved
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2003-2005 The Regents of The University of Michigan
14# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
15# All rights reserved.
16#
17# Redistribution and use in source and binary forms, with or without
18# modification, are permitted provided that the following conditions are
19# met: redistributions of source code must retain the above copyright
20# notice, this list of conditions and the following disclaimer;
21# redistributions in binary form must reproduce the above copyright
22# notice, this list of conditions and the following disclaimer in the
23# documentation and/or other materials provided with the distribution;
24# neither the name of the copyright holders nor the names of its
25# contributors may be used to endorse or promote products derived from
26# this software without specific prior written permission.
27#
28# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39#
40# Authors: Steve Reinhardt
41
42from __future__ import with_statement
43import os
44import sys
45import re
46import string
47import inspect, traceback
48# get type names
49from types import *
50
51from m5.util.grammar import Grammar
52
53debug=False
54
55###################
56# Utility functions
57
58#
59# Indent every line in string 's' by two spaces
60# (except preprocessor directives).
61# Used to make nested code blocks look pretty.
62#
63def indent(s):
64    return re.sub(r'(?m)^(?!#)', '  ', s)
65
66#
67# Munge a somewhat arbitrarily formatted piece of Python code
68# (e.g. from a format 'let' block) into something whose indentation
69# will get by the Python parser.
70#
71# The two keys here are that Python will give a syntax error if
72# there's any whitespace at the beginning of the first line, and that
73# all lines at the same lexical nesting level must have identical
74# indentation.  Unfortunately the way code literals work, an entire
75# let block tends to have some initial indentation.  Rather than
76# trying to figure out what that is and strip it off, we prepend 'if
77# 1:' to make the let code the nested block inside the if (and have
78# the parser automatically deal with the indentation for us).
79#
80# We don't want to do this if (1) the code block is empty or (2) the
81# first line of the block doesn't have any whitespace at the front.
82
83def fixPythonIndentation(s):
84    # get rid of blank lines first
85    s = re.sub(r'(?m)^\s*\n', '', s);
86    if (s != '' and re.match(r'[ \t]', s[0])):
87        s = 'if 1:\n' + s
88    return s
89
90class ISAParserError(Exception):
91    """Exception class for parser errors"""
92    def __init__(self, first, second=None):
93        if second is None:
94            self.lineno = 0
95            self.string = first
96        else:
97            self.lineno = first
98            self.string = second
99
100    def __str__(self):
101        return self.string
102
103def error(*args):
104    raise ISAParserError(*args)
105
106####################
107# Template objects.
108#
109# Template objects are format strings that allow substitution from
110# the attribute spaces of other objects (e.g. InstObjParams instances).
111
112labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
113
114class Template(object):
115    def __init__(self, parser, t):
116        self.parser = parser
117        self.template = t
118
119    def subst(self, d):
120        myDict = None
121
122        # Protect non-Python-dict substitutions (e.g. if there's a printf
123        # in the templated C++ code)
124        template = self.parser.protectNonSubstPercents(self.template)
125        # CPU-model-specific substitutions are handled later (in GenCode).
126        template = self.parser.protectCpuSymbols(template)
127
128        # Build a dict ('myDict') to use for the template substitution.
129        # Start with the template namespace.  Make a copy since we're
130        # going to modify it.
131        myDict = self.parser.templateMap.copy()
132
133        if isinstance(d, InstObjParams):
134            # If we're dealing with an InstObjParams object, we need
135            # to be a little more sophisticated.  The instruction-wide
136            # parameters are already formed, but the parameters which
137            # are only function wide still need to be generated.
138            compositeCode = ''
139
140            myDict.update(d.__dict__)
141            # The "operands" and "snippets" attributes of the InstObjParams
142            # objects are for internal use and not substitution.
143            del myDict['operands']
144            del myDict['snippets']
145
146            snippetLabels = [l for l in labelRE.findall(template)
147                             if d.snippets.has_key(l)]
148
149            snippets = dict([(s, self.parser.mungeSnippet(d.snippets[s]))
150                             for s in snippetLabels])
151
152            myDict.update(snippets)
153
154            compositeCode = ' '.join(map(str, snippets.values()))
155
156            # Add in template itself in case it references any
157            # operands explicitly (like Mem)
158            compositeCode += ' ' + template
159
160            operands = SubOperandList(self.parser, compositeCode, d.operands)
161
162            myDict['op_decl'] = operands.concatAttrStrings('op_decl')
163            if operands.readPC or operands.setPC:
164                myDict['op_decl'] += 'TheISA::PCState __parserAutoPCState;\n'
165
166            # In case there are predicated register reads and write, declare
167            # the variables for register indicies. It is being assumed that
168            # all the operands in the OperandList are also in the
169            # SubOperandList and in the same order. Otherwise, it is
170            # expected that predication would not be used for the operands.
171            if operands.predRead:
172                myDict['op_decl'] += 'uint8_t _sourceIndex = 0;\n'
173            if operands.predWrite:
174                myDict['op_decl'] += 'uint8_t M5_VAR_USED _destIndex = 0;\n'
175
176            is_src = lambda op: op.is_src
177            is_dest = lambda op: op.is_dest
178
179            myDict['op_src_decl'] = \
180                      operands.concatSomeAttrStrings(is_src, 'op_src_decl')
181            myDict['op_dest_decl'] = \
182                      operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
183            if operands.readPC:
184                myDict['op_src_decl'] += \
185                    'TheISA::PCState __parserAutoPCState;\n'
186            if operands.setPC:
187                myDict['op_dest_decl'] += \
188                    'TheISA::PCState __parserAutoPCState;\n'
189
190            myDict['op_rd'] = operands.concatAttrStrings('op_rd')
191            if operands.readPC:
192                myDict['op_rd'] = '__parserAutoPCState = xc->pcState();\n' + \
193                                  myDict['op_rd']
194
195            # Compose the op_wb string. If we're going to write back the
196            # PC state because we changed some of its elements, we'll need to
197            # do that as early as possible. That allows later uncoordinated
198            # modifications to the PC to layer appropriately.
199            reordered = list(operands.items)
200            reordered.reverse()
201            op_wb_str = ''
202            pcWbStr = 'xc->pcState(__parserAutoPCState);\n'
203            for op_desc in reordered:
204                if op_desc.isPCPart() and op_desc.is_dest:
205                    op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
206                    pcWbStr = ''
207                else:
208                    op_wb_str = op_desc.op_wb + op_wb_str
209            myDict['op_wb'] = op_wb_str
210
211        elif isinstance(d, dict):
212            # if the argument is a dictionary, we just use it.
213            myDict.update(d)
214        elif hasattr(d, '__dict__'):
215            # if the argument is an object, we use its attribute map.
216            myDict.update(d.__dict__)
217        else:
218            raise TypeError, "Template.subst() arg must be or have dictionary"
219        return template % myDict
220
221    # Convert to string.  This handles the case when a template with a
222    # CPU-specific term gets interpolated into another template or into
223    # an output block.
224    def __str__(self):
225        return self.parser.expandCpuSymbolsToString(self.template)
226
227################
228# Format object.
229#
230# A format object encapsulates an instruction format.  It must provide
231# a defineInst() method that generates the code for an instruction
232# definition.
233
234class Format(object):
235    def __init__(self, id, params, code):
236        self.id = id
237        self.params = params
238        label = 'def format ' + id
239        self.user_code = compile(fixPythonIndentation(code), label, 'exec')
240        param_list = string.join(params, ", ")
241        f = '''def defInst(_code, _context, %s):
242                my_locals = vars().copy()
243                exec _code in _context, my_locals
244                return my_locals\n''' % param_list
245        c = compile(f, label + ' wrapper', 'exec')
246        exec c
247        self.func = defInst
248
249    def defineInst(self, parser, name, args, lineno):
250        parser.updateExportContext()
251        context = parser.exportContext.copy()
252        if len(name):
253            Name = name[0].upper()
254            if len(name) > 1:
255                Name += name[1:]
256        context.update({ 'name' : name, 'Name' : Name })
257        try:
258            vars = self.func(self.user_code, context, *args[0], **args[1])
259        except Exception, exc:
260            if debug:
261                raise
262            error(lineno, 'error defining "%s": %s.' % (name, exc))
263        for k in vars.keys():
264            if k not in ('header_output', 'decoder_output',
265                         'exec_output', 'decode_block'):
266                del vars[k]
267        return GenCode(parser, **vars)
268
269# Special null format to catch an implicit-format instruction
270# definition outside of any format block.
271class NoFormat(object):
272    def __init__(self):
273        self.defaultInst = ''
274
275    def defineInst(self, parser, name, args, lineno):
276        error(lineno,
277              'instruction definition "%s" with no active format!' % name)
278
279###############
280# GenCode class
281#
282# The GenCode class encapsulates generated code destined for various
283# output files.  The header_output and decoder_output attributes are
284# strings containing code destined for decoder.hh and decoder.cc
285# respectively.  The decode_block attribute contains code to be
286# incorporated in the decode function itself (that will also end up in
287# decoder.cc).  The exec_output attribute is a dictionary with a key
288# for each CPU model name; the value associated with a particular key
289# is the string of code for that CPU model's exec.cc file.  The
290# has_decode_default attribute is used in the decode block to allow
291# explicit default clauses to override default default clauses.
292
293class GenCode(object):
294    # Constructor.  At this point we substitute out all CPU-specific
295    # symbols.  For the exec output, these go into the per-model
296    # dictionary.  For all other output types they get collapsed into
297    # a single string.
298    def __init__(self, parser,
299                 header_output = '', decoder_output = '', exec_output = '',
300                 decode_block = '', has_decode_default = False):
301        self.parser = parser
302        self.header_output = parser.expandCpuSymbolsToString(header_output)
303        self.decoder_output = parser.expandCpuSymbolsToString(decoder_output)
304        self.exec_output = exec_output
305        self.decode_block = decode_block
306        self.has_decode_default = has_decode_default
307
308    # Write these code chunks out to the filesystem.  They will be properly
309    # interwoven by the write_top_level_files().
310    def emit(self):
311        if self.header_output:
312            self.parser.get_file('header').write(self.header_output)
313        if self.decoder_output:
314            self.parser.get_file('decoder').write(self.decoder_output)
315        if self.exec_output:
316            self.parser.get_file('exec').write(self.exec_output)
317        if self.decode_block:
318            self.parser.get_file('decode_block').write(self.decode_block)
319
320    # Override '+' operator: generate a new GenCode object that
321    # concatenates all the individual strings in the operands.
322    def __add__(self, other):
323        return GenCode(self.parser,
324                       self.header_output + other.header_output,
325                       self.decoder_output + other.decoder_output,
326                       self.exec_output + other.exec_output,
327                       self.decode_block + other.decode_block,
328                       self.has_decode_default or other.has_decode_default)
329
330    # Prepend a string (typically a comment) to all the strings.
331    def prepend_all(self, pre):
332        self.header_output = pre + self.header_output
333        self.decoder_output  = pre + self.decoder_output
334        self.decode_block = pre + self.decode_block
335        self.exec_output  = pre + self.exec_output
336
337    # Wrap the decode block in a pair of strings (e.g., 'case foo:'
338    # and 'break;').  Used to build the big nested switch statement.
339    def wrap_decode_block(self, pre, post = ''):
340        self.decode_block = pre + indent(self.decode_block) + post
341
342#####################################################################
343#
344#                      Bitfield Operator Support
345#
346#####################################################################
347
348bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
349
350bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
351bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
352
353def substBitOps(code):
354    # first convert single-bit selectors to two-index form
355    # i.e., <n> --> <n:n>
356    code = bitOp1ArgRE.sub(r'<\1:\1>', code)
357    # simple case: selector applied to ID (name)
358    # i.e., foo<a:b> --> bits(foo, a, b)
359    code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
360    # if selector is applied to expression (ending in ')'),
361    # we need to search backward for matching '('
362    match = bitOpExprRE.search(code)
363    while match:
364        exprEnd = match.start()
365        here = exprEnd - 1
366        nestLevel = 1
367        while nestLevel > 0:
368            if code[here] == '(':
369                nestLevel -= 1
370            elif code[here] == ')':
371                nestLevel += 1
372            here -= 1
373            if here < 0:
374                sys.exit("Didn't find '('!")
375        exprStart = here+1
376        newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
377                                         match.group(1), match.group(2))
378        code = code[:exprStart] + newExpr + code[match.end():]
379        match = bitOpExprRE.search(code)
380    return code
381
382
383#####################################################################
384#
385#                             Code Parser
386#
387# The remaining code is the support for automatically extracting
388# instruction characteristics from pseudocode.
389#
390#####################################################################
391
392# Force the argument to be a list.  Useful for flags, where a caller
393# can specify a singleton flag or a list of flags.  Also usful for
394# converting tuples to lists so they can be modified.
395def makeList(arg):
396    if isinstance(arg, list):
397        return arg
398    elif isinstance(arg, tuple):
399        return list(arg)
400    elif not arg:
401        return []
402    else:
403        return [ arg ]
404
405class Operand(object):
406    '''Base class for operand descriptors.  An instance of this class
407    (or actually a class derived from this one) represents a specific
408    operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
409    derived classes encapsulates the traits of a particular operand
410    type (e.g., "32-bit integer register").'''
411
412    def buildReadCode(self, func = None):
413        subst_dict = {"name": self.base_name,
414                      "func": func,
415                      "reg_idx": self.reg_spec,
416                      "ctype": self.ctype}
417        if hasattr(self, 'src_reg_idx'):
418            subst_dict['op_idx'] = self.src_reg_idx
419        code = self.read_code % subst_dict
420        return '%s = %s;\n' % (self.base_name, code)
421
422    def buildWriteCode(self, func = None):
423        subst_dict = {"name": self.base_name,
424                      "func": func,
425                      "reg_idx": self.reg_spec,
426                      "ctype": self.ctype,
427                      "final_val": self.base_name}
428        if hasattr(self, 'dest_reg_idx'):
429            subst_dict['op_idx'] = self.dest_reg_idx
430        code = self.write_code % subst_dict
431        return '''
432        {
433            %s final_val = %s;
434            %s;
435            if (traceData) { traceData->setData(final_val); }
436        }''' % (self.dflt_ctype, self.base_name, code)
437
438    def __init__(self, parser, full_name, ext, is_src, is_dest):
439        self.full_name = full_name
440        self.ext = ext
441        self.is_src = is_src
442        self.is_dest = is_dest
443        # The 'effective extension' (eff_ext) is either the actual
444        # extension, if one was explicitly provided, or the default.
445        if ext:
446            self.eff_ext = ext
447        elif hasattr(self, 'dflt_ext'):
448            self.eff_ext = self.dflt_ext
449
450        if hasattr(self, 'eff_ext'):
451            self.ctype = parser.operandTypeMap[self.eff_ext]
452
453    # Finalize additional fields (primarily code fields).  This step
454    # is done separately since some of these fields may depend on the
455    # register index enumeration that hasn't been performed yet at the
456    # time of __init__(). The register index enumeration is affected
457    # by predicated register reads/writes. Hence, we forward the flags
458    # that indicate whether or not predication is in use.
459    def finalize(self, predRead, predWrite):
460        self.flags = self.getFlags()
461        self.constructor = self.makeConstructor(predRead, predWrite)
462        self.op_decl = self.makeDecl()
463
464        if self.is_src:
465            self.op_rd = self.makeRead(predRead)
466            self.op_src_decl = self.makeDecl()
467        else:
468            self.op_rd = ''
469            self.op_src_decl = ''
470
471        if self.is_dest:
472            self.op_wb = self.makeWrite(predWrite)
473            self.op_dest_decl = self.makeDecl()
474        else:
475            self.op_wb = ''
476            self.op_dest_decl = ''
477
478    def isMem(self):
479        return 0
480
481    def isReg(self):
482        return 0
483
484    def isFloatReg(self):
485        return 0
486
487    def isIntReg(self):
488        return 0
489
490    def isCCReg(self):
491        return 0
492
493    def isControlReg(self):
494        return 0
495
496    def isPCState(self):
497        return 0
498
499    def isPCPart(self):
500        return self.isPCState() and self.reg_spec
501
502    def hasReadPred(self):
503        return self.read_predicate != None
504
505    def hasWritePred(self):
506        return self.write_predicate != None
507
508    def getFlags(self):
509        # note the empty slice '[:]' gives us a copy of self.flags[0]
510        # instead of a reference to it
511        my_flags = self.flags[0][:]
512        if self.is_src:
513            my_flags += self.flags[1]
514        if self.is_dest:
515            my_flags += self.flags[2]
516        return my_flags
517
518    def makeDecl(self):
519        # Note that initializations in the declarations are solely
520        # to avoid 'uninitialized variable' errors from the compiler.
521        return self.ctype + ' ' + self.base_name + ' = 0;\n';
522
523class IntRegOperand(Operand):
524    def isReg(self):
525        return 1
526
527    def isIntReg(self):
528        return 1
529
530    def makeConstructor(self, predRead, predWrite):
531        c_src = ''
532        c_dest = ''
533
534        if self.is_src:
535            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s;' % (self.reg_spec)
536            if self.hasReadPred():
537                c_src = '\n\tif (%s) {%s\n\t}' % \
538                        (self.read_predicate, c_src)
539
540        if self.is_dest:
541            c_dest = '\n\t_destRegIdx[_numDestRegs++] = %s;' % \
542                    (self.reg_spec)
543            c_dest += '\n\t_numIntDestRegs++;'
544            if self.hasWritePred():
545                c_dest = '\n\tif (%s) {%s\n\t}' % \
546                         (self.write_predicate, c_dest)
547
548        return c_src + c_dest
549
550    def makeRead(self, predRead):
551        if (self.ctype == 'float' or self.ctype == 'double'):
552            error('Attempt to read integer register as FP')
553        if self.read_code != None:
554            return self.buildReadCode('readIntRegOperand')
555
556        int_reg_val = ''
557        if predRead:
558            int_reg_val = 'xc->readIntRegOperand(this, _sourceIndex++)'
559            if self.hasReadPred():
560                int_reg_val = '(%s) ? %s : 0' % \
561                              (self.read_predicate, int_reg_val)
562        else:
563            int_reg_val = 'xc->readIntRegOperand(this, %d)' % self.src_reg_idx
564
565        return '%s = %s;\n' % (self.base_name, int_reg_val)
566
567    def makeWrite(self, predWrite):
568        if (self.ctype == 'float' or self.ctype == 'double'):
569            error('Attempt to write integer register as FP')
570        if self.write_code != None:
571            return self.buildWriteCode('setIntRegOperand')
572
573        if predWrite:
574            wp = 'true'
575            if self.hasWritePred():
576                wp = self.write_predicate
577
578            wcond = 'if (%s)' % (wp)
579            windex = '_destIndex++'
580        else:
581            wcond = ''
582            windex = '%d' % self.dest_reg_idx
583
584        wb = '''
585        %s
586        {
587            %s final_val = %s;
588            xc->setIntRegOperand(this, %s, final_val);\n
589            if (traceData) { traceData->setData(final_val); }
590        }''' % (wcond, self.ctype, self.base_name, windex)
591
592        return wb
593
594class FloatRegOperand(Operand):
595    def isReg(self):
596        return 1
597
598    def isFloatReg(self):
599        return 1
600
601    def makeConstructor(self, predRead, predWrite):
602        c_src = ''
603        c_dest = ''
604
605        if self.is_src:
606            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + FP_Reg_Base;' % \
607                    (self.reg_spec)
608
609        if self.is_dest:
610            c_dest = \
611              '\n\t_destRegIdx[_numDestRegs++] = %s + FP_Reg_Base;' % \
612              (self.reg_spec)
613            c_dest += '\n\t_numFPDestRegs++;'
614
615        return c_src + c_dest
616
617    def makeRead(self, predRead):
618        bit_select = 0
619        if (self.ctype == 'float' or self.ctype == 'double'):
620            func = 'readFloatRegOperand'
621        else:
622            func = 'readFloatRegOperandBits'
623        if self.read_code != None:
624            return self.buildReadCode(func)
625
626        if predRead:
627            rindex = '_sourceIndex++'
628        else:
629            rindex = '%d' % self.src_reg_idx
630
631        return '%s = xc->%s(this, %s);\n' % \
632            (self.base_name, func, rindex)
633
634    def makeWrite(self, predWrite):
635        if (self.ctype == 'float' or self.ctype == 'double'):
636            func = 'setFloatRegOperand'
637        else:
638            func = 'setFloatRegOperandBits'
639        if self.write_code != None:
640            return self.buildWriteCode(func)
641
642        if predWrite:
643            wp = '_destIndex++'
644        else:
645            wp = '%d' % self.dest_reg_idx
646        wp = 'xc->%s(this, %s, final_val);' % (func, wp)
647
648        wb = '''
649        {
650            %s final_val = %s;
651            %s\n
652            if (traceData) { traceData->setData(final_val); }
653        }''' % (self.ctype, self.base_name, wp)
654        return wb
655
656class CCRegOperand(Operand):
657    def isReg(self):
658        return 1
659
660    def isCCReg(self):
661        return 1
662
663    def makeConstructor(self, predRead, predWrite):
664        c_src = ''
665        c_dest = ''
666
667        if self.is_src:
668            c_src = '\n\t_srcRegIdx[_numSrcRegs++] = %s + CC_Reg_Base;' % \
669                     (self.reg_spec)
670            if self.hasReadPred():
671                c_src = '\n\tif (%s) {%s\n\t}' % \
672                        (self.read_predicate, c_src)
673
674        if self.is_dest:
675            c_dest = \
676              '\n\t_destRegIdx[_numDestRegs++] = %s + CC_Reg_Base;' % \
677              (self.reg_spec)
678            c_dest += '\n\t_numCCDestRegs++;'
679            if self.hasWritePred():
680                c_dest = '\n\tif (%s) {%s\n\t}' % \
681                         (self.write_predicate, c_dest)
682
683        return c_src + c_dest
684
685    def makeRead(self, predRead):
686        if (self.ctype == 'float' or self.ctype == 'double'):
687            error('Attempt to read condition-code register as FP')
688        if self.read_code != None:
689            return self.buildReadCode('readCCRegOperand')
690
691        int_reg_val = ''
692        if predRead:
693            int_reg_val = 'xc->readCCRegOperand(this, _sourceIndex++)'
694            if self.hasReadPred():
695                int_reg_val = '(%s) ? %s : 0' % \
696                              (self.read_predicate, int_reg_val)
697        else:
698            int_reg_val = 'xc->readCCRegOperand(this, %d)' % self.src_reg_idx
699
700        return '%s = %s;\n' % (self.base_name, int_reg_val)
701
702    def makeWrite(self, predWrite):
703        if (self.ctype == 'float' or self.ctype == 'double'):
704            error('Attempt to write condition-code register as FP')
705        if self.write_code != None:
706            return self.buildWriteCode('setCCRegOperand')
707
708        if predWrite:
709            wp = 'true'
710            if self.hasWritePred():
711                wp = self.write_predicate
712
713            wcond = 'if (%s)' % (wp)
714            windex = '_destIndex++'
715        else:
716            wcond = ''
717            windex = '%d' % self.dest_reg_idx
718
719        wb = '''
720        %s
721        {
722            %s final_val = %s;
723            xc->setCCRegOperand(this, %s, final_val);\n
724            if (traceData) { traceData->setData(final_val); }
725        }''' % (wcond, self.ctype, self.base_name, windex)
726
727        return wb
728
729class ControlRegOperand(Operand):
730    def isReg(self):
731        return 1
732
733    def isControlReg(self):
734        return 1
735
736    def makeConstructor(self, predRead, predWrite):
737        c_src = ''
738        c_dest = ''
739
740        if self.is_src:
741            c_src = \
742              '\n\t_srcRegIdx[_numSrcRegs++] = %s + Misc_Reg_Base;' % \
743              (self.reg_spec)
744
745        if self.is_dest:
746            c_dest = \
747              '\n\t_destRegIdx[_numDestRegs++] = %s + Misc_Reg_Base;' % \
748              (self.reg_spec)
749
750        return c_src + c_dest
751
752    def makeRead(self, predRead):
753        bit_select = 0
754        if (self.ctype == 'float' or self.ctype == 'double'):
755            error('Attempt to read control register as FP')
756        if self.read_code != None:
757            return self.buildReadCode('readMiscRegOperand')
758
759        if predRead:
760            rindex = '_sourceIndex++'
761        else:
762            rindex = '%d' % self.src_reg_idx
763
764        return '%s = xc->readMiscRegOperand(this, %s);\n' % \
765            (self.base_name, rindex)
766
767    def makeWrite(self, predWrite):
768        if (self.ctype == 'float' or self.ctype == 'double'):
769            error('Attempt to write control register as FP')
770        if self.write_code != None:
771            return self.buildWriteCode('setMiscRegOperand')
772
773        if predWrite:
774            windex = '_destIndex++'
775        else:
776            windex = '%d' % self.dest_reg_idx
777
778        wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
779             (windex, self.base_name)
780        wb += 'if (traceData) { traceData->setData(%s); }' % \
781              self.base_name
782
783        return wb
784
785class MemOperand(Operand):
786    def isMem(self):
787        return 1
788
789    def makeConstructor(self, predRead, predWrite):
790        return ''
791
792    def makeDecl(self):
793        # Declare memory data variable.
794        return '%s %s;\n' % (self.ctype, self.base_name)
795
796    def makeRead(self, predRead):
797        if self.read_code != None:
798            return self.buildReadCode()
799        return ''
800
801    def makeWrite(self, predWrite):
802        if self.write_code != None:
803            return self.buildWriteCode()
804        return ''
805
806class PCStateOperand(Operand):
807    def makeConstructor(self, predRead, predWrite):
808        return ''
809
810    def makeRead(self, predRead):
811        if self.reg_spec:
812            # A component of the PC state.
813            return '%s = __parserAutoPCState.%s();\n' % \
814                (self.base_name, self.reg_spec)
815        else:
816            # The whole PC state itself.
817            return '%s = xc->pcState();\n' % self.base_name
818
819    def makeWrite(self, predWrite):
820        if self.reg_spec:
821            # A component of the PC state.
822            return '__parserAutoPCState.%s(%s);\n' % \
823                (self.reg_spec, self.base_name)
824        else:
825            # The whole PC state itself.
826            return 'xc->pcState(%s);\n' % self.base_name
827
828    def makeDecl(self):
829        ctype = 'TheISA::PCState'
830        if self.isPCPart():
831            ctype = self.ctype
832        # Note that initializations in the declarations are solely
833        # to avoid 'uninitialized variable' errors from the compiler.
834        return '%s %s = 0;\n' % (ctype, self.base_name)
835
836    def isPCState(self):
837        return 1
838
839class OperandList(object):
840    '''Find all the operands in the given code block.  Returns an operand
841    descriptor list (instance of class OperandList).'''
842    def __init__(self, parser, code):
843        self.items = []
844        self.bases = {}
845        # delete strings and comments so we don't match on operands inside
846        for regEx in (stringRE, commentRE):
847            code = regEx.sub('', code)
848        # search for operands
849        next_pos = 0
850        while 1:
851            match = parser.operandsRE.search(code, next_pos)
852            if not match:
853                # no more matches: we're done
854                break
855            op = match.groups()
856            # regexp groups are operand full name, base, and extension
857            (op_full, op_base, op_ext) = op
858            # if the token following the operand is an assignment, this is
859            # a destination (LHS), else it's a source (RHS)
860            is_dest = (assignRE.match(code, match.end()) != None)
861            is_src = not is_dest
862            # see if we've already seen this one
863            op_desc = self.find_base(op_base)
864            if op_desc:
865                if op_desc.ext != op_ext:
866                    error('Inconsistent extensions for operand %s' % \
867                          op_base)
868                op_desc.is_src = op_desc.is_src or is_src
869                op_desc.is_dest = op_desc.is_dest or is_dest
870            else:
871                # new operand: create new descriptor
872                op_desc = parser.operandNameMap[op_base](parser,
873                    op_full, op_ext, is_src, is_dest)
874                self.append(op_desc)
875            # start next search after end of current match
876            next_pos = match.end()
877        self.sort()
878        # enumerate source & dest register operands... used in building
879        # constructor later
880        self.numSrcRegs = 0
881        self.numDestRegs = 0
882        self.numFPDestRegs = 0
883        self.numIntDestRegs = 0
884        self.numCCDestRegs = 0
885        self.numMiscDestRegs = 0
886        self.memOperand = None
887
888        # Flags to keep track if one or more operands are to be read/written
889        # conditionally.
890        self.predRead = False
891        self.predWrite = False
892
893        for op_desc in self.items:
894            if op_desc.isReg():
895                if op_desc.is_src:
896                    op_desc.src_reg_idx = self.numSrcRegs
897                    self.numSrcRegs += 1
898                if op_desc.is_dest:
899                    op_desc.dest_reg_idx = self.numDestRegs
900                    self.numDestRegs += 1
901                    if op_desc.isFloatReg():
902                        self.numFPDestRegs += 1
903                    elif op_desc.isIntReg():
904                        self.numIntDestRegs += 1
905                    elif op_desc.isCCReg():
906                        self.numCCDestRegs += 1
907                    elif op_desc.isControlReg():
908                        self.numMiscDestRegs += 1
909            elif op_desc.isMem():
910                if self.memOperand:
911                    error("Code block has more than one memory operand.")
912                self.memOperand = op_desc
913
914            # Check if this operand has read/write predication. If true, then
915            # the microop will dynamically index source/dest registers.
916            self.predRead = self.predRead or op_desc.hasReadPred()
917            self.predWrite = self.predWrite or op_desc.hasWritePred()
918
919        if parser.maxInstSrcRegs < self.numSrcRegs:
920            parser.maxInstSrcRegs = self.numSrcRegs
921        if parser.maxInstDestRegs < self.numDestRegs:
922            parser.maxInstDestRegs = self.numDestRegs
923        if parser.maxMiscDestRegs < self.numMiscDestRegs:
924            parser.maxMiscDestRegs = self.numMiscDestRegs
925
926        # now make a final pass to finalize op_desc fields that may depend
927        # on the register enumeration
928        for op_desc in self.items:
929            op_desc.finalize(self.predRead, self.predWrite)
930
931    def __len__(self):
932        return len(self.items)
933
934    def __getitem__(self, index):
935        return self.items[index]
936
937    def append(self, op_desc):
938        self.items.append(op_desc)
939        self.bases[op_desc.base_name] = op_desc
940
941    def find_base(self, base_name):
942        # like self.bases[base_name], but returns None if not found
943        # (rather than raising exception)
944        return self.bases.get(base_name)
945
946    # internal helper function for concat[Some]Attr{Strings|Lists}
947    def __internalConcatAttrs(self, attr_name, filter, result):
948        for op_desc in self.items:
949            if filter(op_desc):
950                result += getattr(op_desc, attr_name)
951        return result
952
953    # return a single string that is the concatenation of the (string)
954    # values of the specified attribute for all operands
955    def concatAttrStrings(self, attr_name):
956        return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
957
958    # like concatAttrStrings, but only include the values for the operands
959    # for which the provided filter function returns true
960    def concatSomeAttrStrings(self, filter, attr_name):
961        return self.__internalConcatAttrs(attr_name, filter, '')
962
963    # return a single list that is the concatenation of the (list)
964    # values of the specified attribute for all operands
965    def concatAttrLists(self, attr_name):
966        return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
967
968    # like concatAttrLists, but only include the values for the operands
969    # for which the provided filter function returns true
970    def concatSomeAttrLists(self, filter, attr_name):
971        return self.__internalConcatAttrs(attr_name, filter, [])
972
973    def sort(self):
974        self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
975
976class SubOperandList(OperandList):
977    '''Find all the operands in the given code block.  Returns an operand
978    descriptor list (instance of class OperandList).'''
979    def __init__(self, parser, code, master_list):
980        self.items = []
981        self.bases = {}
982        # delete strings and comments so we don't match on operands inside
983        for regEx in (stringRE, commentRE):
984            code = regEx.sub('', code)
985        # search for operands
986        next_pos = 0
987        while 1:
988            match = parser.operandsRE.search(code, next_pos)
989            if not match:
990                # no more matches: we're done
991                break
992            op = match.groups()
993            # regexp groups are operand full name, base, and extension
994            (op_full, op_base, op_ext) = op
995            # find this op in the master list
996            op_desc = master_list.find_base(op_base)
997            if not op_desc:
998                error('Found operand %s which is not in the master list!'
999                      % op_base)
1000            else:
1001                # See if we've already found this operand
1002                op_desc = self.find_base(op_base)
1003                if not op_desc:
1004                    # if not, add a reference to it to this sub list
1005                    self.append(master_list.bases[op_base])
1006
1007            # start next search after end of current match
1008            next_pos = match.end()
1009        self.sort()
1010        self.memOperand = None
1011        # Whether the whole PC needs to be read so parts of it can be accessed
1012        self.readPC = False
1013        # Whether the whole PC needs to be written after parts of it were
1014        # changed
1015        self.setPC = False
1016        # Whether this instruction manipulates the whole PC or parts of it.
1017        # Mixing the two is a bad idea and flagged as an error.
1018        self.pcPart = None
1019
1020        # Flags to keep track if one or more operands are to be read/written
1021        # conditionally.
1022        self.predRead = False
1023        self.predWrite = False
1024
1025        for op_desc in self.items:
1026            if op_desc.isPCPart():
1027                self.readPC = True
1028                if op_desc.is_dest:
1029                    self.setPC = True
1030
1031            if op_desc.isPCState():
1032                if self.pcPart is not None:
1033                    if self.pcPart and not op_desc.isPCPart() or \
1034                            not self.pcPart and op_desc.isPCPart():
1035                        error("Mixed whole and partial PC state operands.")
1036                self.pcPart = op_desc.isPCPart()
1037
1038            if op_desc.isMem():
1039                if self.memOperand:
1040                    error("Code block has more than one memory operand.")
1041                self.memOperand = op_desc
1042
1043            # Check if this operand has read/write predication. If true, then
1044            # the microop will dynamically index source/dest registers.
1045            self.predRead = self.predRead or op_desc.hasReadPred()
1046            self.predWrite = self.predWrite or op_desc.hasWritePred()
1047
1048# Regular expression object to match C++ strings
1049stringRE = re.compile(r'"([^"\\]|\\.)*"')
1050
1051# Regular expression object to match C++ comments
1052# (used in findOperands())
1053commentRE = re.compile(r'(^)?[^\S\n]*/(?:\*(.*?)\*/[^\S\n]*|/[^\n]*)($)?',
1054        re.DOTALL | re.MULTILINE)
1055
1056# Regular expression object to match assignment statements (used in
1057# findOperands()).  If the code immediately following the first
1058# appearance of the operand matches this regex, then the operand
1059# appears to be on the LHS of an assignment, and is thus a
1060# destination.  basically we're looking for an '=' that's not '=='.
1061# The heinous tangle before that handles the case where the operand
1062# has an array subscript.
1063assignRE = re.compile(r'(\[[^\]]+\])?\s*=(?!=)', re.MULTILINE)
1064
1065def makeFlagConstructor(flag_list):
1066    if len(flag_list) == 0:
1067        return ''
1068    # filter out repeated flags
1069    flag_list.sort()
1070    i = 1
1071    while i < len(flag_list):
1072        if flag_list[i] == flag_list[i-1]:
1073            del flag_list[i]
1074        else:
1075            i += 1
1076    pre = '\n\tflags['
1077    post = '] = true;'
1078    code = pre + string.join(flag_list, post + pre) + post
1079    return code
1080
1081# Assume all instruction flags are of the form 'IsFoo'
1082instFlagRE = re.compile(r'Is.*')
1083
1084# OpClass constants end in 'Op' except No_OpClass
1085opClassRE = re.compile(r'.*Op|No_OpClass')
1086
1087class InstObjParams(object):
1088    def __init__(self, parser, mnem, class_name, base_class = '',
1089                 snippets = {}, opt_args = []):
1090        self.mnemonic = mnem
1091        self.class_name = class_name
1092        self.base_class = base_class
1093        if not isinstance(snippets, dict):
1094            snippets = {'code' : snippets}
1095        compositeCode = ' '.join(map(str, snippets.values()))
1096        self.snippets = snippets
1097
1098        self.operands = OperandList(parser, compositeCode)
1099
1100        # The header of the constructor declares the variables to be used
1101        # in the body of the constructor.
1102        header = ''
1103        header += '\n\t_numSrcRegs = 0;'
1104        header += '\n\t_numDestRegs = 0;'
1105        header += '\n\t_numFPDestRegs = 0;'
1106        header += '\n\t_numIntDestRegs = 0;'
1107        header += '\n\t_numCCDestRegs = 0;'
1108
1109        self.constructor = header + \
1110                           self.operands.concatAttrStrings('constructor')
1111
1112        self.flags = self.operands.concatAttrLists('flags')
1113
1114        self.op_class = None
1115
1116        # Optional arguments are assumed to be either StaticInst flags
1117        # or an OpClass value.  To avoid having to import a complete
1118        # list of these values to match against, we do it ad-hoc
1119        # with regexps.
1120        for oa in opt_args:
1121            if instFlagRE.match(oa):
1122                self.flags.append(oa)
1123            elif opClassRE.match(oa):
1124                self.op_class = oa
1125            else:
1126                error('InstObjParams: optional arg "%s" not recognized '
1127                      'as StaticInst::Flag or OpClass.' % oa)
1128
1129        # Make a basic guess on the operand class if not set.
1130        # These are good enough for most cases.
1131        if not self.op_class:
1132            if 'IsStore' in self.flags:
1133                self.op_class = 'MemWriteOp'
1134            elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
1135                self.op_class = 'MemReadOp'
1136            elif 'IsFloating' in self.flags:
1137                self.op_class = 'FloatAddOp'
1138            else:
1139                self.op_class = 'IntAluOp'
1140
1141        # add flag initialization to contructor here to include
1142        # any flags added via opt_args
1143        self.constructor += makeFlagConstructor(self.flags)
1144
1145        # if 'IsFloating' is set, add call to the FP enable check
1146        # function (which should be provided by isa_desc via a declare)
1147        if 'IsFloating' in self.flags:
1148            self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
1149        else:
1150            self.fp_enable_check = ''
1151
1152##############
1153# Stack: a simple stack object.  Used for both formats (formatStack)
1154# and default cases (defaultStack).  Simply wraps a list to give more
1155# stack-like syntax and enable initialization with an argument list
1156# (as opposed to an argument that's a list).
1157
1158class Stack(list):
1159    def __init__(self, *items):
1160        list.__init__(self, items)
1161
1162    def push(self, item):
1163        self.append(item);
1164
1165    def top(self):
1166        return self[-1]
1167
1168# Format a file include stack backtrace as a string
1169def backtrace(filename_stack):
1170    fmt = "In file included from %s:"
1171    return "\n".join([fmt % f for f in filename_stack])
1172
1173
1174#######################
1175#
1176# LineTracker: track filenames along with line numbers in PLY lineno fields
1177#     PLY explicitly doesn't do anything with 'lineno' except propagate
1178#     it.  This class lets us tie filenames with the line numbers with a
1179#     minimum of disruption to existing increment code.
1180#
1181
1182class LineTracker(object):
1183    def __init__(self, filename, lineno=1):
1184        self.filename = filename
1185        self.lineno = lineno
1186
1187    # Overload '+=' for increments.  We need to create a new object on
1188    # each update else every token ends up referencing the same
1189    # constantly incrementing instance.
1190    def __iadd__(self, incr):
1191        return LineTracker(self.filename, self.lineno + incr)
1192
1193    def __str__(self):
1194        return "%s:%d" % (self.filename, self.lineno)
1195
1196    # In case there are places where someone really expects a number
1197    def __int__(self):
1198        return self.lineno
1199
1200
1201#######################
1202#
1203# ISA Parser
1204#   parses ISA DSL and emits C++ headers and source
1205#
1206
1207class ISAParser(Grammar):
1208    class CpuModel(object):
1209        def __init__(self, name, filename, includes, strings):
1210            self.name = name
1211            self.filename = filename
1212            self.includes = includes
1213            self.strings = strings
1214
1215    def __init__(self, output_dir):
1216        super(ISAParser, self).__init__()
1217        self.output_dir = output_dir
1218
1219        self.filename = None # for output file watermarking/scaremongering
1220
1221        self.cpuModels = [
1222            ISAParser.CpuModel('ExecContext',
1223                               'generic_cpu_exec.cc',
1224                               '#include "cpu/exec_context.hh"',
1225                               { "CPU_exec_context" : "ExecContext" }),
1226            ]
1227
1228        # variable to hold templates
1229        self.templateMap = {}
1230
1231        # This dictionary maps format name strings to Format objects.
1232        self.formatMap = {}
1233
1234        # Track open files and, if applicable, how many chunks it has been
1235        # split into so far.
1236        self.files = {}
1237        self.splits = {}
1238
1239        # isa_name / namespace identifier from namespace declaration.
1240        # before the namespace declaration, None.
1241        self.isa_name = None
1242        self.namespace = None
1243
1244        # The format stack.
1245        self.formatStack = Stack(NoFormat())
1246
1247        # The default case stack.
1248        self.defaultStack = Stack(None)
1249
1250        # Stack that tracks current file and line number.  Each
1251        # element is a tuple (filename, lineno) that records the
1252        # *current* filename and the line number in the *previous*
1253        # file where it was included.
1254        self.fileNameStack = Stack()
1255
1256        symbols = ('makeList', 're', 'string')
1257        self.exportContext = dict([(s, eval(s)) for s in symbols])
1258
1259        self.maxInstSrcRegs = 0
1260        self.maxInstDestRegs = 0
1261        self.maxMiscDestRegs = 0
1262
1263    def __getitem__(self, i):    # Allow object (self) to be
1264        return getattr(self, i)  # passed to %-substitutions
1265
1266    # Change the file suffix of a base filename:
1267    #   (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
1268    def suffixize(self, s, sec):
1269        extn = re.compile('(\.[^\.]+)$') # isolate extension
1270        if self.namespace:
1271            return extn.sub(r'-ns\1.inc', s) # insert some text on either side
1272        else:
1273            return extn.sub(r'-g\1.inc', s)
1274
1275    # Get the file object for emitting code into the specified section
1276    # (header, decoder, exec, decode_block).
1277    def get_file(self, section):
1278        if section == 'decode_block':
1279            filename = 'decode-method.cc.inc'
1280        else:
1281            if section == 'header':
1282                file = 'decoder.hh'
1283            else:
1284                file = '%s.cc' % section
1285            filename = self.suffixize(file, section)
1286        try:
1287            return self.files[filename]
1288        except KeyError: pass
1289
1290        f = self.open(filename)
1291        self.files[filename] = f
1292
1293        # The splittable files are the ones with many independent
1294        # per-instruction functions - the decoder's instruction constructors
1295        # and the instruction execution (execute()) methods. These both have
1296        # the suffix -ns.cc.inc, meaning they are within the namespace part
1297        # of the ISA, contain object-emitting C++ source, and are included
1298        # into other top-level files. These are the files that need special
1299        # #define's to allow parts of them to be compiled separately. Rather
1300        # than splitting the emissions into separate files, the monolithic
1301        # output of the ISA parser is maintained, but the value (or lack
1302        # thereof) of the __SPLIT definition during C preprocessing will
1303        # select the different chunks. If no 'split' directives are used,
1304        # the cpp emissions have no effect.
1305        if re.search('-ns.cc.inc$', filename):
1306            print >>f, '#if !defined(__SPLIT) || (__SPLIT == 1)'
1307            self.splits[f] = 1
1308        # ensure requisite #include's
1309        elif filename in ['decoder-g.cc.inc', 'exec-g.cc.inc']:
1310            print >>f, '#include "decoder.hh"'
1311        elif filename == 'decoder-g.hh.inc':
1312            print >>f, '#include "base/bitfield.hh"'
1313
1314        return f
1315
1316    # Weave together the parts of the different output sections by
1317    # #include'ing them into some very short top-level .cc/.hh files.
1318    # These small files make it much clearer how this tool works, since
1319    # you directly see the chunks emitted as files that are #include'd.
1320    def write_top_level_files(self):
1321        dep = self.open('inc.d', bare=True)
1322
1323        # decoder header - everything depends on this
1324        file = 'decoder.hh'
1325        with self.open(file) as f:
1326            inc = []
1327
1328            fn = 'decoder-g.hh.inc'
1329            assert(fn in self.files)
1330            f.write('#include "%s"\n' % fn)
1331            inc.append(fn)
1332
1333            fn = 'decoder-ns.hh.inc'
1334            assert(fn in self.files)
1335            f.write('namespace %s {\n#include "%s"\n}\n'
1336                    % (self.namespace, fn))
1337            inc.append(fn)
1338
1339            print >>dep, file+':', ' '.join(inc)
1340
1341        # decoder method - cannot be split
1342        file = 'decoder.cc'
1343        with self.open(file) as f:
1344            inc = []
1345
1346            fn = 'decoder-g.cc.inc'
1347            assert(fn in self.files)
1348            f.write('#include "%s"\n' % fn)
1349            inc.append(fn)
1350
1351            fn = 'decode-method.cc.inc'
1352            # is guaranteed to have been written for parse to complete
1353            f.write('#include "%s"\n' % fn)
1354            inc.append(fn)
1355
1356            inc.append("decoder.hh")
1357            print >>dep, file+':', ' '.join(inc)
1358
1359        extn = re.compile('(\.[^\.]+)$')
1360
1361        # instruction constructors
1362        splits = self.splits[self.get_file('decoder')]
1363        file_ = 'inst-constrs.cc'
1364        for i in range(1, splits+1):
1365            if splits > 1:
1366                file = extn.sub(r'-%d\1' % i, file_)
1367            else:
1368                file = file_
1369            with self.open(file) as f:
1370                inc = []
1371
1372                fn = 'decoder-g.cc.inc'
1373                assert(fn in self.files)
1374                f.write('#include "%s"\n' % fn)
1375                inc.append(fn)
1376
1377                fn = 'decoder-ns.cc.inc'
1378                assert(fn in self.files)
1379                print >>f, 'namespace %s {' % self.namespace
1380                if splits > 1:
1381                    print >>f, '#define __SPLIT %u' % i
1382                print >>f, '#include "%s"' % fn
1383                print >>f, '}'
1384                inc.append(fn)
1385
1386                inc.append("decoder.hh")
1387                print >>dep, file+':', ' '.join(inc)
1388
1389        # instruction execution per-CPU model
1390        splits = self.splits[self.get_file('exec')]
1391        for cpu in self.cpuModels:
1392            for i in range(1, splits+1):
1393                if splits > 1:
1394                    file = extn.sub(r'_%d\1' % i, cpu.filename)
1395                else:
1396                    file = cpu.filename
1397                with self.open(file) as f:
1398                    inc = []
1399
1400                    fn = 'exec-g.cc.inc'
1401                    assert(fn in self.files)
1402                    f.write('#include "%s"\n' % fn)
1403                    inc.append(fn)
1404
1405                    f.write(cpu.includes+"\n")
1406
1407                    fn = 'exec-ns.cc.inc'
1408                    assert(fn in self.files)
1409                    print >>f, 'namespace %s {' % self.namespace
1410                    print >>f, '#define CPU_EXEC_CONTEXT %s' \
1411                               % cpu.strings['CPU_exec_context']
1412                    if splits > 1:
1413                        print >>f, '#define __SPLIT %u' % i
1414                    print >>f, '#include "%s"' % fn
1415                    print >>f, '}'
1416                    inc.append(fn)
1417
1418                    inc.append("decoder.hh")
1419                    print >>dep, file+':', ' '.join(inc)
1420
1421        # max_inst_regs.hh
1422        self.update('max_inst_regs.hh',
1423                    '''namespace %(namespace)s {
1424    const int MaxInstSrcRegs = %(maxInstSrcRegs)d;
1425    const int MaxInstDestRegs = %(maxInstDestRegs)d;
1426    const int MaxMiscDestRegs = %(maxMiscDestRegs)d;\n}\n''' % self)
1427        print >>dep, 'max_inst_regs.hh:'
1428
1429        dep.close()
1430
1431
1432    scaremonger_template ='''// DO NOT EDIT
1433// This file was automatically generated from an ISA description:
1434//   %(filename)s
1435
1436''';
1437
1438    #####################################################################
1439    #
1440    #                                Lexer
1441    #
1442    # The PLY lexer module takes two things as input:
1443    # - A list of token names (the string list 'tokens')
1444    # - A regular expression describing a match for each token.  The
1445    #   regexp for token FOO can be provided in two ways:
1446    #   - as a string variable named t_FOO
1447    #   - as the doc string for a function named t_FOO.  In this case,
1448    #     the function is also executed, allowing an action to be
1449    #     associated with each token match.
1450    #
1451    #####################################################################
1452
1453    # Reserved words.  These are listed separately as they are matched
1454    # using the same regexp as generic IDs, but distinguished in the
1455    # t_ID() function.  The PLY documentation suggests this approach.
1456    reserved = (
1457        'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
1458        'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
1459        'OUTPUT', 'SIGNED', 'SPLIT', 'TEMPLATE'
1460        )
1461
1462    # List of tokens.  The lex module requires this.
1463    tokens = reserved + (
1464        # identifier
1465        'ID',
1466
1467        # integer literal
1468        'INTLIT',
1469
1470        # string literal
1471        'STRLIT',
1472
1473        # code literal
1474        'CODELIT',
1475
1476        # ( ) [ ] { } < > , ; . : :: *
1477        'LPAREN', 'RPAREN',
1478        'LBRACKET', 'RBRACKET',
1479        'LBRACE', 'RBRACE',
1480        'LESS', 'GREATER', 'EQUALS',
1481        'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
1482        'ASTERISK',
1483
1484        # C preprocessor directives
1485        'CPPDIRECTIVE'
1486
1487    # The following are matched but never returned. commented out to
1488    # suppress PLY warning
1489        # newfile directive
1490    #    'NEWFILE',
1491
1492        # endfile directive
1493    #    'ENDFILE'
1494    )
1495
1496    # Regular expressions for token matching
1497    t_LPAREN           = r'\('
1498    t_RPAREN           = r'\)'
1499    t_LBRACKET         = r'\['
1500    t_RBRACKET         = r'\]'
1501    t_LBRACE           = r'\{'
1502    t_RBRACE           = r'\}'
1503    t_LESS             = r'\<'
1504    t_GREATER          = r'\>'
1505    t_EQUALS           = r'='
1506    t_COMMA            = r','
1507    t_SEMI             = r';'
1508    t_DOT              = r'\.'
1509    t_COLON            = r':'
1510    t_DBLCOLON         = r'::'
1511    t_ASTERISK         = r'\*'
1512
1513    # Identifiers and reserved words
1514    reserved_map = { }
1515    for r in reserved:
1516        reserved_map[r.lower()] = r
1517
1518    def t_ID(self, t):
1519        r'[A-Za-z_]\w*'
1520        t.type = self.reserved_map.get(t.value, 'ID')
1521        return t
1522
1523    # Integer literal
1524    def t_INTLIT(self, t):
1525        r'-?(0x[\da-fA-F]+)|\d+'
1526        try:
1527            t.value = int(t.value,0)
1528        except ValueError:
1529            error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
1530            t.value = 0
1531        return t
1532
1533    # String literal.  Note that these use only single quotes, and
1534    # can span multiple lines.
1535    def t_STRLIT(self, t):
1536        r"(?m)'([^'])+'"
1537        # strip off quotes
1538        t.value = t.value[1:-1]
1539        t.lexer.lineno += t.value.count('\n')
1540        return t
1541
1542
1543    # "Code literal"... like a string literal, but delimiters are
1544    # '{{' and '}}' so they get formatted nicely under emacs c-mode
1545    def t_CODELIT(self, t):
1546        r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
1547        # strip off {{ & }}
1548        t.value = t.value[2:-2]
1549        t.lexer.lineno += t.value.count('\n')
1550        return t
1551
1552    def t_CPPDIRECTIVE(self, t):
1553        r'^\#[^\#].*\n'
1554        t.lexer.lineno += t.value.count('\n')
1555        return t
1556
1557    def t_NEWFILE(self, t):
1558        r'^\#\#newfile\s+"[^"]*"\n'
1559        self.fileNameStack.push(t.lexer.lineno)
1560        t.lexer.lineno = LineTracker(t.value[11:-2])
1561
1562    def t_ENDFILE(self, t):
1563        r'^\#\#endfile\n'
1564        t.lexer.lineno = self.fileNameStack.pop()
1565
1566    #
1567    # The functions t_NEWLINE, t_ignore, and t_error are
1568    # special for the lex module.
1569    #
1570
1571    # Newlines
1572    def t_NEWLINE(self, t):
1573        r'\n+'
1574        t.lexer.lineno += t.value.count('\n')
1575
1576    # Comments
1577    def t_comment(self, t):
1578        r'//.*'
1579
1580    # Completely ignored characters
1581    t_ignore = ' \t\x0c'
1582
1583    # Error handler
1584    def t_error(self, t):
1585        error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
1586        t.skip(1)
1587
1588    #####################################################################
1589    #
1590    #                                Parser
1591    #
1592    # Every function whose name starts with 'p_' defines a grammar
1593    # rule.  The rule is encoded in the function's doc string, while
1594    # the function body provides the action taken when the rule is
1595    # matched.  The argument to each function is a list of the values
1596    # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
1597    # symbols on the RHS.  For tokens, the value is copied from the
1598    # t.value attribute provided by the lexer.  For non-terminals, the
1599    # value is assigned by the producing rule; i.e., the job of the
1600    # grammar rule function is to set the value for the non-terminal
1601    # on the LHS (by assigning to t[0]).
1602    #####################################################################
1603
1604    # The LHS of the first grammar rule is used as the start symbol
1605    # (in this case, 'specification').  Note that this rule enforces
1606    # that there will be exactly one namespace declaration, with 0 or
1607    # more global defs/decls before and after it.  The defs & decls
1608    # before the namespace decl will be outside the namespace; those
1609    # after will be inside.  The decoder function is always inside the
1610    # namespace.
1611    def p_specification(self, t):
1612        'specification : opt_defs_and_outputs top_level_decode_block'
1613
1614        for f in self.splits.iterkeys():
1615            f.write('\n#endif\n')
1616
1617        for f in self.files.itervalues(): # close ALL the files;
1618            f.close() # not doing so can cause compilation to fail
1619
1620        self.write_top_level_files()
1621
1622        t[0] = True
1623
1624    # 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
1625    # output statements. Its productions do the hard work of eventually
1626    # instantiating a GenCode, which are generally emitted (written to disk)
1627    # as soon as possible, except for the decode_block, which has to be
1628    # accumulated into one large function of nested switch/case blocks.
1629    def p_opt_defs_and_outputs_0(self, t):
1630        'opt_defs_and_outputs : empty'
1631
1632    def p_opt_defs_and_outputs_1(self, t):
1633        'opt_defs_and_outputs : defs_and_outputs'
1634
1635    def p_defs_and_outputs_0(self, t):
1636        'defs_and_outputs : def_or_output'
1637
1638    def p_defs_and_outputs_1(self, t):
1639        'defs_and_outputs : defs_and_outputs def_or_output'
1640
1641    # The list of possible definition/output statements.
1642    # They are all processed as they are seen.
1643    def p_def_or_output(self, t):
1644        '''def_or_output : name_decl
1645                         | def_format
1646                         | def_bitfield
1647                         | def_bitfield_struct
1648                         | def_template
1649                         | def_operand_types
1650                         | def_operands
1651                         | output
1652                         | global_let
1653                         | split'''
1654
1655    # Utility function used by both invocations of splitting - explicit
1656    # 'split' keyword and split() function inside "let {{ }};" blocks.
1657    def split(self, sec, write=False):
1658        assert(sec != 'header' and "header cannot be split")
1659
1660        f = self.get_file(sec)
1661        self.splits[f] += 1
1662        s = '\n#endif\n#if __SPLIT == %u\n' % self.splits[f]
1663        if write:
1664            f.write(s)
1665        else:
1666            return s
1667
1668    # split output file to reduce compilation time
1669    def p_split(self, t):
1670        'split : SPLIT output_type SEMI'
1671        assert(self.isa_name and "'split' not allowed before namespace decl")
1672
1673        self.split(t[2], True)
1674
1675    def p_output_type(self, t):
1676        '''output_type : DECODER
1677                       | HEADER
1678                       | EXEC'''
1679        t[0] = t[1]
1680
1681    # ISA name declaration looks like "namespace <foo>;"
1682    def p_name_decl(self, t):
1683        'name_decl : NAMESPACE ID SEMI'
1684        assert(self.isa_name == None and "Only 1 namespace decl permitted")
1685        self.isa_name = t[2]
1686        self.namespace = t[2] + 'Inst'
1687
1688    # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
1689    # directly to the appropriate output section.
1690
1691    # Massage output block by substituting in template definitions and
1692    # bit operators.  We handle '%'s embedded in the string that don't
1693    # indicate template substitutions (or CPU-specific symbols, which
1694    # get handled in GenCode) by doubling them first so that the
1695    # format operation will reduce them back to single '%'s.
1696    def process_output(self, s):
1697        s = self.protectNonSubstPercents(s)
1698        # protects cpu-specific symbols too
1699        s = self.protectCpuSymbols(s)
1700        return substBitOps(s % self.templateMap)
1701
1702    def p_output(self, t):
1703        'output : OUTPUT output_type CODELIT SEMI'
1704        kwargs = { t[2]+'_output' : self.process_output(t[3]) }
1705        GenCode(self, **kwargs).emit()
1706
1707    # global let blocks 'let {{...}}' (Python code blocks) are
1708    # executed directly when seen.  Note that these execute in a
1709    # special variable context 'exportContext' to prevent the code
1710    # from polluting this script's namespace.
1711    def p_global_let(self, t):
1712        'global_let : LET CODELIT SEMI'
1713        def _split(sec):
1714            return self.split(sec)
1715        self.updateExportContext()
1716        self.exportContext["header_output"] = ''
1717        self.exportContext["decoder_output"] = ''
1718        self.exportContext["exec_output"] = ''
1719        self.exportContext["decode_block"] = ''
1720        self.exportContext["split"] = _split
1721        split_setup = '''
1722def wrap(func):
1723    def split(sec):
1724        globals()[sec + '_output'] += func(sec)
1725    return split
1726split = wrap(split)
1727del wrap
1728'''
1729        # This tricky setup (immediately above) allows us to just write
1730        # (e.g.) "split('exec')" in the Python code and the split #ifdef's
1731        # will automatically be added to the exec_output variable. The inner
1732        # Python execution environment doesn't know about the split points,
1733        # so we carefully inject and wrap a closure that can retrieve the
1734        # next split's #define from the parser and add it to the current
1735        # emission-in-progress.
1736        try:
1737            exec split_setup+fixPythonIndentation(t[2]) in self.exportContext
1738        except Exception, exc:
1739            if debug:
1740                raise
1741            error(t.lineno(1), 'In global let block: %s' % exc)
1742        GenCode(self,
1743                header_output=self.exportContext["header_output"],
1744                decoder_output=self.exportContext["decoder_output"],
1745                exec_output=self.exportContext["exec_output"],
1746                decode_block=self.exportContext["decode_block"]).emit()
1747
1748    # Define the mapping from operand type extensions to C++ types and
1749    # bit widths (stored in operandTypeMap).
1750    def p_def_operand_types(self, t):
1751        'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
1752        try:
1753            self.operandTypeMap = eval('{' + t[3] + '}')
1754        except Exception, exc:
1755            if debug:
1756                raise
1757            error(t.lineno(1),
1758                  'In def operand_types: %s' % exc)
1759
1760    # Define the mapping from operand names to operand classes and
1761    # other traits.  Stored in operandNameMap.
1762    def p_def_operands(self, t):
1763        'def_operands : DEF OPERANDS CODELIT SEMI'
1764        if not hasattr(self, 'operandTypeMap'):
1765            error(t.lineno(1),
1766                  'error: operand types must be defined before operands')
1767        try:
1768            user_dict = eval('{' + t[3] + '}', self.exportContext)
1769        except Exception, exc:
1770            if debug:
1771                raise
1772            error(t.lineno(1), 'In def operands: %s' % exc)
1773        self.buildOperandNameMap(user_dict, t.lexer.lineno)
1774
1775    # A bitfield definition looks like:
1776    # 'def [signed] bitfield <ID> [<first>:<last>]'
1777    # This generates a preprocessor macro in the output file.
1778    def p_def_bitfield_0(self, t):
1779        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
1780        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
1781        if (t[2] == 'signed'):
1782            expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
1783        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1784        GenCode(self, header_output=hash_define).emit()
1785
1786    # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
1787    def p_def_bitfield_1(self, t):
1788        'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
1789        expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
1790        if (t[2] == 'signed'):
1791            expr = 'sext<%d>(%s)' % (1, expr)
1792        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1793        GenCode(self, header_output=hash_define).emit()
1794
1795    # alternate form for structure member: 'def bitfield <ID> <ID>'
1796    def p_def_bitfield_struct(self, t):
1797        'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
1798        if (t[2] != ''):
1799            error(t.lineno(1),
1800                  'error: structure bitfields are always unsigned.')
1801        expr = 'machInst.%s' % t[5]
1802        hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
1803        GenCode(self, header_output=hash_define).emit()
1804
1805    def p_id_with_dot_0(self, t):
1806        'id_with_dot : ID'
1807        t[0] = t[1]
1808
1809    def p_id_with_dot_1(self, t):
1810        'id_with_dot : ID DOT id_with_dot'
1811        t[0] = t[1] + t[2] + t[3]
1812
1813    def p_opt_signed_0(self, t):
1814        'opt_signed : SIGNED'
1815        t[0] = t[1]
1816
1817    def p_opt_signed_1(self, t):
1818        'opt_signed : empty'
1819        t[0] = ''
1820
1821    def p_def_template(self, t):
1822        'def_template : DEF TEMPLATE ID CODELIT SEMI'
1823        if t[3] in self.templateMap:
1824            print "warning: template %s already defined" % t[3]
1825        self.templateMap[t[3]] = Template(self, t[4])
1826
1827    # An instruction format definition looks like
1828    # "def format <fmt>(<params>) {{...}};"
1829    def p_def_format(self, t):
1830        'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
1831        (id, params, code) = (t[3], t[5], t[7])
1832        self.defFormat(id, params, code, t.lexer.lineno)
1833
1834    # The formal parameter list for an instruction format is a
1835    # possibly empty list of comma-separated parameters.  Positional
1836    # (standard, non-keyword) parameters must come first, followed by
1837    # keyword parameters, followed by a '*foo' parameter that gets
1838    # excess positional arguments (as in Python).  Each of these three
1839    # parameter categories is optional.
1840    #
1841    # Note that we do not support the '**foo' parameter for collecting
1842    # otherwise undefined keyword args.  Otherwise the parameter list
1843    # is (I believe) identical to what is supported in Python.
1844    #
1845    # The param list generates a tuple, where the first element is a
1846    # list of the positional params and the second element is a dict
1847    # containing the keyword params.
1848    def p_param_list_0(self, t):
1849        'param_list : positional_param_list COMMA nonpositional_param_list'
1850        t[0] = t[1] + t[3]
1851
1852    def p_param_list_1(self, t):
1853        '''param_list : positional_param_list
1854                      | nonpositional_param_list'''
1855        t[0] = t[1]
1856
1857    def p_positional_param_list_0(self, t):
1858        'positional_param_list : empty'
1859        t[0] = []
1860
1861    def p_positional_param_list_1(self, t):
1862        'positional_param_list : ID'
1863        t[0] = [t[1]]
1864
1865    def p_positional_param_list_2(self, t):
1866        'positional_param_list : positional_param_list COMMA ID'
1867        t[0] = t[1] + [t[3]]
1868
1869    def p_nonpositional_param_list_0(self, t):
1870        'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
1871        t[0] = t[1] + t[3]
1872
1873    def p_nonpositional_param_list_1(self, t):
1874        '''nonpositional_param_list : keyword_param_list
1875                                    | excess_args_param'''
1876        t[0] = t[1]
1877
1878    def p_keyword_param_list_0(self, t):
1879        'keyword_param_list : keyword_param'
1880        t[0] = [t[1]]
1881
1882    def p_keyword_param_list_1(self, t):
1883        'keyword_param_list : keyword_param_list COMMA keyword_param'
1884        t[0] = t[1] + [t[3]]
1885
1886    def p_keyword_param(self, t):
1887        'keyword_param : ID EQUALS expr'
1888        t[0] = t[1] + ' = ' + t[3].__repr__()
1889
1890    def p_excess_args_param(self, t):
1891        'excess_args_param : ASTERISK ID'
1892        # Just concatenate them: '*ID'.  Wrap in list to be consistent
1893        # with positional_param_list and keyword_param_list.
1894        t[0] = [t[1] + t[2]]
1895
1896    # End of format definition-related rules.
1897    ##############
1898
1899    #
1900    # A decode block looks like:
1901    #       decode <field1> [, <field2>]* [default <inst>] { ... }
1902    #
1903    def p_top_level_decode_block(self, t):
1904        'top_level_decode_block : decode_block'
1905        codeObj = t[1]
1906        codeObj.wrap_decode_block('''
1907StaticInstPtr
1908%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
1909{
1910    using namespace %(namespace)s;
1911''' % self, '}')
1912
1913        codeObj.emit()
1914
1915    def p_decode_block(self, t):
1916        'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
1917        default_defaults = self.defaultStack.pop()
1918        codeObj = t[5]
1919        # use the "default defaults" only if there was no explicit
1920        # default statement in decode_stmt_list
1921        if not codeObj.has_decode_default:
1922            codeObj += default_defaults
1923        codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
1924        t[0] = codeObj
1925
1926    # The opt_default statement serves only to push the "default
1927    # defaults" onto defaultStack.  This value will be used by nested
1928    # decode blocks, and used and popped off when the current
1929    # decode_block is processed (in p_decode_block() above).
1930    def p_opt_default_0(self, t):
1931        'opt_default : empty'
1932        # no default specified: reuse the one currently at the top of
1933        # the stack
1934        self.defaultStack.push(self.defaultStack.top())
1935        # no meaningful value returned
1936        t[0] = None
1937
1938    def p_opt_default_1(self, t):
1939        'opt_default : DEFAULT inst'
1940        # push the new default
1941        codeObj = t[2]
1942        codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
1943        self.defaultStack.push(codeObj)
1944        # no meaningful value returned
1945        t[0] = None
1946
1947    def p_decode_stmt_list_0(self, t):
1948        'decode_stmt_list : decode_stmt'
1949        t[0] = t[1]
1950
1951    def p_decode_stmt_list_1(self, t):
1952        'decode_stmt_list : decode_stmt decode_stmt_list'
1953        if (t[1].has_decode_default and t[2].has_decode_default):
1954            error(t.lineno(1), 'Two default cases in decode block')
1955        t[0] = t[1] + t[2]
1956
1957    #
1958    # Decode statement rules
1959    #
1960    # There are four types of statements allowed in a decode block:
1961    # 1. Format blocks 'format <foo> { ... }'
1962    # 2. Nested decode blocks
1963    # 3. Instruction definitions.
1964    # 4. C preprocessor directives.
1965
1966
1967    # Preprocessor directives found in a decode statement list are
1968    # passed through to the output, replicated to all of the output
1969    # code streams.  This works well for ifdefs, so we can ifdef out
1970    # both the declarations and the decode cases generated by an
1971    # instruction definition.  Handling them as part of the grammar
1972    # makes it easy to keep them in the right place with respect to
1973    # the code generated by the other statements.
1974    def p_decode_stmt_cpp(self, t):
1975        'decode_stmt : CPPDIRECTIVE'
1976        t[0] = GenCode(self, t[1], t[1], t[1], t[1])
1977
1978    # A format block 'format <foo> { ... }' sets the default
1979    # instruction format used to handle instruction definitions inside
1980    # the block.  This format can be overridden by using an explicit
1981    # format on the instruction definition or with a nested format
1982    # block.
1983    def p_decode_stmt_format(self, t):
1984        'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
1985        # The format will be pushed on the stack when 'push_format_id'
1986        # is processed (see below).  Once the parser has recognized
1987        # the full production (though the right brace), we're done
1988        # with the format, so now we can pop it.
1989        self.formatStack.pop()
1990        t[0] = t[4]
1991
1992    # This rule exists so we can set the current format (& push the
1993    # stack) when we recognize the format name part of the format
1994    # block.
1995    def p_push_format_id(self, t):
1996        'push_format_id : ID'
1997        try:
1998            self.formatStack.push(self.formatMap[t[1]])
1999            t[0] = ('', '// format %s' % t[1])
2000        except KeyError:
2001            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2002
2003    # Nested decode block: if the value of the current field matches
2004    # the specified constant(s), do a nested decode on some other field.
2005    def p_decode_stmt_decode(self, t):
2006        'decode_stmt : case_list COLON decode_block'
2007        case_list = t[1]
2008        codeObj = t[3]
2009        # just wrap the decoding code from the block as a case in the
2010        # outer switch statement.
2011        codeObj.wrap_decode_block('\n%s\n' % ''.join(case_list))
2012        codeObj.has_decode_default = (case_list == ['default:'])
2013        t[0] = codeObj
2014
2015    # Instruction definition (finally!).
2016    def p_decode_stmt_inst(self, t):
2017        'decode_stmt : case_list COLON inst SEMI'
2018        case_list = t[1]
2019        codeObj = t[3]
2020        codeObj.wrap_decode_block('\n%s' % ''.join(case_list), 'break;\n')
2021        codeObj.has_decode_default = (case_list == ['default:'])
2022        t[0] = codeObj
2023
2024    # The constant list for a decode case label must be non-empty, and must
2025    # either be the keyword 'default', or made up of one or more
2026    # comma-separated integer literals or strings which evaluate to
2027    # constants when compiled as C++.
2028    def p_case_list_0(self, t):
2029        'case_list : DEFAULT'
2030        t[0] = ['default:']
2031
2032    def prep_int_lit_case_label(self, lit):
2033        if lit >= 2**32:
2034            return 'case ULL(%#x): ' % lit
2035        else:
2036            return 'case %#x: ' % lit
2037
2038    def prep_str_lit_case_label(self, lit):
2039        return 'case %s: ' % lit
2040
2041    def p_case_list_1(self, t):
2042        'case_list : INTLIT'
2043        t[0] = [self.prep_int_lit_case_label(t[1])]
2044
2045    def p_case_list_2(self, t):
2046        'case_list : STRLIT'
2047        t[0] = [self.prep_str_lit_case_label(t[1])]
2048
2049    def p_case_list_3(self, t):
2050        'case_list : case_list COMMA INTLIT'
2051        t[0] = t[1]
2052        t[0].append(self.prep_int_lit_case_label(t[3]))
2053
2054    def p_case_list_4(self, t):
2055        'case_list : case_list COMMA STRLIT'
2056        t[0] = t[1]
2057        t[0].append(self.prep_str_lit_case_label(t[3]))
2058
2059    # Define an instruction using the current instruction format
2060    # (specified by an enclosing format block).
2061    # "<mnemonic>(<args>)"
2062    def p_inst_0(self, t):
2063        'inst : ID LPAREN arg_list RPAREN'
2064        # Pass the ID and arg list to the current format class to deal with.
2065        currentFormat = self.formatStack.top()
2066        codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
2067        args = ','.join(map(str, t[3]))
2068        args = re.sub('(?m)^', '//', args)
2069        args = re.sub('^//', '', args)
2070        comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
2071        codeObj.prepend_all(comment)
2072        t[0] = codeObj
2073
2074    # Define an instruction using an explicitly specified format:
2075    # "<fmt>::<mnemonic>(<args>)"
2076    def p_inst_1(self, t):
2077        'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
2078        try:
2079            format = self.formatMap[t[1]]
2080        except KeyError:
2081            error(t.lineno(1), 'instruction format "%s" not defined.' % t[1])
2082
2083        codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
2084        comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
2085        codeObj.prepend_all(comment)
2086        t[0] = codeObj
2087
2088    # The arg list generates a tuple, where the first element is a
2089    # list of the positional args and the second element is a dict
2090    # containing the keyword args.
2091    def p_arg_list_0(self, t):
2092        'arg_list : positional_arg_list COMMA keyword_arg_list'
2093        t[0] = ( t[1], t[3] )
2094
2095    def p_arg_list_1(self, t):
2096        'arg_list : positional_arg_list'
2097        t[0] = ( t[1], {} )
2098
2099    def p_arg_list_2(self, t):
2100        'arg_list : keyword_arg_list'
2101        t[0] = ( [], t[1] )
2102
2103    def p_positional_arg_list_0(self, t):
2104        'positional_arg_list : empty'
2105        t[0] = []
2106
2107    def p_positional_arg_list_1(self, t):
2108        'positional_arg_list : expr'
2109        t[0] = [t[1]]
2110
2111    def p_positional_arg_list_2(self, t):
2112        'positional_arg_list : positional_arg_list COMMA expr'
2113        t[0] = t[1] + [t[3]]
2114
2115    def p_keyword_arg_list_0(self, t):
2116        'keyword_arg_list : keyword_arg'
2117        t[0] = t[1]
2118
2119    def p_keyword_arg_list_1(self, t):
2120        'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
2121        t[0] = t[1]
2122        t[0].update(t[3])
2123
2124    def p_keyword_arg(self, t):
2125        'keyword_arg : ID EQUALS expr'
2126        t[0] = { t[1] : t[3] }
2127
2128    #
2129    # Basic expressions.  These constitute the argument values of
2130    # "function calls" (i.e. instruction definitions in the decode
2131    # block) and default values for formal parameters of format
2132    # functions.
2133    #
2134    # Right now, these are either strings, integers, or (recursively)
2135    # lists of exprs (using Python square-bracket list syntax).  Note
2136    # that bare identifiers are trated as string constants here (since
2137    # there isn't really a variable namespace to refer to).
2138    #
2139    def p_expr_0(self, t):
2140        '''expr : ID
2141                | INTLIT
2142                | STRLIT
2143                | CODELIT'''
2144        t[0] = t[1]
2145
2146    def p_expr_1(self, t):
2147        '''expr : LBRACKET list_expr RBRACKET'''
2148        t[0] = t[2]
2149
2150    def p_list_expr_0(self, t):
2151        'list_expr : expr'
2152        t[0] = [t[1]]
2153
2154    def p_list_expr_1(self, t):
2155        'list_expr : list_expr COMMA expr'
2156        t[0] = t[1] + [t[3]]
2157
2158    def p_list_expr_2(self, t):
2159        'list_expr : empty'
2160        t[0] = []
2161
2162    #
2163    # Empty production... use in other rules for readability.
2164    #
2165    def p_empty(self, t):
2166        'empty :'
2167        pass
2168
2169    # Parse error handler.  Note that the argument here is the
2170    # offending *token*, not a grammar symbol (hence the need to use
2171    # t.value)
2172    def p_error(self, t):
2173        if t:
2174            error(t.lexer.lineno, "syntax error at '%s'" % t.value)
2175        else:
2176            error("unknown syntax error")
2177
2178    # END OF GRAMMAR RULES
2179
2180    def updateExportContext(self):
2181
2182        # create a continuation that allows us to grab the current parser
2183        def wrapInstObjParams(*args):
2184            return InstObjParams(self, *args)
2185        self.exportContext['InstObjParams'] = wrapInstObjParams
2186        self.exportContext.update(self.templateMap)
2187
2188    def defFormat(self, id, params, code, lineno):
2189        '''Define a new format'''
2190
2191        # make sure we haven't already defined this one
2192        if id in self.formatMap:
2193            error(lineno, 'format %s redefined.' % id)
2194
2195        # create new object and store in global map
2196        self.formatMap[id] = Format(id, params, code)
2197
2198    def expandCpuSymbolsToDict(self, template):
2199        '''Expand template with CPU-specific references into a
2200        dictionary with an entry for each CPU model name.  The entry
2201        key is the model name and the corresponding value is the
2202        template with the CPU-specific refs substituted for that
2203        model.'''
2204
2205        # Protect '%'s that don't go with CPU-specific terms
2206        t = re.sub(r'%(?!\(CPU_)', '%%', template)
2207        result = {}
2208        for cpu in self.cpuModels:
2209            result[cpu.name] = t % cpu.strings
2210        return result
2211
2212    def expandCpuSymbolsToString(self, template):
2213        '''*If* the template has CPU-specific references, return a
2214        single string containing a copy of the template for each CPU
2215        model with the corresponding values substituted in.  If the
2216        template has no CPU-specific references, it is returned
2217        unmodified.'''
2218
2219        if template.find('%(CPU_') != -1:
2220            return reduce(lambda x,y: x+y,
2221                          self.expandCpuSymbolsToDict(template).values())
2222        else:
2223            return template
2224
2225    def protectCpuSymbols(self, template):
2226        '''Protect CPU-specific references by doubling the
2227        corresponding '%'s (in preparation for substituting a different
2228        set of references into the template).'''
2229
2230        return re.sub(r'%(?=\(CPU_)', '%%', template)
2231
2232    def protectNonSubstPercents(self, s):
2233        '''Protect any non-dict-substitution '%'s in a format string
2234        (i.e. those not followed by '(')'''
2235
2236        return re.sub(r'%(?!\()', '%%', s)
2237
2238    def buildOperandNameMap(self, user_dict, lineno):
2239        operand_name = {}
2240        for op_name, val in user_dict.iteritems():
2241
2242            # Check if extra attributes have been specified.
2243            if len(val) > 9:
2244                error(lineno, 'error: too many attributes for operand "%s"' %
2245                      base_cls_name)
2246
2247            # Pad val with None in case optional args are missing
2248            val += (None, None, None, None)
2249            base_cls_name, dflt_ext, reg_spec, flags, sort_pri, \
2250            read_code, write_code, read_predicate, write_predicate = val[:9]
2251
2252            # Canonical flag structure is a triple of lists, where each list
2253            # indicates the set of flags implied by this operand always, when
2254            # used as a source, and when used as a dest, respectively.
2255            # For simplicity this can be initialized using a variety of fairly
2256            # obvious shortcuts; we convert these to canonical form here.
2257            if not flags:
2258                # no flags specified (e.g., 'None')
2259                flags = ( [], [], [] )
2260            elif isinstance(flags, str):
2261                # a single flag: assumed to be unconditional
2262                flags = ( [ flags ], [], [] )
2263            elif isinstance(flags, list):
2264                # a list of flags: also assumed to be unconditional
2265                flags = ( flags, [], [] )
2266            elif isinstance(flags, tuple):
2267                # it's a tuple: it should be a triple,
2268                # but each item could be a single string or a list
2269                (uncond_flags, src_flags, dest_flags) = flags
2270                flags = (makeList(uncond_flags),
2271                         makeList(src_flags), makeList(dest_flags))
2272
2273            # Accumulate attributes of new operand class in tmp_dict
2274            tmp_dict = {}
2275            attrList = ['reg_spec', 'flags', 'sort_pri',
2276                        'read_code', 'write_code',
2277                        'read_predicate', 'write_predicate']
2278            if dflt_ext:
2279                dflt_ctype = self.operandTypeMap[dflt_ext]
2280                attrList.extend(['dflt_ctype', 'dflt_ext'])
2281            for attr in attrList:
2282                tmp_dict[attr] = eval(attr)
2283            tmp_dict['base_name'] = op_name
2284
2285            # New class name will be e.g. "IntReg_Ra"
2286            cls_name = base_cls_name + '_' + op_name
2287            # Evaluate string arg to get class object.  Note that the
2288            # actual base class for "IntReg" is "IntRegOperand", i.e. we
2289            # have to append "Operand".
2290            try:
2291                base_cls = eval(base_cls_name + 'Operand')
2292            except NameError:
2293                error(lineno,
2294                      'error: unknown operand base class "%s"' % base_cls_name)
2295            # The following statement creates a new class called
2296            # <cls_name> as a subclass of <base_cls> with the attributes
2297            # in tmp_dict, just as if we evaluated a class declaration.
2298            operand_name[op_name] = type(cls_name, (base_cls,), tmp_dict)
2299
2300        self.operandNameMap = operand_name
2301
2302        # Define operand variables.
2303        operands = user_dict.keys()
2304        extensions = self.operandTypeMap.keys()
2305
2306        operandsREString = r'''
2307        (?<!\w)      # neg. lookbehind assertion: prevent partial matches
2308        ((%s)(?:_(%s))?)   # match: operand with optional '_' then suffix
2309        (?!\w)       # neg. lookahead assertion: prevent partial matches
2310        ''' % (string.join(operands, '|'), string.join(extensions, '|'))
2311
2312        self.operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
2313
2314        # Same as operandsREString, but extension is mandatory, and only two
2315        # groups are returned (base and ext, not full name as above).
2316        # Used for subtituting '_' for '.' to make C++ identifiers.
2317        operandsWithExtREString = r'(?<!\w)(%s)_(%s)(?!\w)' \
2318            % (string.join(operands, '|'), string.join(extensions, '|'))
2319
2320        self.operandsWithExtRE = \
2321            re.compile(operandsWithExtREString, re.MULTILINE)
2322
2323    def substMungedOpNames(self, code):
2324        '''Munge operand names in code string to make legal C++
2325        variable names.  This means getting rid of the type extension
2326        if any.  Will match base_name attribute of Operand object.)'''
2327        return self.operandsWithExtRE.sub(r'\1', code)
2328
2329    def mungeSnippet(self, s):
2330        '''Fix up code snippets for final substitution in templates.'''
2331        if isinstance(s, str):
2332            return self.substMungedOpNames(substBitOps(s))
2333        else:
2334            return s
2335
2336    def open(self, name, bare=False):
2337        '''Open the output file for writing and include scary warning.'''
2338        filename = os.path.join(self.output_dir, name)
2339        f = open(filename, 'w')
2340        if f:
2341            if not bare:
2342                f.write(ISAParser.scaremonger_template % self)
2343        return f
2344
2345    def update(self, file, contents):
2346        '''Update the output file only.  Scons should handle the case when
2347        the new contents are unchanged using its built-in hash feature.'''
2348        f = self.open(file)
2349        f.write(contents)
2350        f.close()
2351
2352    # This regular expression matches '##include' directives
2353    includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[^"]*)".*$',
2354                           re.MULTILINE)
2355
2356    def replace_include(self, matchobj, dirname):
2357        """Function to replace a matched '##include' directive with the
2358        contents of the specified file (with nested ##includes
2359        replaced recursively).  'matchobj' is an re match object
2360        (from a match of includeRE) and 'dirname' is the directory
2361        relative to which the file path should be resolved."""
2362
2363        fname = matchobj.group('filename')
2364        full_fname = os.path.normpath(os.path.join(dirname, fname))
2365        contents = '##newfile "%s"\n%s\n##endfile\n' % \
2366                   (full_fname, self.read_and_flatten(full_fname))
2367        return contents
2368
2369    def read_and_flatten(self, filename):
2370        """Read a file and recursively flatten nested '##include' files."""
2371
2372        current_dir = os.path.dirname(filename)
2373        try:
2374            contents = open(filename).read()
2375        except IOError:
2376            error('Error including file "%s"' % filename)
2377
2378        self.fileNameStack.push(LineTracker(filename))
2379
2380        # Find any includes and include them
2381        def replace(matchobj):
2382            return self.replace_include(matchobj, current_dir)
2383        contents = self.includeRE.sub(replace, contents)
2384
2385        self.fileNameStack.pop()
2386        return contents
2387
2388    AlreadyGenerated = {}
2389
2390    def _parse_isa_desc(self, isa_desc_file):
2391        '''Read in and parse the ISA description.'''
2392
2393        # The build system can end up running the ISA parser twice: once to
2394        # finalize the build dependencies, and then to actually generate
2395        # the files it expects (in src/arch/$ARCH/generated). This code
2396        # doesn't do anything different either time, however; the SCons
2397        # invocations just expect different things. Since this code runs
2398        # within SCons, we can just remember that we've already run and
2399        # not perform a completely unnecessary run, since the ISA parser's
2400        # effect is idempotent.
2401        if isa_desc_file in ISAParser.AlreadyGenerated:
2402            return
2403
2404        # grab the last three path components of isa_desc_file
2405        self.filename = '/'.join(isa_desc_file.split('/')[-3:])
2406
2407        # Read file and (recursively) all included files into a string.
2408        # PLY requires that the input be in a single string so we have to
2409        # do this up front.
2410        isa_desc = self.read_and_flatten(isa_desc_file)
2411
2412        # Initialize lineno tracker
2413        self.lex.lineno = LineTracker(isa_desc_file)
2414
2415        # Parse.
2416        self.parse_string(isa_desc)
2417
2418        ISAParser.AlreadyGenerated[isa_desc_file] = None
2419
2420    def parse_isa_desc(self, *args, **kwargs):
2421        try:
2422            self._parse_isa_desc(*args, **kwargs)
2423        except ISAParserError, e:
2424            print backtrace(self.fileNameStack)
2425            print "At %s:" % e.lineno
2426            print e
2427            sys.exit(1)
2428
2429# Called as script: get args from command line.
2430# Args are: <isa desc file> <output dir>
2431if __name__ == '__main__':
2432    ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])
2433