table_walker.cc revision 12738:1ac09a70644f
1/*
2 * Copyright (c) 2010, 2012-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 *          Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60    : MemObject(p),
61      stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62      isStage2(p->is_stage2), tlb(NULL),
63      currState(NULL), pending(false),
64      numSquashable(p->num_squash_per_cycle),
65      pendingReqs(0),
66      pendingChangeTick(curTick()),
67      doL1DescEvent([this]{ doL1DescriptorWrapper(); }, name()),
68      doL2DescEvent([this]{ doL2DescriptorWrapper(); }, name()),
69      doL0LongDescEvent([this]{ doL0LongDescriptorWrapper(); }, name()),
70      doL1LongDescEvent([this]{ doL1LongDescriptorWrapper(); }, name()),
71      doL2LongDescEvent([this]{ doL2LongDescriptorWrapper(); }, name()),
72      doL3LongDescEvent([this]{ doL3LongDescriptorWrapper(); }, name()),
73      LongDescEventByLevel { &doL0LongDescEvent, &doL1LongDescEvent,
74                             &doL2LongDescEvent, &doL3LongDescEvent },
75      doProcessEvent([this]{ processWalkWrapper(); }, name())
76{
77    sctlr = 0;
78
79    // Cache system-level properties
80    if (FullSystem) {
81        ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
82        assert(armSys);
83        haveSecurity = armSys->haveSecurity();
84        _haveLPAE = armSys->haveLPAE();
85        _haveVirtualization = armSys->haveVirtualization();
86        physAddrRange = armSys->physAddrRange();
87        _haveLargeAsid64 = armSys->haveLargeAsid64();
88    } else {
89        haveSecurity = _haveLPAE = _haveVirtualization = false;
90        _haveLargeAsid64 = false;
91        physAddrRange = 32;
92    }
93
94}
95
96TableWalker::~TableWalker()
97{
98    ;
99}
100
101void
102TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
103{
104    stage2Mmu = m;
105    port = &m->getPort();
106    masterId = master_id;
107}
108
109void
110TableWalker::init()
111{
112    fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
113    fatal_if(!port, "Table walker must have a valid port\n");
114    fatal_if(!tlb, "Table walker must have a valid TLB\n");
115}
116
117BaseMasterPort&
118TableWalker::getMasterPort(const std::string &if_name, PortID idx)
119{
120    if (if_name == "port") {
121        if (!isStage2) {
122            return *port;
123        } else {
124            fatal("Cannot access table walker port through stage-two walker\n");
125        }
126    }
127    return MemObject::getMasterPort(if_name, idx);
128}
129
130TableWalker::WalkerState::WalkerState() :
131    tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
132    asid(0), vmid(0), isHyp(false), transState(nullptr),
133    vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
134    secureLookup(false), rwTable(false), userTable(false), xnTable(false),
135    pxnTable(false), stage2Req(false),
136    stage2Tran(nullptr), timing(false), functional(false),
137    mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
138    delayed(false), tableWalker(nullptr)
139{
140}
141
142void
143TableWalker::completeDrain()
144{
145    if (drainState() == DrainState::Draining &&
146        stateQueues[L0].empty() && stateQueues[L1].empty() &&
147        stateQueues[L2].empty() && stateQueues[L3].empty() &&
148        pendingQueue.empty()) {
149
150        DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
151        signalDrainDone();
152    }
153}
154
155DrainState
156TableWalker::drain()
157{
158    bool state_queues_not_empty = false;
159
160    for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
161        if (!stateQueues[i].empty()) {
162            state_queues_not_empty = true;
163            break;
164        }
165    }
166
167    if (state_queues_not_empty || pendingQueue.size()) {
168        DPRINTF(Drain, "TableWalker not drained\n");
169        return DrainState::Draining;
170    } else {
171        DPRINTF(Drain, "TableWalker free, no need to drain\n");
172        return DrainState::Drained;
173    }
174}
175
176void
177TableWalker::drainResume()
178{
179    if (params()->sys->isTimingMode() && currState) {
180        delete currState;
181        currState = NULL;
182        pendingChange();
183    }
184}
185
186Fault
187TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
188                  uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
189                  TLB::Translation *_trans, bool _timing, bool _functional,
190                  bool secure, TLB::ArmTranslationType tranType,
191                  bool _stage2Req)
192{
193    assert(!(_functional && _timing));
194    ++statWalks;
195
196    WalkerState *savedCurrState = NULL;
197
198    if (!currState && !_functional) {
199        // For atomic mode, a new WalkerState instance should be only created
200        // once per TLB. For timing mode, a new instance is generated for every
201        // TLB miss.
202        DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
203
204        currState = new WalkerState();
205        currState->tableWalker = this;
206    } else if (_functional) {
207        // If we are mixing functional mode with timing (or even
208        // atomic), we need to to be careful and clean up after
209        // ourselves to not risk getting into an inconsistent state.
210        DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
211        savedCurrState = currState;
212        currState = new WalkerState();
213        currState->tableWalker = this;
214    } else if (_timing) {
215        // This is a translation that was completed and then faulted again
216        // because some underlying parameters that affect the translation
217        // changed out from under us (e.g. asid). It will either be a
218        // misprediction, in which case nothing will happen or we'll use
219        // this fault to re-execute the faulting instruction which should clean
220        // up everything.
221        if (currState->vaddr_tainted == _req->getVaddr()) {
222            ++statSquashedBefore;
223            return std::make_shared<ReExec>();
224        }
225    }
226    pendingChange();
227
228    currState->startTime = curTick();
229    currState->tc = _tc;
230    // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
231    // aarch32/translation/translation/AArch32.TranslateAddress dictates
232    // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
233    if (isStage2) {
234        currState->el = EL1;
235        currState->aarch64 = ELIs64(_tc, EL2);
236    } else {
237        currState->el =
238            TLB::tranTypeEL(_tc->readMiscReg(MISCREG_CPSR), tranType);
239        currState->aarch64 =
240            ELIs64(_tc, currState->el == EL0 ? EL1 : currState->el);
241    }
242    currState->transState = _trans;
243    currState->req = _req;
244    currState->fault = NoFault;
245    currState->asid = _asid;
246    currState->vmid = _vmid;
247    currState->isHyp = _isHyp;
248    currState->timing = _timing;
249    currState->functional = _functional;
250    currState->mode = _mode;
251    currState->tranType = tranType;
252    currState->isSecure = secure;
253    currState->physAddrRange = physAddrRange;
254
255    /** @todo These should be cached or grabbed from cached copies in
256     the TLB, all these miscreg reads are expensive */
257    currState->vaddr_tainted = currState->req->getVaddr();
258    if (currState->aarch64)
259        currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
260                                            currState->tc, currState->el);
261    else
262        currState->vaddr = currState->vaddr_tainted;
263
264    if (currState->aarch64) {
265        if (isStage2) {
266            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
267            currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR_EL2);
268        } else switch (currState->el) {
269          case EL0:
270          case EL1:
271            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
272            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
273            break;
274          case EL2:
275            assert(_haveVirtualization);
276            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
277            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
278            break;
279          case EL3:
280            assert(haveSecurity);
281            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
282            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
283            break;
284          default:
285            panic("Invalid exception level");
286            break;
287        }
288        currState->hcr = currState->tc->readMiscReg(MISCREG_HCR_EL2);
289    } else {
290        currState->sctlr = currState->tc->readMiscReg(snsBankedIndex(
291            MISCREG_SCTLR, currState->tc, !currState->isSecure));
292        currState->ttbcr = currState->tc->readMiscReg(snsBankedIndex(
293            MISCREG_TTBCR, currState->tc, !currState->isSecure));
294        currState->htcr  = currState->tc->readMiscReg(MISCREG_HTCR);
295        currState->hcr   = currState->tc->readMiscReg(MISCREG_HCR);
296        currState->vtcr  = currState->tc->readMiscReg(MISCREG_VTCR);
297    }
298    sctlr = currState->sctlr;
299
300    currState->isFetch = (currState->mode == TLB::Execute);
301    currState->isWrite = (currState->mode == TLB::Write);
302
303    statRequestOrigin[REQUESTED][currState->isFetch]++;
304
305    currState->stage2Req = _stage2Req && !isStage2;
306
307    bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
308                            longDescFormatInUse(currState->tc);
309
310    if (long_desc_format) {
311        // Helper variables used for hierarchical permissions
312        currState->secureLookup = currState->isSecure;
313        currState->rwTable = true;
314        currState->userTable = true;
315        currState->xnTable = false;
316        currState->pxnTable = false;
317
318        ++statWalksLongDescriptor;
319    } else {
320        ++statWalksShortDescriptor;
321    }
322
323    if (!currState->timing) {
324        Fault fault = NoFault;
325        if (currState->aarch64)
326            fault = processWalkAArch64();
327        else if (long_desc_format)
328            fault = processWalkLPAE();
329        else
330            fault = processWalk();
331
332        // If this was a functional non-timing access restore state to
333        // how we found it.
334        if (currState->functional) {
335            delete currState;
336            currState = savedCurrState;
337        }
338        return fault;
339    }
340
341    if (pending || pendingQueue.size()) {
342        pendingQueue.push_back(currState);
343        currState = NULL;
344        pendingChange();
345    } else {
346        pending = true;
347        pendingChange();
348        if (currState->aarch64)
349            return processWalkAArch64();
350        else if (long_desc_format)
351            return processWalkLPAE();
352        else
353            return processWalk();
354    }
355
356    return NoFault;
357}
358
359void
360TableWalker::processWalkWrapper()
361{
362    assert(!currState);
363    assert(pendingQueue.size());
364    pendingChange();
365    currState = pendingQueue.front();
366
367    // Check if a previous walk filled this request already
368    // @TODO Should this always be the TLB or should we look in the stage2 TLB?
369    TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
370            currState->vmid, currState->isHyp, currState->isSecure, true, false,
371            currState->el);
372
373    // Check if we still need to have a walk for this request. If the requesting
374    // instruction has been squashed, or a previous walk has filled the TLB with
375    // a match, we just want to get rid of the walk. The latter could happen
376    // when there are multiple outstanding misses to a single page and a
377    // previous request has been successfully translated.
378    if (!currState->transState->squashed() && !te) {
379        // We've got a valid request, lets process it
380        pending = true;
381        pendingQueue.pop_front();
382        // Keep currState in case one of the processWalk... calls NULLs it
383        WalkerState *curr_state_copy = currState;
384        Fault f;
385        if (currState->aarch64)
386            f = processWalkAArch64();
387        else if (longDescFormatInUse(currState->tc) ||
388                 currState->isHyp || isStage2)
389            f = processWalkLPAE();
390        else
391            f = processWalk();
392
393        if (f != NoFault) {
394            curr_state_copy->transState->finish(f, curr_state_copy->req,
395                    curr_state_copy->tc, curr_state_copy->mode);
396
397            delete curr_state_copy;
398        }
399        return;
400    }
401
402
403    // If the instruction that we were translating for has been
404    // squashed we shouldn't bother.
405    unsigned num_squashed = 0;
406    ThreadContext *tc = currState->tc;
407    while ((num_squashed < numSquashable) && currState &&
408           (currState->transState->squashed() || te)) {
409        pendingQueue.pop_front();
410        num_squashed++;
411        statSquashedBefore++;
412
413        DPRINTF(TLB, "Squashing table walk for address %#x\n",
414                      currState->vaddr_tainted);
415
416        if (currState->transState->squashed()) {
417            // finish the translation which will delete the translation object
418            currState->transState->finish(
419                std::make_shared<UnimpFault>("Squashed Inst"),
420                currState->req, currState->tc, currState->mode);
421        } else {
422            // translate the request now that we know it will work
423            statWalkServiceTime.sample(curTick() - currState->startTime);
424            tlb->translateTiming(currState->req, currState->tc,
425                        currState->transState, currState->mode);
426
427        }
428
429        // delete the current request
430        delete currState;
431
432        // peak at the next one
433        if (pendingQueue.size()) {
434            currState = pendingQueue.front();
435            te = tlb->lookup(currState->vaddr, currState->asid,
436                currState->vmid, currState->isHyp, currState->isSecure, true,
437                false, currState->el);
438        } else {
439            // Terminate the loop, nothing more to do
440            currState = NULL;
441        }
442    }
443    pendingChange();
444
445    // if we still have pending translations, schedule more work
446    nextWalk(tc);
447    currState = NULL;
448}
449
450Fault
451TableWalker::processWalk()
452{
453    Addr ttbr = 0;
454
455    // If translation isn't enabled, we shouldn't be here
456    assert(currState->sctlr.m || isStage2);
457
458    DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
459            currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
460                                                      32 - currState->ttbcr.n));
461
462    statWalkWaitTime.sample(curTick() - currState->startTime);
463
464    if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
465                                          32 - currState->ttbcr.n)) {
466        DPRINTF(TLB, " - Selecting TTBR0\n");
467        // Check if table walk is allowed when Security Extensions are enabled
468        if (haveSecurity && currState->ttbcr.pd0) {
469            if (currState->isFetch)
470                return std::make_shared<PrefetchAbort>(
471                    currState->vaddr_tainted,
472                    ArmFault::TranslationLL + L1,
473                    isStage2,
474                    ArmFault::VmsaTran);
475            else
476                return std::make_shared<DataAbort>(
477                    currState->vaddr_tainted,
478                    TlbEntry::DomainType::NoAccess, currState->isWrite,
479                    ArmFault::TranslationLL + L1, isStage2,
480                    ArmFault::VmsaTran);
481        }
482        ttbr = currState->tc->readMiscReg(snsBankedIndex(
483            MISCREG_TTBR0, currState->tc, !currState->isSecure));
484    } else {
485        DPRINTF(TLB, " - Selecting TTBR1\n");
486        // Check if table walk is allowed when Security Extensions are enabled
487        if (haveSecurity && currState->ttbcr.pd1) {
488            if (currState->isFetch)
489                return std::make_shared<PrefetchAbort>(
490                    currState->vaddr_tainted,
491                    ArmFault::TranslationLL + L1,
492                    isStage2,
493                    ArmFault::VmsaTran);
494            else
495                return std::make_shared<DataAbort>(
496                    currState->vaddr_tainted,
497                    TlbEntry::DomainType::NoAccess, currState->isWrite,
498                    ArmFault::TranslationLL + L1, isStage2,
499                    ArmFault::VmsaTran);
500        }
501        ttbr = currState->tc->readMiscReg(snsBankedIndex(
502            MISCREG_TTBR1, currState->tc, !currState->isSecure));
503        currState->ttbcr.n = 0;
504    }
505
506    Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
507        (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
508    DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
509            currState->isSecure ? "s" : "ns");
510
511    // Trickbox address check
512    Fault f;
513    f = testWalk(l1desc_addr, sizeof(uint32_t),
514                 TlbEntry::DomainType::NoAccess, L1);
515    if (f) {
516        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
517        if (currState->timing) {
518            pending = false;
519            nextWalk(currState->tc);
520            currState = NULL;
521        } else {
522            currState->tc = NULL;
523            currState->req = NULL;
524        }
525        return f;
526    }
527
528    Request::Flags flag = Request::PT_WALK;
529    if (currState->sctlr.c == 0) {
530        flag.set(Request::UNCACHEABLE);
531    }
532
533    if (currState->isSecure) {
534        flag.set(Request::SECURE);
535    }
536
537    bool delayed;
538    delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
539                              sizeof(uint32_t), flag, L1, &doL1DescEvent,
540                              &TableWalker::doL1Descriptor);
541    if (!delayed) {
542       f = currState->fault;
543    }
544
545    return f;
546}
547
548Fault
549TableWalker::processWalkLPAE()
550{
551    Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
552    int tsz, n;
553    LookupLevel start_lookup_level = L1;
554
555    DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
556            currState->vaddr_tainted, currState->ttbcr);
557
558    statWalkWaitTime.sample(curTick() - currState->startTime);
559
560    Request::Flags flag = Request::PT_WALK;
561    if (currState->isSecure)
562        flag.set(Request::SECURE);
563
564    // work out which base address register to use, if in hyp mode we always
565    // use HTTBR
566    if (isStage2) {
567        DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
568        ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
569        tsz  = sext<4>(currState->vtcr.t0sz);
570        start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
571    } else if (currState->isHyp) {
572        DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
573        ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
574        tsz  = currState->htcr.t0sz;
575    } else {
576        assert(longDescFormatInUse(currState->tc));
577
578        // Determine boundaries of TTBR0/1 regions
579        if (currState->ttbcr.t0sz)
580            ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
581        else if (currState->ttbcr.t1sz)
582            ttbr0_max = (1ULL << 32) -
583                (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
584        else
585            ttbr0_max = (1ULL << 32) - 1;
586        if (currState->ttbcr.t1sz)
587            ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
588        else
589            ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
590
591        // The following code snippet selects the appropriate translation table base
592        // address (TTBR0 or TTBR1) and the appropriate starting lookup level
593        // depending on the address range supported by the translation table (ARM
594        // ARM issue C B3.6.4)
595        if (currState->vaddr <= ttbr0_max) {
596            DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
597            // Check if table walk is allowed
598            if (currState->ttbcr.epd0) {
599                if (currState->isFetch)
600                    return std::make_shared<PrefetchAbort>(
601                        currState->vaddr_tainted,
602                        ArmFault::TranslationLL + L1,
603                        isStage2,
604                        ArmFault::LpaeTran);
605                else
606                    return std::make_shared<DataAbort>(
607                        currState->vaddr_tainted,
608                        TlbEntry::DomainType::NoAccess,
609                        currState->isWrite,
610                        ArmFault::TranslationLL + L1,
611                        isStage2,
612                        ArmFault::LpaeTran);
613            }
614            ttbr = currState->tc->readMiscReg(snsBankedIndex(
615                MISCREG_TTBR0, currState->tc, !currState->isSecure));
616            tsz = currState->ttbcr.t0sz;
617            if (ttbr0_max < (1ULL << 30))  // Upper limit < 1 GB
618                start_lookup_level = L2;
619        } else if (currState->vaddr >= ttbr1_min) {
620            DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
621            // Check if table walk is allowed
622            if (currState->ttbcr.epd1) {
623                if (currState->isFetch)
624                    return std::make_shared<PrefetchAbort>(
625                        currState->vaddr_tainted,
626                        ArmFault::TranslationLL + L1,
627                        isStage2,
628                        ArmFault::LpaeTran);
629                else
630                    return std::make_shared<DataAbort>(
631                        currState->vaddr_tainted,
632                        TlbEntry::DomainType::NoAccess,
633                        currState->isWrite,
634                        ArmFault::TranslationLL + L1,
635                        isStage2,
636                        ArmFault::LpaeTran);
637            }
638            ttbr = currState->tc->readMiscReg(snsBankedIndex(
639                MISCREG_TTBR1, currState->tc, !currState->isSecure));
640            tsz = currState->ttbcr.t1sz;
641            if (ttbr1_min >= (1ULL << 31) + (1ULL << 30))  // Lower limit >= 3 GB
642                start_lookup_level = L2;
643        } else {
644            // Out of boundaries -> translation fault
645            if (currState->isFetch)
646                return std::make_shared<PrefetchAbort>(
647                    currState->vaddr_tainted,
648                    ArmFault::TranslationLL + L1,
649                    isStage2,
650                    ArmFault::LpaeTran);
651            else
652                return std::make_shared<DataAbort>(
653                    currState->vaddr_tainted,
654                    TlbEntry::DomainType::NoAccess,
655                    currState->isWrite, ArmFault::TranslationLL + L1,
656                    isStage2, ArmFault::LpaeTran);
657        }
658
659    }
660
661    // Perform lookup (ARM ARM issue C B3.6.6)
662    if (start_lookup_level == L1) {
663        n = 5 - tsz;
664        desc_addr = mbits(ttbr, 39, n) |
665            (bits(currState->vaddr, n + 26, 30) << 3);
666        DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
667                desc_addr, currState->isSecure ? "s" : "ns");
668    } else {
669        // Skip first-level lookup
670        n = (tsz >= 2 ? 14 - tsz : 12);
671        desc_addr = mbits(ttbr, 39, n) |
672            (bits(currState->vaddr, n + 17, 21) << 3);
673        DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
674                desc_addr, currState->isSecure ? "s" : "ns");
675    }
676
677    // Trickbox address check
678    Fault f = testWalk(desc_addr, sizeof(uint64_t),
679                       TlbEntry::DomainType::NoAccess, start_lookup_level);
680    if (f) {
681        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
682        if (currState->timing) {
683            pending = false;
684            nextWalk(currState->tc);
685            currState = NULL;
686        } else {
687            currState->tc = NULL;
688            currState->req = NULL;
689        }
690        return f;
691    }
692
693    if (currState->sctlr.c == 0) {
694        flag.set(Request::UNCACHEABLE);
695    }
696
697    currState->longDesc.lookupLevel = start_lookup_level;
698    currState->longDesc.aarch64 = false;
699    currState->longDesc.grainSize = Grain4KB;
700
701    bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
702                                   sizeof(uint64_t), flag, start_lookup_level,
703                                   LongDescEventByLevel[start_lookup_level],
704                                   &TableWalker::doLongDescriptor);
705    if (!delayed) {
706        f = currState->fault;
707    }
708
709    return f;
710}
711
712unsigned
713TableWalker::adjustTableSizeAArch64(unsigned tsz)
714{
715    if (tsz < 25)
716        return 25;
717    if (tsz > 48)
718        return 48;
719    return tsz;
720}
721
722bool
723TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
724{
725    return (currPhysAddrRange != MaxPhysAddrRange &&
726            bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
727}
728
729Fault
730TableWalker::processWalkAArch64()
731{
732    assert(currState->aarch64);
733
734    DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
735            currState->vaddr_tainted, currState->tcr);
736
737    static const GrainSize GrainMap_tg0[] =
738      { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
739    static const GrainSize GrainMap_tg1[] =
740      { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
741
742    statWalkWaitTime.sample(curTick() - currState->startTime);
743
744    // Determine TTBR, table size, granule size and phys. address range
745    Addr ttbr = 0;
746    int tsz = 0, ps = 0;
747    GrainSize tg = Grain4KB; // grain size computed from tg* field
748    bool fault = false;
749
750    LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
751
752    switch (currState->el) {
753      case EL0:
754      case EL1:
755        if (isStage2) {
756            DPRINTF(TLB, " - Selecting VTTBR0 (AArch64 stage 2)\n");
757            ttbr = currState->tc->readMiscReg(MISCREG_VTTBR_EL2);
758            tsz = 64 - currState->vtcr.t0sz64;
759            tg = GrainMap_tg0[currState->vtcr.tg0];
760            // ARM DDI 0487A.f D7-2148
761            // The starting level of stage 2 translation depends on
762            // VTCR_EL2.SL0 and VTCR_EL2.TG0
763            LookupLevel __ = MAX_LOOKUP_LEVELS; // invalid level
764            uint8_t sl_tg = (currState->vtcr.sl0 << 2) | currState->vtcr.tg0;
765            static const LookupLevel SLL[] = {
766                L2, L3, L3, __, // sl0 == 0
767                L1, L2, L2, __, // sl0 == 1, etc.
768                L0, L1, L1, __,
769                __, __, __, __
770            };
771            start_lookup_level = SLL[sl_tg];
772            panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
773                     "Cannot discern lookup level from vtcr.{sl0,tg0}");
774        } else switch (bits(currState->vaddr, 63,48)) {
775          case 0:
776            DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
777            ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
778            tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
779            tg = GrainMap_tg0[currState->tcr.tg0];
780            if (bits(currState->vaddr, 63, tsz) != 0x0 ||
781                currState->tcr.epd0)
782              fault = true;
783            break;
784          case 0xffff:
785            DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
786            ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
787            tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
788            tg = GrainMap_tg1[currState->tcr.tg1];
789            if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
790                currState->tcr.epd1)
791              fault = true;
792            break;
793          default:
794            // top two bytes must be all 0s or all 1s, else invalid addr
795            fault = true;
796        }
797        ps = currState->tcr.ips;
798        break;
799      case EL2:
800        switch(bits(currState->vaddr, 63,48)) {
801          case 0:
802            DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
803            ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
804            tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
805            tg = GrainMap_tg0[currState->tcr.tg0];
806            break;
807
808          case 0xffff:
809            DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
810            ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL2);
811            tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
812            tg = GrainMap_tg1[currState->tcr.tg1];
813            if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
814                currState->tcr.epd1 || !currState->hcr.e2h)
815              fault = true;
816            break;
817
818           default:
819              // invalid addr if top two bytes are not all 0s
820              fault = true;
821        }
822        ps = currState->tcr.ips;
823        break;
824      case EL3:
825        switch(bits(currState->vaddr, 63,48)) {
826            case 0:
827                DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
828                ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
829                tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
830                tg = GrainMap_tg0[currState->tcr.tg0];
831                break;
832            default:
833                // invalid addr if top two bytes are not all 0s
834                fault = true;
835        }
836        ps = currState->tcr.ips;
837        break;
838    }
839
840    if (fault) {
841        Fault f;
842        if (currState->isFetch)
843            f =  std::make_shared<PrefetchAbort>(
844                currState->vaddr_tainted,
845                ArmFault::TranslationLL + L0, isStage2,
846                ArmFault::LpaeTran);
847        else
848            f = std::make_shared<DataAbort>(
849                currState->vaddr_tainted,
850                TlbEntry::DomainType::NoAccess,
851                currState->isWrite,
852                ArmFault::TranslationLL + L0,
853                isStage2, ArmFault::LpaeTran);
854
855        if (currState->timing) {
856            pending = false;
857            nextWalk(currState->tc);
858            currState = NULL;
859        } else {
860            currState->tc = NULL;
861            currState->req = NULL;
862        }
863        return f;
864
865    }
866
867    if (tg == ReservedGrain) {
868        warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
869                  "DEFINED behavior takes this to mean 4KB granules\n");
870        tg = Grain4KB;
871    }
872
873    // Determine starting lookup level
874    // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
875    // in ARM DDI 0487A.  These table values correspond to the cascading tests
876    // to compute the lookup level and are of the form
877    // (grain_size + N*stride), for N = {1, 2, 3}.
878    // A value of 64 will never succeed and a value of 0 will always succeed.
879    if (start_lookup_level == MAX_LOOKUP_LEVELS) {
880        struct GrainMap {
881            GrainSize grain_size;
882            unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
883        };
884        static const GrainMap GM[] = {
885            { Grain4KB,  { 39, 30,  0, 0 } },
886            { Grain16KB, { 47, 36, 25, 0 } },
887            { Grain64KB, { 64, 42, 29, 0 } }
888        };
889
890        const unsigned *lookup = NULL; // points to a lookup_level_cutoff
891
892        for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
893            if (tg == GM[i].grain_size) {
894                lookup = GM[i].lookup_level_cutoff;
895                break;
896            }
897        }
898        assert(lookup);
899
900        for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
901            if (tsz > lookup[L]) {
902                start_lookup_level = (LookupLevel) L;
903                break;
904            }
905        }
906        panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
907                 "Table walker couldn't find lookup level\n");
908    }
909
910    int stride = tg - 3;
911
912    // Determine table base address
913    int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
914    Addr base_addr = mbits(ttbr, 47, base_addr_lo);
915
916    // Determine physical address size and raise an Address Size Fault if
917    // necessary
918    int pa_range = decodePhysAddrRange64(ps);
919    // Clamp to lower limit
920    if (pa_range > physAddrRange)
921        currState->physAddrRange = physAddrRange;
922    else
923        currState->physAddrRange = pa_range;
924    if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
925        DPRINTF(TLB, "Address size fault before any lookup\n");
926        Fault f;
927        if (currState->isFetch)
928            f = std::make_shared<PrefetchAbort>(
929                currState->vaddr_tainted,
930                ArmFault::AddressSizeLL + start_lookup_level,
931                isStage2,
932                ArmFault::LpaeTran);
933        else
934            f = std::make_shared<DataAbort>(
935                currState->vaddr_tainted,
936                TlbEntry::DomainType::NoAccess,
937                currState->isWrite,
938                ArmFault::AddressSizeLL + start_lookup_level,
939                isStage2,
940                ArmFault::LpaeTran);
941
942
943        if (currState->timing) {
944            pending = false;
945            nextWalk(currState->tc);
946            currState = NULL;
947        } else {
948            currState->tc = NULL;
949            currState->req = NULL;
950        }
951        return f;
952
953   }
954
955    // Determine descriptor address
956    Addr desc_addr = base_addr |
957        (bits(currState->vaddr, tsz - 1,
958              stride * (3 - start_lookup_level) + tg) << 3);
959
960    // Trickbox address check
961    Fault f = testWalk(desc_addr, sizeof(uint64_t),
962                       TlbEntry::DomainType::NoAccess, start_lookup_level);
963    if (f) {
964        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
965        if (currState->timing) {
966            pending = false;
967            nextWalk(currState->tc);
968            currState = NULL;
969        } else {
970            currState->tc = NULL;
971            currState->req = NULL;
972        }
973        return f;
974    }
975
976    Request::Flags flag = Request::PT_WALK;
977    if (currState->sctlr.c == 0) {
978        flag.set(Request::UNCACHEABLE);
979    }
980
981    if (currState->isSecure) {
982        flag.set(Request::SECURE);
983    }
984
985    currState->longDesc.lookupLevel = start_lookup_level;
986    currState->longDesc.aarch64 = true;
987    currState->longDesc.grainSize = tg;
988
989    if (currState->timing) {
990        fetchDescriptor(desc_addr, (uint8_t*) &currState->longDesc.data,
991                        sizeof(uint64_t), flag, start_lookup_level,
992                        LongDescEventByLevel[start_lookup_level], NULL);
993    } else {
994        fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
995                        sizeof(uint64_t), flag, -1, NULL,
996                        &TableWalker::doLongDescriptor);
997        f = currState->fault;
998    }
999
1000    return f;
1001}
1002
1003void
1004TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
1005                      uint8_t texcb, bool s)
1006{
1007    // Note: tc and sctlr local variables are hiding tc and sctrl class
1008    // variables
1009    DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
1010    te.shareable = false; // default value
1011    te.nonCacheable = false;
1012    te.outerShareable = false;
1013    if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
1014        switch(texcb) {
1015          case 0: // Stongly-ordered
1016            te.nonCacheable = true;
1017            te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1018            te.shareable = true;
1019            te.innerAttrs = 1;
1020            te.outerAttrs = 0;
1021            break;
1022          case 1: // Shareable Device
1023            te.nonCacheable = true;
1024            te.mtype = TlbEntry::MemoryType::Device;
1025            te.shareable = true;
1026            te.innerAttrs = 3;
1027            te.outerAttrs = 0;
1028            break;
1029          case 2: // Outer and Inner Write-Through, no Write-Allocate
1030            te.mtype = TlbEntry::MemoryType::Normal;
1031            te.shareable = s;
1032            te.innerAttrs = 6;
1033            te.outerAttrs = bits(texcb, 1, 0);
1034            break;
1035          case 3: // Outer and Inner Write-Back, no Write-Allocate
1036            te.mtype = TlbEntry::MemoryType::Normal;
1037            te.shareable = s;
1038            te.innerAttrs = 7;
1039            te.outerAttrs = bits(texcb, 1, 0);
1040            break;
1041          case 4: // Outer and Inner Non-cacheable
1042            te.nonCacheable = true;
1043            te.mtype = TlbEntry::MemoryType::Normal;
1044            te.shareable = s;
1045            te.innerAttrs = 0;
1046            te.outerAttrs = bits(texcb, 1, 0);
1047            break;
1048          case 5: // Reserved
1049            panic("Reserved texcb value!\n");
1050            break;
1051          case 6: // Implementation Defined
1052            panic("Implementation-defined texcb value!\n");
1053            break;
1054          case 7: // Outer and Inner Write-Back, Write-Allocate
1055            te.mtype = TlbEntry::MemoryType::Normal;
1056            te.shareable = s;
1057            te.innerAttrs = 5;
1058            te.outerAttrs = 1;
1059            break;
1060          case 8: // Non-shareable Device
1061            te.nonCacheable = true;
1062            te.mtype = TlbEntry::MemoryType::Device;
1063            te.shareable = false;
1064            te.innerAttrs = 3;
1065            te.outerAttrs = 0;
1066            break;
1067          case 9 ... 15:  // Reserved
1068            panic("Reserved texcb value!\n");
1069            break;
1070          case 16 ... 31: // Cacheable Memory
1071            te.mtype = TlbEntry::MemoryType::Normal;
1072            te.shareable = s;
1073            if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1074                te.nonCacheable = true;
1075            te.innerAttrs = bits(texcb, 1, 0);
1076            te.outerAttrs = bits(texcb, 3, 2);
1077            break;
1078          default:
1079            panic("More than 32 states for 5 bits?\n");
1080        }
1081    } else {
1082        assert(tc);
1083        PRRR prrr = tc->readMiscReg(snsBankedIndex(MISCREG_PRRR,
1084                                    currState->tc, !currState->isSecure));
1085        NMRR nmrr = tc->readMiscReg(snsBankedIndex(MISCREG_NMRR,
1086                                    currState->tc, !currState->isSecure));
1087        DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1088        uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1089        switch(bits(texcb, 2,0)) {
1090          case 0:
1091            curr_tr = prrr.tr0;
1092            curr_ir = nmrr.ir0;
1093            curr_or = nmrr.or0;
1094            te.outerShareable = (prrr.nos0 == 0);
1095            break;
1096          case 1:
1097            curr_tr = prrr.tr1;
1098            curr_ir = nmrr.ir1;
1099            curr_or = nmrr.or1;
1100            te.outerShareable = (prrr.nos1 == 0);
1101            break;
1102          case 2:
1103            curr_tr = prrr.tr2;
1104            curr_ir = nmrr.ir2;
1105            curr_or = nmrr.or2;
1106            te.outerShareable = (prrr.nos2 == 0);
1107            break;
1108          case 3:
1109            curr_tr = prrr.tr3;
1110            curr_ir = nmrr.ir3;
1111            curr_or = nmrr.or3;
1112            te.outerShareable = (prrr.nos3 == 0);
1113            break;
1114          case 4:
1115            curr_tr = prrr.tr4;
1116            curr_ir = nmrr.ir4;
1117            curr_or = nmrr.or4;
1118            te.outerShareable = (prrr.nos4 == 0);
1119            break;
1120          case 5:
1121            curr_tr = prrr.tr5;
1122            curr_ir = nmrr.ir5;
1123            curr_or = nmrr.or5;
1124            te.outerShareable = (prrr.nos5 == 0);
1125            break;
1126          case 6:
1127            panic("Imp defined type\n");
1128          case 7:
1129            curr_tr = prrr.tr7;
1130            curr_ir = nmrr.ir7;
1131            curr_or = nmrr.or7;
1132            te.outerShareable = (prrr.nos7 == 0);
1133            break;
1134        }
1135
1136        switch(curr_tr) {
1137          case 0:
1138            DPRINTF(TLBVerbose, "StronglyOrdered\n");
1139            te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1140            te.nonCacheable = true;
1141            te.innerAttrs = 1;
1142            te.outerAttrs = 0;
1143            te.shareable = true;
1144            break;
1145          case 1:
1146            DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1147                    prrr.ds1, prrr.ds0, s);
1148            te.mtype = TlbEntry::MemoryType::Device;
1149            te.nonCacheable = true;
1150            te.innerAttrs = 3;
1151            te.outerAttrs = 0;
1152            if (prrr.ds1 && s)
1153                te.shareable = true;
1154            if (prrr.ds0 && !s)
1155                te.shareable = true;
1156            break;
1157          case 2:
1158            DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1159                    prrr.ns1, prrr.ns0, s);
1160            te.mtype = TlbEntry::MemoryType::Normal;
1161            if (prrr.ns1 && s)
1162                te.shareable = true;
1163            if (prrr.ns0 && !s)
1164                te.shareable = true;
1165            break;
1166          case 3:
1167            panic("Reserved type");
1168        }
1169
1170        if (te.mtype == TlbEntry::MemoryType::Normal){
1171            switch(curr_ir) {
1172              case 0:
1173                te.nonCacheable = true;
1174                te.innerAttrs = 0;
1175                break;
1176              case 1:
1177                te.innerAttrs = 5;
1178                break;
1179              case 2:
1180                te.innerAttrs = 6;
1181                break;
1182              case 3:
1183                te.innerAttrs = 7;
1184                break;
1185            }
1186
1187            switch(curr_or) {
1188              case 0:
1189                te.nonCacheable = true;
1190                te.outerAttrs = 0;
1191                break;
1192              case 1:
1193                te.outerAttrs = 1;
1194                break;
1195              case 2:
1196                te.outerAttrs = 2;
1197                break;
1198              case 3:
1199                te.outerAttrs = 3;
1200                break;
1201            }
1202        }
1203    }
1204    DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1205            "outerAttrs: %d\n",
1206            te.shareable, te.innerAttrs, te.outerAttrs);
1207    te.setAttributes(false);
1208}
1209
1210void
1211TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1212    LongDescriptor &lDescriptor)
1213{
1214    assert(_haveLPAE);
1215
1216    uint8_t attr;
1217    uint8_t sh = lDescriptor.sh();
1218    // Different format and source of attributes if this is a stage 2
1219    // translation
1220    if (isStage2) {
1221        attr = lDescriptor.memAttr();
1222        uint8_t attr_3_2 = (attr >> 2) & 0x3;
1223        uint8_t attr_1_0 =  attr       & 0x3;
1224
1225        DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1226
1227        if (attr_3_2 == 0) {
1228            te.mtype        = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1229                                            : TlbEntry::MemoryType::Device;
1230            te.outerAttrs   = 0;
1231            te.innerAttrs   = attr_1_0 == 0 ? 1 : 3;
1232            te.nonCacheable = true;
1233        } else {
1234            te.mtype        = TlbEntry::MemoryType::Normal;
1235            te.outerAttrs   = attr_3_2 == 1 ? 0 :
1236                              attr_3_2 == 2 ? 2 : 1;
1237            te.innerAttrs   = attr_1_0 == 1 ? 0 :
1238                              attr_1_0 == 2 ? 6 : 5;
1239            te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1240        }
1241    } else {
1242        uint8_t attrIndx = lDescriptor.attrIndx();
1243
1244        // LPAE always uses remapping of memory attributes, irrespective of the
1245        // value of SCTLR.TRE
1246        MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1247        int reg_as_int = snsBankedIndex(reg, currState->tc,
1248                                        !currState->isSecure);
1249        uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1250        attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1251        uint8_t attr_7_4 = bits(attr, 7, 4);
1252        uint8_t attr_3_0 = bits(attr, 3, 0);
1253        DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1254
1255        // Note: the memory subsystem only cares about the 'cacheable' memory
1256        // attribute. The other attributes are only used to fill the PAR register
1257        // accordingly to provide the illusion of full support
1258        te.nonCacheable = false;
1259
1260        switch (attr_7_4) {
1261          case 0x0:
1262            // Strongly-ordered or Device memory
1263            if (attr_3_0 == 0x0)
1264                te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1265            else if (attr_3_0 == 0x4)
1266                te.mtype = TlbEntry::MemoryType::Device;
1267            else
1268                panic("Unpredictable behavior\n");
1269            te.nonCacheable = true;
1270            te.outerAttrs   = 0;
1271            break;
1272          case 0x4:
1273            // Normal memory, Outer Non-cacheable
1274            te.mtype = TlbEntry::MemoryType::Normal;
1275            te.outerAttrs = 0;
1276            if (attr_3_0 == 0x4)
1277                // Inner Non-cacheable
1278                te.nonCacheable = true;
1279            else if (attr_3_0 < 0x8)
1280                panic("Unpredictable behavior\n");
1281            break;
1282          case 0x8:
1283          case 0x9:
1284          case 0xa:
1285          case 0xb:
1286          case 0xc:
1287          case 0xd:
1288          case 0xe:
1289          case 0xf:
1290            if (attr_7_4 & 0x4) {
1291                te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1292            } else {
1293                te.outerAttrs = 0x2;
1294            }
1295            // Normal memory, Outer Cacheable
1296            te.mtype = TlbEntry::MemoryType::Normal;
1297            if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1298                panic("Unpredictable behavior\n");
1299            break;
1300          default:
1301            panic("Unpredictable behavior\n");
1302            break;
1303        }
1304
1305        switch (attr_3_0) {
1306          case 0x0:
1307            te.innerAttrs = 0x1;
1308            break;
1309          case 0x4:
1310            te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1311            break;
1312          case 0x8:
1313          case 0x9:
1314          case 0xA:
1315          case 0xB:
1316            te.innerAttrs = 6;
1317            break;
1318          case 0xC:
1319          case 0xD:
1320          case 0xE:
1321          case 0xF:
1322            te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1323            break;
1324          default:
1325            panic("Unpredictable behavior\n");
1326            break;
1327        }
1328    }
1329
1330    te.outerShareable = sh == 2;
1331    te.shareable       = (sh & 0x2) ? true : false;
1332    te.setAttributes(true);
1333    te.attributes |= (uint64_t) attr << 56;
1334}
1335
1336void
1337TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te,
1338                             LongDescriptor &lDescriptor)
1339{
1340    uint8_t attr;
1341    uint8_t attr_hi;
1342    uint8_t attr_lo;
1343    uint8_t sh = lDescriptor.sh();
1344
1345    if (isStage2) {
1346        attr = lDescriptor.memAttr();
1347        uint8_t attr_hi = (attr >> 2) & 0x3;
1348        uint8_t attr_lo =  attr       & 0x3;
1349
1350        DPRINTF(TLBVerbose, "memAttrsAArch64 MemAttr:%#x sh:%#x\n", attr, sh);
1351
1352        if (attr_hi == 0) {
1353            te.mtype        = attr_lo == 0 ? TlbEntry::MemoryType::StronglyOrdered
1354                                            : TlbEntry::MemoryType::Device;
1355            te.outerAttrs   = 0;
1356            te.innerAttrs   = attr_lo == 0 ? 1 : 3;
1357            te.nonCacheable = true;
1358        } else {
1359            te.mtype        = TlbEntry::MemoryType::Normal;
1360            te.outerAttrs   = attr_hi == 1 ? 0 :
1361                              attr_hi == 2 ? 2 : 1;
1362            te.innerAttrs   = attr_lo == 1 ? 0 :
1363                              attr_lo == 2 ? 6 : 5;
1364            // Treat write-through memory as uncacheable, this is safe
1365            // but for performance reasons not optimal.
1366            te.nonCacheable = (attr_hi == 1) || (attr_hi == 2) ||
1367                (attr_lo == 1) || (attr_lo == 2);
1368        }
1369    } else {
1370        uint8_t attrIndx = lDescriptor.attrIndx();
1371
1372        DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1373
1374        // Select MAIR
1375        uint64_t mair;
1376        switch (currState->el) {
1377          case EL0:
1378          case EL1:
1379            mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1380            break;
1381          case EL2:
1382            mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1383            break;
1384          case EL3:
1385            mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1386            break;
1387          default:
1388            panic("Invalid exception level");
1389            break;
1390        }
1391
1392        // Select attributes
1393        attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1394        attr_lo = bits(attr, 3, 0);
1395        attr_hi = bits(attr, 7, 4);
1396
1397        // Memory type
1398        te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1399
1400        // Cacheability
1401        te.nonCacheable = false;
1402        if (te.mtype == TlbEntry::MemoryType::Device) {  // Device memory
1403            te.nonCacheable = true;
1404        }
1405        // Treat write-through memory as uncacheable, this is safe
1406        // but for performance reasons not optimal.
1407        switch (attr_hi) {
1408          case 0x1 ... 0x3: // Normal Memory, Outer Write-through transient
1409          case 0x4:         // Normal memory, Outer Non-cacheable
1410          case 0x8 ... 0xb: // Normal Memory, Outer Write-through non-transient
1411            te.nonCacheable = true;
1412        }
1413        switch (attr_lo) {
1414          case 0x1 ... 0x3: // Normal Memory, Inner Write-through transient
1415          case 0x9 ... 0xb: // Normal Memory, Inner Write-through non-transient
1416            warn_if(!attr_hi, "Unpredictable behavior");
1417            M5_FALLTHROUGH;
1418          case 0x4:         // Device-nGnRE memory or
1419                            // Normal memory, Inner Non-cacheable
1420          case 0x8:         // Device-nGRE memory or
1421                            // Normal memory, Inner Write-through non-transient
1422            te.nonCacheable = true;
1423        }
1424
1425        te.shareable       = sh == 2;
1426        te.outerShareable = (sh & 0x2) ? true : false;
1427        // Attributes formatted according to the 64-bit PAR
1428        te.attributes = ((uint64_t) attr << 56) |
1429            (1 << 11) |     // LPAE bit
1430            (te.ns << 9) |  // NS bit
1431            (sh << 7);
1432    }
1433}
1434
1435void
1436TableWalker::doL1Descriptor()
1437{
1438    if (currState->fault != NoFault) {
1439        return;
1440    }
1441
1442    currState->l1Desc.data = htog(currState->l1Desc.data,
1443                                  byteOrder(currState->tc));
1444
1445    DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1446            currState->vaddr_tainted, currState->l1Desc.data);
1447    TlbEntry te;
1448
1449    switch (currState->l1Desc.type()) {
1450      case L1Descriptor::Ignore:
1451      case L1Descriptor::Reserved:
1452        if (!currState->timing) {
1453            currState->tc = NULL;
1454            currState->req = NULL;
1455        }
1456        DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1457        if (currState->isFetch)
1458            currState->fault =
1459                std::make_shared<PrefetchAbort>(
1460                    currState->vaddr_tainted,
1461                    ArmFault::TranslationLL + L1,
1462                    isStage2,
1463                    ArmFault::VmsaTran);
1464        else
1465            currState->fault =
1466                std::make_shared<DataAbort>(
1467                    currState->vaddr_tainted,
1468                    TlbEntry::DomainType::NoAccess,
1469                    currState->isWrite,
1470                    ArmFault::TranslationLL + L1, isStage2,
1471                    ArmFault::VmsaTran);
1472        return;
1473      case L1Descriptor::Section:
1474        if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1475            /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1476              * enabled if set, do l1.Desc.setAp0() instead of generating
1477              * AccessFlag0
1478              */
1479
1480            currState->fault = std::make_shared<DataAbort>(
1481                currState->vaddr_tainted,
1482                currState->l1Desc.domain(),
1483                currState->isWrite,
1484                ArmFault::AccessFlagLL + L1,
1485                isStage2,
1486                ArmFault::VmsaTran);
1487        }
1488        if (currState->l1Desc.supersection()) {
1489            panic("Haven't implemented supersections\n");
1490        }
1491        insertTableEntry(currState->l1Desc, false);
1492        return;
1493      case L1Descriptor::PageTable:
1494        {
1495            Addr l2desc_addr;
1496            l2desc_addr = currState->l1Desc.l2Addr() |
1497                (bits(currState->vaddr, 19, 12) << 2);
1498            DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1499                    l2desc_addr, currState->isSecure ? "s" : "ns");
1500
1501            // Trickbox address check
1502            currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1503                                        currState->l1Desc.domain(), L2);
1504
1505            if (currState->fault) {
1506                if (!currState->timing) {
1507                    currState->tc = NULL;
1508                    currState->req = NULL;
1509                }
1510                return;
1511            }
1512
1513            Request::Flags flag = Request::PT_WALK;
1514            if (currState->isSecure)
1515                flag.set(Request::SECURE);
1516
1517            bool delayed;
1518            delayed = fetchDescriptor(l2desc_addr,
1519                                      (uint8_t*)&currState->l2Desc.data,
1520                                      sizeof(uint32_t), flag, -1, &doL2DescEvent,
1521                                      &TableWalker::doL2Descriptor);
1522            if (delayed) {
1523                currState->delayed = true;
1524            }
1525
1526            return;
1527        }
1528      default:
1529        panic("A new type in a 2 bit field?\n");
1530    }
1531}
1532
1533void
1534TableWalker::doLongDescriptor()
1535{
1536    if (currState->fault != NoFault) {
1537        return;
1538    }
1539
1540    currState->longDesc.data = htog(currState->longDesc.data,
1541                                    byteOrder(currState->tc));
1542
1543    DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1544            currState->longDesc.lookupLevel, currState->vaddr_tainted,
1545            currState->longDesc.data,
1546            currState->aarch64 ? "AArch64" : "long-desc.");
1547
1548    if ((currState->longDesc.type() == LongDescriptor::Block) ||
1549        (currState->longDesc.type() == LongDescriptor::Page)) {
1550        DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1551                "xn: %d, ap: %d, af: %d, type: %d\n",
1552                currState->longDesc.lookupLevel,
1553                currState->longDesc.data,
1554                currState->longDesc.pxn(),
1555                currState->longDesc.xn(),
1556                currState->longDesc.ap(),
1557                currState->longDesc.af(),
1558                currState->longDesc.type());
1559    } else {
1560        DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1561                currState->longDesc.lookupLevel,
1562                currState->longDesc.data,
1563                currState->longDesc.type());
1564    }
1565
1566    TlbEntry te;
1567
1568    switch (currState->longDesc.type()) {
1569      case LongDescriptor::Invalid:
1570        if (!currState->timing) {
1571            currState->tc = NULL;
1572            currState->req = NULL;
1573        }
1574
1575        DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1576                currState->longDesc.lookupLevel,
1577                ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1578        if (currState->isFetch)
1579            currState->fault = std::make_shared<PrefetchAbort>(
1580                currState->vaddr_tainted,
1581                ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1582                isStage2,
1583                ArmFault::LpaeTran);
1584        else
1585            currState->fault = std::make_shared<DataAbort>(
1586                currState->vaddr_tainted,
1587                TlbEntry::DomainType::NoAccess,
1588                currState->isWrite,
1589                ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1590                isStage2,
1591                ArmFault::LpaeTran);
1592        return;
1593      case LongDescriptor::Block:
1594      case LongDescriptor::Page:
1595        {
1596            bool fault = false;
1597            bool aff = false;
1598            // Check for address size fault
1599            if (checkAddrSizeFaultAArch64(
1600                    mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1601                          currState->longDesc.offsetBits()),
1602                    currState->physAddrRange)) {
1603                fault = true;
1604                DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1605                        currState->longDesc.lookupLevel);
1606            // Check for access fault
1607            } else if (currState->longDesc.af() == 0) {
1608                fault = true;
1609                DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1610                        currState->longDesc.lookupLevel);
1611                aff = true;
1612            }
1613            if (fault) {
1614                if (currState->isFetch)
1615                    currState->fault = std::make_shared<PrefetchAbort>(
1616                        currState->vaddr_tainted,
1617                        (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1618                        currState->longDesc.lookupLevel,
1619                        isStage2,
1620                        ArmFault::LpaeTran);
1621                else
1622                    currState->fault = std::make_shared<DataAbort>(
1623                        currState->vaddr_tainted,
1624                        TlbEntry::DomainType::NoAccess, currState->isWrite,
1625                        (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1626                        currState->longDesc.lookupLevel,
1627                        isStage2,
1628                        ArmFault::LpaeTran);
1629            } else {
1630                insertTableEntry(currState->longDesc, true);
1631            }
1632        }
1633        return;
1634      case LongDescriptor::Table:
1635        {
1636            // Set hierarchical permission flags
1637            currState->secureLookup = currState->secureLookup &&
1638                currState->longDesc.secureTable();
1639            currState->rwTable = currState->rwTable &&
1640                currState->longDesc.rwTable();
1641            currState->userTable = currState->userTable &&
1642                currState->longDesc.userTable();
1643            currState->xnTable = currState->xnTable ||
1644                currState->longDesc.xnTable();
1645            currState->pxnTable = currState->pxnTable ||
1646                currState->longDesc.pxnTable();
1647
1648            // Set up next level lookup
1649            Addr next_desc_addr = currState->longDesc.nextDescAddr(
1650                currState->vaddr);
1651
1652            DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1653                    currState->longDesc.lookupLevel,
1654                    currState->longDesc.lookupLevel + 1,
1655                    next_desc_addr,
1656                    currState->secureLookup ? "s" : "ns");
1657
1658            // Check for address size fault
1659            if (currState->aarch64 && checkAddrSizeFaultAArch64(
1660                    next_desc_addr, currState->physAddrRange)) {
1661                DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1662                        currState->longDesc.lookupLevel);
1663                if (currState->isFetch)
1664                    currState->fault = std::make_shared<PrefetchAbort>(
1665                        currState->vaddr_tainted,
1666                        ArmFault::AddressSizeLL
1667                        + currState->longDesc.lookupLevel,
1668                        isStage2,
1669                        ArmFault::LpaeTran);
1670                else
1671                    currState->fault = std::make_shared<DataAbort>(
1672                        currState->vaddr_tainted,
1673                        TlbEntry::DomainType::NoAccess, currState->isWrite,
1674                        ArmFault::AddressSizeLL
1675                        + currState->longDesc.lookupLevel,
1676                        isStage2,
1677                        ArmFault::LpaeTran);
1678                return;
1679            }
1680
1681            // Trickbox address check
1682            currState->fault = testWalk(
1683                next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1684                toLookupLevel(currState->longDesc.lookupLevel +1));
1685
1686            if (currState->fault) {
1687                if (!currState->timing) {
1688                    currState->tc = NULL;
1689                    currState->req = NULL;
1690                }
1691                return;
1692            }
1693
1694            Request::Flags flag = Request::PT_WALK;
1695            if (currState->secureLookup)
1696                flag.set(Request::SECURE);
1697
1698            LookupLevel L = currState->longDesc.lookupLevel =
1699                (LookupLevel) (currState->longDesc.lookupLevel + 1);
1700            Event *event = NULL;
1701            switch (L) {
1702              case L1:
1703                assert(currState->aarch64);
1704              case L2:
1705              case L3:
1706                event = LongDescEventByLevel[L];
1707                break;
1708              default:
1709                panic("Wrong lookup level in table walk\n");
1710                break;
1711            }
1712
1713            bool delayed;
1714            delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1715                                      sizeof(uint64_t), flag, -1, event,
1716                                      &TableWalker::doLongDescriptor);
1717            if (delayed) {
1718                 currState->delayed = true;
1719            }
1720        }
1721        return;
1722      default:
1723        panic("A new type in a 2 bit field?\n");
1724    }
1725}
1726
1727void
1728TableWalker::doL2Descriptor()
1729{
1730    if (currState->fault != NoFault) {
1731        return;
1732    }
1733
1734    currState->l2Desc.data = htog(currState->l2Desc.data,
1735                                  byteOrder(currState->tc));
1736
1737    DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1738            currState->vaddr_tainted, currState->l2Desc.data);
1739    TlbEntry te;
1740
1741    if (currState->l2Desc.invalid()) {
1742        DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1743        if (!currState->timing) {
1744            currState->tc = NULL;
1745            currState->req = NULL;
1746        }
1747        if (currState->isFetch)
1748            currState->fault = std::make_shared<PrefetchAbort>(
1749                    currState->vaddr_tainted,
1750                    ArmFault::TranslationLL + L2,
1751                    isStage2,
1752                    ArmFault::VmsaTran);
1753        else
1754            currState->fault = std::make_shared<DataAbort>(
1755                currState->vaddr_tainted, currState->l1Desc.domain(),
1756                currState->isWrite, ArmFault::TranslationLL + L2,
1757                isStage2,
1758                ArmFault::VmsaTran);
1759        return;
1760    }
1761
1762    if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1763        /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1764          * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1765          */
1766         DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1767                 currState->sctlr.afe, currState->l2Desc.ap());
1768
1769        currState->fault = std::make_shared<DataAbort>(
1770            currState->vaddr_tainted,
1771            TlbEntry::DomainType::NoAccess, currState->isWrite,
1772            ArmFault::AccessFlagLL + L2, isStage2,
1773            ArmFault::VmsaTran);
1774    }
1775
1776    insertTableEntry(currState->l2Desc, false);
1777}
1778
1779void
1780TableWalker::doL1DescriptorWrapper()
1781{
1782    currState = stateQueues[L1].front();
1783    currState->delayed = false;
1784    // if there's a stage2 translation object we don't need it any more
1785    if (currState->stage2Tran) {
1786        delete currState->stage2Tran;
1787        currState->stage2Tran = NULL;
1788    }
1789
1790
1791    DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1792    DPRINTF(TLBVerbose, "L1 Desc object      data: %08x\n",currState->l1Desc.data);
1793
1794    DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1795    doL1Descriptor();
1796
1797    stateQueues[L1].pop_front();
1798    // Check if fault was generated
1799    if (currState->fault != NoFault) {
1800        currState->transState->finish(currState->fault, currState->req,
1801                                      currState->tc, currState->mode);
1802        statWalksShortTerminatedAtLevel[0]++;
1803
1804        pending = false;
1805        nextWalk(currState->tc);
1806
1807        currState->req = NULL;
1808        currState->tc = NULL;
1809        currState->delayed = false;
1810        delete currState;
1811    }
1812    else if (!currState->delayed) {
1813        // delay is not set so there is no L2 to do
1814        // Don't finish the translation if a stage 2 look up is underway
1815        statWalkServiceTime.sample(curTick() - currState->startTime);
1816        DPRINTF(TLBVerbose, "calling translateTiming again\n");
1817        tlb->translateTiming(currState->req, currState->tc,
1818                             currState->transState, currState->mode);
1819        statWalksShortTerminatedAtLevel[0]++;
1820
1821        pending = false;
1822        nextWalk(currState->tc);
1823
1824        currState->req = NULL;
1825        currState->tc = NULL;
1826        currState->delayed = false;
1827        delete currState;
1828    } else {
1829        // need to do L2 descriptor
1830        stateQueues[L2].push_back(currState);
1831    }
1832    currState = NULL;
1833}
1834
1835void
1836TableWalker::doL2DescriptorWrapper()
1837{
1838    currState = stateQueues[L2].front();
1839    assert(currState->delayed);
1840    // if there's a stage2 translation object we don't need it any more
1841    if (currState->stage2Tran) {
1842        delete currState->stage2Tran;
1843        currState->stage2Tran = NULL;
1844    }
1845
1846    DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1847            currState->vaddr_tainted);
1848    doL2Descriptor();
1849
1850    // Check if fault was generated
1851    if (currState->fault != NoFault) {
1852        currState->transState->finish(currState->fault, currState->req,
1853                                      currState->tc, currState->mode);
1854        statWalksShortTerminatedAtLevel[1]++;
1855    } else {
1856        statWalkServiceTime.sample(curTick() - currState->startTime);
1857        DPRINTF(TLBVerbose, "calling translateTiming again\n");
1858        tlb->translateTiming(currState->req, currState->tc,
1859                             currState->transState, currState->mode);
1860        statWalksShortTerminatedAtLevel[1]++;
1861    }
1862
1863
1864    stateQueues[L2].pop_front();
1865    pending = false;
1866    nextWalk(currState->tc);
1867
1868    currState->req = NULL;
1869    currState->tc = NULL;
1870    currState->delayed = false;
1871
1872    delete currState;
1873    currState = NULL;
1874}
1875
1876void
1877TableWalker::doL0LongDescriptorWrapper()
1878{
1879    doLongDescriptorWrapper(L0);
1880}
1881
1882void
1883TableWalker::doL1LongDescriptorWrapper()
1884{
1885    doLongDescriptorWrapper(L1);
1886}
1887
1888void
1889TableWalker::doL2LongDescriptorWrapper()
1890{
1891    doLongDescriptorWrapper(L2);
1892}
1893
1894void
1895TableWalker::doL3LongDescriptorWrapper()
1896{
1897    doLongDescriptorWrapper(L3);
1898}
1899
1900void
1901TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1902{
1903    currState = stateQueues[curr_lookup_level].front();
1904    assert(curr_lookup_level == currState->longDesc.lookupLevel);
1905    currState->delayed = false;
1906
1907    // if there's a stage2 translation object we don't need it any more
1908    if (currState->stage2Tran) {
1909        delete currState->stage2Tran;
1910        currState->stage2Tran = NULL;
1911    }
1912
1913    DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1914            currState->vaddr_tainted);
1915    doLongDescriptor();
1916
1917    stateQueues[curr_lookup_level].pop_front();
1918
1919    if (currState->fault != NoFault) {
1920        // A fault was generated
1921        currState->transState->finish(currState->fault, currState->req,
1922                                      currState->tc, currState->mode);
1923
1924        pending = false;
1925        nextWalk(currState->tc);
1926
1927        currState->req = NULL;
1928        currState->tc = NULL;
1929        currState->delayed = false;
1930        delete currState;
1931    } else if (!currState->delayed) {
1932        // No additional lookups required
1933        DPRINTF(TLBVerbose, "calling translateTiming again\n");
1934        statWalkServiceTime.sample(curTick() - currState->startTime);
1935        tlb->translateTiming(currState->req, currState->tc,
1936                             currState->transState, currState->mode);
1937        statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1938
1939        pending = false;
1940        nextWalk(currState->tc);
1941
1942        currState->req = NULL;
1943        currState->tc = NULL;
1944        currState->delayed = false;
1945        delete currState;
1946    } else {
1947        if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1948            panic("Max. number of lookups already reached in table walk\n");
1949        // Need to perform additional lookups
1950        stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1951    }
1952    currState = NULL;
1953}
1954
1955
1956void
1957TableWalker::nextWalk(ThreadContext *tc)
1958{
1959    if (pendingQueue.size())
1960        schedule(doProcessEvent, clockEdge(Cycles(1)));
1961    else
1962        completeDrain();
1963}
1964
1965bool
1966TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1967    Request::Flags flags, int queueIndex, Event *event,
1968    void (TableWalker::*doDescriptor)())
1969{
1970    bool isTiming = currState->timing;
1971
1972    DPRINTF(TLBVerbose, "Fetching descriptor at address: 0x%x stage2Req: %d\n",
1973            descAddr, currState->stage2Req);
1974
1975    // If this translation has a stage 2 then we know descAddr is an IPA and
1976    // needs to be translated before we can access the page table. Do that
1977    // check here.
1978    if (currState->stage2Req) {
1979        Fault fault;
1980        flags = flags | TLB::MustBeOne;
1981
1982        if (isTiming) {
1983            Stage2MMU::Stage2Translation *tran = new
1984                Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1985                                             currState->vaddr);
1986            currState->stage2Tran = tran;
1987            stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1988                                     flags);
1989            fault = tran->fault;
1990        } else {
1991            fault = stage2Mmu->readDataUntimed(currState->tc,
1992                currState->vaddr, descAddr, data, numBytes, flags,
1993                currState->functional);
1994        }
1995
1996        if (fault != NoFault) {
1997            currState->fault = fault;
1998        }
1999        if (isTiming) {
2000            if (queueIndex >= 0) {
2001                DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
2002                        stateQueues[queueIndex].size());
2003                stateQueues[queueIndex].push_back(currState);
2004                currState = NULL;
2005            }
2006        } else {
2007            (this->*doDescriptor)();
2008        }
2009    } else {
2010        if (isTiming) {
2011            port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
2012                           currState->tc->getCpuPtr()->clockPeriod(),flags);
2013            if (queueIndex >= 0) {
2014                DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
2015                        stateQueues[queueIndex].size());
2016                stateQueues[queueIndex].push_back(currState);
2017                currState = NULL;
2018            }
2019        } else if (!currState->functional) {
2020            port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
2021                           currState->tc->getCpuPtr()->clockPeriod(), flags);
2022            (this->*doDescriptor)();
2023        } else {
2024            RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
2025            req->taskId(ContextSwitchTaskId::DMA);
2026            PacketPtr  pkt = new Packet(req, MemCmd::ReadReq);
2027            pkt->dataStatic(data);
2028            port->sendFunctional(pkt);
2029            (this->*doDescriptor)();
2030            delete req;
2031            delete pkt;
2032        }
2033    }
2034    return (isTiming);
2035}
2036
2037void
2038TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
2039{
2040    TlbEntry te;
2041
2042    // Create and fill a new page table entry
2043    te.valid          = true;
2044    te.longDescFormat = longDescriptor;
2045    te.isHyp          = currState->isHyp;
2046    te.asid           = currState->asid;
2047    te.vmid           = currState->vmid;
2048    te.N              = descriptor.offsetBits();
2049    te.vpn            = currState->vaddr >> te.N;
2050    te.size           = (1<<te.N) - 1;
2051    te.pfn            = descriptor.pfn();
2052    te.domain         = descriptor.domain();
2053    te.lookupLevel    = descriptor.lookupLevel;
2054    te.ns             = !descriptor.secure(haveSecurity, currState) || isStage2;
2055    te.nstid          = !currState->isSecure;
2056    te.xn             = descriptor.xn();
2057    if (currState->aarch64)
2058        te.el         = currState->el;
2059    else
2060        te.el         = 1;
2061
2062    statPageSizes[pageSizeNtoStatBin(te.N)]++;
2063    statRequestOrigin[COMPLETED][currState->isFetch]++;
2064
2065    // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2066    // as global
2067    te.global         = descriptor.global(currState) || isStage2;
2068    if (longDescriptor) {
2069        LongDescriptor lDescriptor =
2070            dynamic_cast<LongDescriptor &>(descriptor);
2071
2072        te.xn |= currState->xnTable;
2073        te.pxn = currState->pxnTable || lDescriptor.pxn();
2074        if (isStage2) {
2075            // this is actually the HAP field, but its stored in the same bit
2076            // possitions as the AP field in a stage 1 translation.
2077            te.hap = lDescriptor.ap();
2078        } else {
2079           te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2080               (currState->userTable && (descriptor.ap() & 0x1));
2081        }
2082        if (currState->aarch64)
2083            memAttrsAArch64(currState->tc, te, lDescriptor);
2084        else
2085            memAttrsLPAE(currState->tc, te, lDescriptor);
2086    } else {
2087        te.ap = descriptor.ap();
2088        memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2089                 descriptor.shareable());
2090    }
2091
2092    // Debug output
2093    DPRINTF(TLB, descriptor.dbgHeader().c_str());
2094    DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2095            te.N, te.pfn, te.size, te.global, te.valid);
2096    DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2097            "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2098            te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2099            te.nonCacheable, te.ns);
2100    DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2101            descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2102            descriptor.getRawData());
2103
2104    // Insert the entry into the TLB
2105    tlb->insert(currState->vaddr, te);
2106    if (!currState->timing) {
2107        currState->tc  = NULL;
2108        currState->req = NULL;
2109    }
2110}
2111
2112ArmISA::TableWalker *
2113ArmTableWalkerParams::create()
2114{
2115    return new ArmISA::TableWalker(this);
2116}
2117
2118LookupLevel
2119TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2120{
2121    switch (lookup_level_as_int) {
2122      case L1:
2123        return L1;
2124      case L2:
2125        return L2;
2126      case L3:
2127        return L3;
2128      default:
2129        panic("Invalid lookup level conversion");
2130    }
2131}
2132
2133/* this method keeps track of the table walker queue's residency, so
2134 * needs to be called whenever requests start and complete. */
2135void
2136TableWalker::pendingChange()
2137{
2138    unsigned n = pendingQueue.size();
2139    if ((currState != NULL) && (currState != pendingQueue.front())) {
2140        ++n;
2141    }
2142
2143    if (n != pendingReqs) {
2144        Tick now = curTick();
2145        statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2146        pendingReqs = n;
2147        pendingChangeTick = now;
2148    }
2149}
2150
2151Fault
2152TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2153                      LookupLevel lookup_level)
2154{
2155    return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2156                         currState->mode, domain, lookup_level);
2157}
2158
2159
2160uint8_t
2161TableWalker::pageSizeNtoStatBin(uint8_t N)
2162{
2163    /* for statPageSizes */
2164    switch(N) {
2165        case 12: return 0; // 4K
2166        case 14: return 1; // 16K (using 16K granule in v8-64)
2167        case 16: return 2; // 64K
2168        case 20: return 3; // 1M
2169        case 21: return 4; // 2M-LPAE
2170        case 24: return 5; // 16M
2171        case 25: return 6; // 32M (using 16K granule in v8-64)
2172        case 29: return 7; // 512M (using 64K granule in v8-64)
2173        case 30: return 8; // 1G-LPAE
2174        default:
2175            panic("unknown page size");
2176            return 255;
2177    }
2178}
2179
2180void
2181TableWalker::regStats()
2182{
2183    ClockedObject::regStats();
2184
2185    statWalks
2186        .name(name() + ".walks")
2187        .desc("Table walker walks requested")
2188        ;
2189
2190    statWalksShortDescriptor
2191        .name(name() + ".walksShort")
2192        .desc("Table walker walks initiated with short descriptors")
2193        .flags(Stats::nozero)
2194        ;
2195
2196    statWalksLongDescriptor
2197        .name(name() + ".walksLong")
2198        .desc("Table walker walks initiated with long descriptors")
2199        .flags(Stats::nozero)
2200        ;
2201
2202    statWalksShortTerminatedAtLevel
2203        .init(2)
2204        .name(name() + ".walksShortTerminationLevel")
2205        .desc("Level at which table walker walks "
2206              "with short descriptors terminate")
2207        .flags(Stats::nozero)
2208        ;
2209    statWalksShortTerminatedAtLevel.subname(0, "Level1");
2210    statWalksShortTerminatedAtLevel.subname(1, "Level2");
2211
2212    statWalksLongTerminatedAtLevel
2213        .init(4)
2214        .name(name() + ".walksLongTerminationLevel")
2215        .desc("Level at which table walker walks "
2216              "with long descriptors terminate")
2217        .flags(Stats::nozero)
2218        ;
2219    statWalksLongTerminatedAtLevel.subname(0, "Level0");
2220    statWalksLongTerminatedAtLevel.subname(1, "Level1");
2221    statWalksLongTerminatedAtLevel.subname(2, "Level2");
2222    statWalksLongTerminatedAtLevel.subname(3, "Level3");
2223
2224    statSquashedBefore
2225        .name(name() + ".walksSquashedBefore")
2226        .desc("Table walks squashed before starting")
2227        .flags(Stats::nozero)
2228        ;
2229
2230    statSquashedAfter
2231        .name(name() + ".walksSquashedAfter")
2232        .desc("Table walks squashed after completion")
2233        .flags(Stats::nozero)
2234        ;
2235
2236    statWalkWaitTime
2237        .init(16)
2238        .name(name() + ".walkWaitTime")
2239        .desc("Table walker wait (enqueue to first request) latency")
2240        .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2241        ;
2242
2243    statWalkServiceTime
2244        .init(16)
2245        .name(name() + ".walkCompletionTime")
2246        .desc("Table walker service (enqueue to completion) latency")
2247        .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2248        ;
2249
2250    statPendingWalks
2251        .init(16)
2252        .name(name() + ".walksPending")
2253        .desc("Table walker pending requests distribution")
2254        .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2255        ;
2256
2257    statPageSizes // see DDI 0487A D4-1661
2258        .init(9)
2259        .name(name() + ".walkPageSizes")
2260        .desc("Table walker page sizes translated")
2261        .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2262        ;
2263    statPageSizes.subname(0, "4K");
2264    statPageSizes.subname(1, "16K");
2265    statPageSizes.subname(2, "64K");
2266    statPageSizes.subname(3, "1M");
2267    statPageSizes.subname(4, "2M");
2268    statPageSizes.subname(5, "16M");
2269    statPageSizes.subname(6, "32M");
2270    statPageSizes.subname(7, "512M");
2271    statPageSizes.subname(8, "1G");
2272
2273    statRequestOrigin
2274        .init(2,2) // Instruction/Data, requests/completed
2275        .name(name() + ".walkRequestOrigin")
2276        .desc("Table walker requests started/completed, data/inst")
2277        .flags(Stats::total)
2278        ;
2279    statRequestOrigin.subname(0,"Requested");
2280    statRequestOrigin.subname(1,"Completed");
2281    statRequestOrigin.ysubname(0,"Data");
2282    statRequestOrigin.ysubname(1,"Inst");
2283}
2284