table_walker.cc revision 11938:9efd6816e06a
1/*
2 * Copyright (c) 2010, 2012-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 *          Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60    : MemObject(p),
61      stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62      isStage2(p->is_stage2), tlb(NULL),
63      currState(NULL), pending(false),
64      numSquashable(p->num_squash_per_cycle),
65      pendingReqs(0),
66      pendingChangeTick(curTick()),
67      doL1DescEvent(this), doL2DescEvent(this),
68      doL0LongDescEvent(this), doL1LongDescEvent(this),
69      doL2LongDescEvent(this), doL3LongDescEvent(this),
70      LongDescEventByLevel { &doL0LongDescEvent, &doL1LongDescEvent,
71                             &doL2LongDescEvent, &doL3LongDescEvent },
72      doProcessEvent(this)
73{
74    sctlr = 0;
75
76    // Cache system-level properties
77    if (FullSystem) {
78        ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
79        assert(armSys);
80        haveSecurity = armSys->haveSecurity();
81        _haveLPAE = armSys->haveLPAE();
82        _haveVirtualization = armSys->haveVirtualization();
83        physAddrRange = armSys->physAddrRange();
84        _haveLargeAsid64 = armSys->haveLargeAsid64();
85    } else {
86        haveSecurity = _haveLPAE = _haveVirtualization = false;
87        _haveLargeAsid64 = false;
88        physAddrRange = 32;
89    }
90
91}
92
93TableWalker::~TableWalker()
94{
95    ;
96}
97
98void
99TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
100{
101    stage2Mmu = m;
102    port = &m->getPort();
103    masterId = master_id;
104}
105
106void
107TableWalker::init()
108{
109    fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
110    fatal_if(!port, "Table walker must have a valid port\n");
111    fatal_if(!tlb, "Table walker must have a valid TLB\n");
112}
113
114BaseMasterPort&
115TableWalker::getMasterPort(const std::string &if_name, PortID idx)
116{
117    if (if_name == "port") {
118        if (!isStage2) {
119            return *port;
120        } else {
121            fatal("Cannot access table walker port through stage-two walker\n");
122        }
123    }
124    return MemObject::getMasterPort(if_name, idx);
125}
126
127TableWalker::WalkerState::WalkerState() :
128    tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
129    asid(0), vmid(0), isHyp(false), transState(nullptr),
130    vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
131    secureLookup(false), rwTable(false), userTable(false), xnTable(false),
132    pxnTable(false), stage2Req(false), doingStage2(false),
133    stage2Tran(nullptr), timing(false), functional(false),
134    mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
135    delayed(false), tableWalker(nullptr)
136{
137}
138
139void
140TableWalker::completeDrain()
141{
142    if (drainState() == DrainState::Draining &&
143        stateQueues[L0].empty() && stateQueues[L1].empty() &&
144        stateQueues[L2].empty() && stateQueues[L3].empty() &&
145        pendingQueue.empty()) {
146
147        DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
148        signalDrainDone();
149    }
150}
151
152DrainState
153TableWalker::drain()
154{
155    bool state_queues_not_empty = false;
156
157    for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
158        if (!stateQueues[i].empty()) {
159            state_queues_not_empty = true;
160            break;
161        }
162    }
163
164    if (state_queues_not_empty || pendingQueue.size()) {
165        DPRINTF(Drain, "TableWalker not drained\n");
166        return DrainState::Draining;
167    } else {
168        DPRINTF(Drain, "TableWalker free, no need to drain\n");
169        return DrainState::Drained;
170    }
171}
172
173void
174TableWalker::drainResume()
175{
176    if (params()->sys->isTimingMode() && currState) {
177        delete currState;
178        currState = NULL;
179        pendingChange();
180    }
181}
182
183Fault
184TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
185                  uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
186                  TLB::Translation *_trans, bool _timing, bool _functional,
187                  bool secure, TLB::ArmTranslationType tranType,
188                  bool _stage2Req)
189{
190    assert(!(_functional && _timing));
191    ++statWalks;
192
193    WalkerState *savedCurrState = NULL;
194
195    if (!currState && !_functional) {
196        // For atomic mode, a new WalkerState instance should be only created
197        // once per TLB. For timing mode, a new instance is generated for every
198        // TLB miss.
199        DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
200
201        currState = new WalkerState();
202        currState->tableWalker = this;
203    } else if (_functional) {
204        // If we are mixing functional mode with timing (or even
205        // atomic), we need to to be careful and clean up after
206        // ourselves to not risk getting into an inconsistent state.
207        DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
208        savedCurrState = currState;
209        currState = new WalkerState();
210        currState->tableWalker = this;
211    } else if (_timing) {
212        // This is a translation that was completed and then faulted again
213        // because some underlying parameters that affect the translation
214        // changed out from under us (e.g. asid). It will either be a
215        // misprediction, in which case nothing will happen or we'll use
216        // this fault to re-execute the faulting instruction which should clean
217        // up everything.
218        if (currState->vaddr_tainted == _req->getVaddr()) {
219            ++statSquashedBefore;
220            return std::make_shared<ReExec>();
221        }
222    }
223    pendingChange();
224
225    currState->startTime = curTick();
226    currState->tc = _tc;
227    // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
228    // aarch32/translation/translation/AArch32.TranslateAddress dictates
229    // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
230    currState->aarch64 = isStage2 || opModeIs64(currOpMode(_tc)) ||
231                         ((currEL(_tc) == EL0) && ELIs64(_tc, EL1));
232    currState->el = currEL(_tc);
233    currState->transState = _trans;
234    currState->req = _req;
235    currState->fault = NoFault;
236    currState->asid = _asid;
237    currState->vmid = _vmid;
238    currState->isHyp = _isHyp;
239    currState->timing = _timing;
240    currState->functional = _functional;
241    currState->mode = _mode;
242    currState->tranType = tranType;
243    currState->isSecure = secure;
244    currState->physAddrRange = physAddrRange;
245
246    /** @todo These should be cached or grabbed from cached copies in
247     the TLB, all these miscreg reads are expensive */
248    currState->vaddr_tainted = currState->req->getVaddr();
249    if (currState->aarch64)
250        currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
251                                            currState->tc, currState->el);
252    else
253        currState->vaddr = currState->vaddr_tainted;
254
255    if (currState->aarch64) {
256        if (isStage2) {
257            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
258            currState->vtcr = currState->tc->readMiscReg(MISCREG_VTCR_EL2);
259        } else switch (currState->el) {
260          case EL0:
261          case EL1:
262            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
263            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
264            break;
265          case EL2:
266            assert(_haveVirtualization);
267            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
268            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
269            break;
270          case EL3:
271            assert(haveSecurity);
272            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
273            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
274            break;
275          default:
276            panic("Invalid exception level");
277            break;
278        }
279        currState->hcr = currState->tc->readMiscReg(MISCREG_HCR_EL2);
280    } else {
281        currState->sctlr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
282            MISCREG_SCTLR, currState->tc, !currState->isSecure));
283        currState->ttbcr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
284            MISCREG_TTBCR, currState->tc, !currState->isSecure));
285        currState->htcr  = currState->tc->readMiscReg(MISCREG_HTCR);
286        currState->hcr   = currState->tc->readMiscReg(MISCREG_HCR);
287        currState->vtcr  = currState->tc->readMiscReg(MISCREG_VTCR);
288    }
289    sctlr = currState->sctlr;
290
291    currState->isFetch = (currState->mode == TLB::Execute);
292    currState->isWrite = (currState->mode == TLB::Write);
293
294    statRequestOrigin[REQUESTED][currState->isFetch]++;
295
296    // We only do a second stage of translation if we're not secure, or in
297    // hyp mode, the second stage MMU is enabled, and this table walker
298    // instance is the first stage.
299    // TODO: fix setting of doingStage2 for timing mode
300    currState->doingStage2 = false;
301    currState->stage2Req = _stage2Req && !isStage2;
302
303    bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
304                            longDescFormatInUse(currState->tc);
305
306    if (long_desc_format) {
307        // Helper variables used for hierarchical permissions
308        currState->secureLookup = currState->isSecure;
309        currState->rwTable = true;
310        currState->userTable = true;
311        currState->xnTable = false;
312        currState->pxnTable = false;
313
314        ++statWalksLongDescriptor;
315    } else {
316        ++statWalksShortDescriptor;
317    }
318
319    if (!currState->timing) {
320        Fault fault = NoFault;
321        if (currState->aarch64)
322            fault = processWalkAArch64();
323        else if (long_desc_format)
324            fault = processWalkLPAE();
325        else
326            fault = processWalk();
327
328        // If this was a functional non-timing access restore state to
329        // how we found it.
330        if (currState->functional) {
331            delete currState;
332            currState = savedCurrState;
333        }
334        return fault;
335    }
336
337    if (pending || pendingQueue.size()) {
338        pendingQueue.push_back(currState);
339        currState = NULL;
340        pendingChange();
341    } else {
342        pending = true;
343        pendingChange();
344        if (currState->aarch64)
345            return processWalkAArch64();
346        else if (long_desc_format)
347            return processWalkLPAE();
348        else
349            return processWalk();
350    }
351
352    return NoFault;
353}
354
355void
356TableWalker::processWalkWrapper()
357{
358    assert(!currState);
359    assert(pendingQueue.size());
360    pendingChange();
361    currState = pendingQueue.front();
362
363    ExceptionLevel target_el = EL0;
364    if (currState->aarch64)
365        target_el = currEL(currState->tc);
366    else
367        target_el = EL1;
368
369    // Check if a previous walk filled this request already
370    // @TODO Should this always be the TLB or should we look in the stage2 TLB?
371    TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
372            currState->vmid, currState->isHyp, currState->isSecure, true, false,
373            target_el);
374
375    // Check if we still need to have a walk for this request. If the requesting
376    // instruction has been squashed, or a previous walk has filled the TLB with
377    // a match, we just want to get rid of the walk. The latter could happen
378    // when there are multiple outstanding misses to a single page and a
379    // previous request has been successfully translated.
380    if (!currState->transState->squashed() && !te) {
381        // We've got a valid request, lets process it
382        pending = true;
383        pendingQueue.pop_front();
384        // Keep currState in case one of the processWalk... calls NULLs it
385        WalkerState *curr_state_copy = currState;
386        Fault f;
387        if (currState->aarch64)
388            f = processWalkAArch64();
389        else if (longDescFormatInUse(currState->tc) ||
390                 currState->isHyp || isStage2)
391            f = processWalkLPAE();
392        else
393            f = processWalk();
394
395        if (f != NoFault) {
396            curr_state_copy->transState->finish(f, curr_state_copy->req,
397                    curr_state_copy->tc, curr_state_copy->mode);
398
399            delete curr_state_copy;
400        }
401        return;
402    }
403
404
405    // If the instruction that we were translating for has been
406    // squashed we shouldn't bother.
407    unsigned num_squashed = 0;
408    ThreadContext *tc = currState->tc;
409    while ((num_squashed < numSquashable) && currState &&
410           (currState->transState->squashed() || te)) {
411        pendingQueue.pop_front();
412        num_squashed++;
413        statSquashedBefore++;
414
415        DPRINTF(TLB, "Squashing table walk for address %#x\n",
416                      currState->vaddr_tainted);
417
418        if (currState->transState->squashed()) {
419            // finish the translation which will delete the translation object
420            currState->transState->finish(
421                std::make_shared<UnimpFault>("Squashed Inst"),
422                currState->req, currState->tc, currState->mode);
423        } else {
424            // translate the request now that we know it will work
425            statWalkServiceTime.sample(curTick() - currState->startTime);
426            tlb->translateTiming(currState->req, currState->tc,
427                        currState->transState, currState->mode);
428
429        }
430
431        // delete the current request
432        delete currState;
433
434        // peak at the next one
435        if (pendingQueue.size()) {
436            currState = pendingQueue.front();
437            te = tlb->lookup(currState->vaddr, currState->asid,
438                currState->vmid, currState->isHyp, currState->isSecure, true,
439                false, target_el);
440        } else {
441            // Terminate the loop, nothing more to do
442            currState = NULL;
443        }
444    }
445    pendingChange();
446
447    // if we still have pending translations, schedule more work
448    nextWalk(tc);
449    currState = NULL;
450}
451
452Fault
453TableWalker::processWalk()
454{
455    Addr ttbr = 0;
456
457    // If translation isn't enabled, we shouldn't be here
458    assert(currState->sctlr.m || isStage2);
459
460    DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
461            currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
462                                                      32 - currState->ttbcr.n));
463
464    statWalkWaitTime.sample(curTick() - currState->startTime);
465
466    if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
467                                          32 - currState->ttbcr.n)) {
468        DPRINTF(TLB, " - Selecting TTBR0\n");
469        // Check if table walk is allowed when Security Extensions are enabled
470        if (haveSecurity && currState->ttbcr.pd0) {
471            if (currState->isFetch)
472                return std::make_shared<PrefetchAbort>(
473                    currState->vaddr_tainted,
474                    ArmFault::TranslationLL + L1,
475                    isStage2,
476                    ArmFault::VmsaTran);
477            else
478                return std::make_shared<DataAbort>(
479                    currState->vaddr_tainted,
480                    TlbEntry::DomainType::NoAccess, currState->isWrite,
481                    ArmFault::TranslationLL + L1, isStage2,
482                    ArmFault::VmsaTran);
483        }
484        ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
485            MISCREG_TTBR0, currState->tc, !currState->isSecure));
486    } else {
487        DPRINTF(TLB, " - Selecting TTBR1\n");
488        // Check if table walk is allowed when Security Extensions are enabled
489        if (haveSecurity && currState->ttbcr.pd1) {
490            if (currState->isFetch)
491                return std::make_shared<PrefetchAbort>(
492                    currState->vaddr_tainted,
493                    ArmFault::TranslationLL + L1,
494                    isStage2,
495                    ArmFault::VmsaTran);
496            else
497                return std::make_shared<DataAbort>(
498                    currState->vaddr_tainted,
499                    TlbEntry::DomainType::NoAccess, currState->isWrite,
500                    ArmFault::TranslationLL + L1, isStage2,
501                    ArmFault::VmsaTran);
502        }
503        ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
504            MISCREG_TTBR1, currState->tc, !currState->isSecure));
505        currState->ttbcr.n = 0;
506    }
507
508    Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
509        (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
510    DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
511            currState->isSecure ? "s" : "ns");
512
513    // Trickbox address check
514    Fault f;
515    f = testWalk(l1desc_addr, sizeof(uint32_t),
516                 TlbEntry::DomainType::NoAccess, L1);
517    if (f) {
518        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
519        if (currState->timing) {
520            pending = false;
521            nextWalk(currState->tc);
522            currState = NULL;
523        } else {
524            currState->tc = NULL;
525            currState->req = NULL;
526        }
527        return f;
528    }
529
530    Request::Flags flag = Request::PT_WALK;
531    if (currState->sctlr.c == 0) {
532        flag.set(Request::UNCACHEABLE);
533    }
534
535    if (currState->isSecure) {
536        flag.set(Request::SECURE);
537    }
538
539    bool delayed;
540    delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
541                              sizeof(uint32_t), flag, L1, &doL1DescEvent,
542                              &TableWalker::doL1Descriptor);
543    if (!delayed) {
544       f = currState->fault;
545    }
546
547    return f;
548}
549
550Fault
551TableWalker::processWalkLPAE()
552{
553    Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
554    int tsz, n;
555    LookupLevel start_lookup_level = L1;
556
557    DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
558            currState->vaddr_tainted, currState->ttbcr);
559
560    statWalkWaitTime.sample(curTick() - currState->startTime);
561
562    Request::Flags flag = Request::PT_WALK;
563    if (currState->isSecure)
564        flag.set(Request::SECURE);
565
566    // work out which base address register to use, if in hyp mode we always
567    // use HTTBR
568    if (isStage2) {
569        DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
570        ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
571        tsz  = sext<4>(currState->vtcr.t0sz);
572        start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
573    } else if (currState->isHyp) {
574        DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
575        ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
576        tsz  = currState->htcr.t0sz;
577    } else {
578        assert(longDescFormatInUse(currState->tc));
579
580        // Determine boundaries of TTBR0/1 regions
581        if (currState->ttbcr.t0sz)
582            ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
583        else if (currState->ttbcr.t1sz)
584            ttbr0_max = (1ULL << 32) -
585                (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
586        else
587            ttbr0_max = (1ULL << 32) - 1;
588        if (currState->ttbcr.t1sz)
589            ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
590        else
591            ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
592
593        // The following code snippet selects the appropriate translation table base
594        // address (TTBR0 or TTBR1) and the appropriate starting lookup level
595        // depending on the address range supported by the translation table (ARM
596        // ARM issue C B3.6.4)
597        if (currState->vaddr <= ttbr0_max) {
598            DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
599            // Check if table walk is allowed
600            if (currState->ttbcr.epd0) {
601                if (currState->isFetch)
602                    return std::make_shared<PrefetchAbort>(
603                        currState->vaddr_tainted,
604                        ArmFault::TranslationLL + L1,
605                        isStage2,
606                        ArmFault::LpaeTran);
607                else
608                    return std::make_shared<DataAbort>(
609                        currState->vaddr_tainted,
610                        TlbEntry::DomainType::NoAccess,
611                        currState->isWrite,
612                        ArmFault::TranslationLL + L1,
613                        isStage2,
614                        ArmFault::LpaeTran);
615            }
616            ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
617                MISCREG_TTBR0, currState->tc, !currState->isSecure));
618            tsz = currState->ttbcr.t0sz;
619            if (ttbr0_max < (1ULL << 30))  // Upper limit < 1 GB
620                start_lookup_level = L2;
621        } else if (currState->vaddr >= ttbr1_min) {
622            DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
623            // Check if table walk is allowed
624            if (currState->ttbcr.epd1) {
625                if (currState->isFetch)
626                    return std::make_shared<PrefetchAbort>(
627                        currState->vaddr_tainted,
628                        ArmFault::TranslationLL + L1,
629                        isStage2,
630                        ArmFault::LpaeTran);
631                else
632                    return std::make_shared<DataAbort>(
633                        currState->vaddr_tainted,
634                        TlbEntry::DomainType::NoAccess,
635                        currState->isWrite,
636                        ArmFault::TranslationLL + L1,
637                        isStage2,
638                        ArmFault::LpaeTran);
639            }
640            ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
641                MISCREG_TTBR1, currState->tc, !currState->isSecure));
642            tsz = currState->ttbcr.t1sz;
643            if (ttbr1_min >= (1ULL << 31) + (1ULL << 30))  // Lower limit >= 3 GB
644                start_lookup_level = L2;
645        } else {
646            // Out of boundaries -> translation fault
647            if (currState->isFetch)
648                return std::make_shared<PrefetchAbort>(
649                    currState->vaddr_tainted,
650                    ArmFault::TranslationLL + L1,
651                    isStage2,
652                    ArmFault::LpaeTran);
653            else
654                return std::make_shared<DataAbort>(
655                    currState->vaddr_tainted,
656                    TlbEntry::DomainType::NoAccess,
657                    currState->isWrite, ArmFault::TranslationLL + L1,
658                    isStage2, ArmFault::LpaeTran);
659        }
660
661    }
662
663    // Perform lookup (ARM ARM issue C B3.6.6)
664    if (start_lookup_level == L1) {
665        n = 5 - tsz;
666        desc_addr = mbits(ttbr, 39, n) |
667            (bits(currState->vaddr, n + 26, 30) << 3);
668        DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
669                desc_addr, currState->isSecure ? "s" : "ns");
670    } else {
671        // Skip first-level lookup
672        n = (tsz >= 2 ? 14 - tsz : 12);
673        desc_addr = mbits(ttbr, 39, n) |
674            (bits(currState->vaddr, n + 17, 21) << 3);
675        DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
676                desc_addr, currState->isSecure ? "s" : "ns");
677    }
678
679    // Trickbox address check
680    Fault f = testWalk(desc_addr, sizeof(uint64_t),
681                       TlbEntry::DomainType::NoAccess, start_lookup_level);
682    if (f) {
683        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
684        if (currState->timing) {
685            pending = false;
686            nextWalk(currState->tc);
687            currState = NULL;
688        } else {
689            currState->tc = NULL;
690            currState->req = NULL;
691        }
692        return f;
693    }
694
695    if (currState->sctlr.c == 0) {
696        flag.set(Request::UNCACHEABLE);
697    }
698
699    currState->longDesc.lookupLevel = start_lookup_level;
700    currState->longDesc.aarch64 = false;
701    currState->longDesc.grainSize = Grain4KB;
702
703    bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
704                                   sizeof(uint64_t), flag, start_lookup_level,
705                                   LongDescEventByLevel[start_lookup_level],
706                                   &TableWalker::doLongDescriptor);
707    if (!delayed) {
708        f = currState->fault;
709    }
710
711    return f;
712}
713
714unsigned
715TableWalker::adjustTableSizeAArch64(unsigned tsz)
716{
717    if (tsz < 25)
718        return 25;
719    if (tsz > 48)
720        return 48;
721    return tsz;
722}
723
724bool
725TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
726{
727    return (currPhysAddrRange != MaxPhysAddrRange &&
728            bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
729}
730
731Fault
732TableWalker::processWalkAArch64()
733{
734    assert(currState->aarch64);
735
736    DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
737            currState->vaddr_tainted, currState->tcr);
738
739    static const GrainSize GrainMapDefault[] =
740      { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
741    static const GrainSize GrainMap_EL1_tg1[] =
742      { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
743
744    statWalkWaitTime.sample(curTick() - currState->startTime);
745
746    // Determine TTBR, table size, granule size and phys. address range
747    Addr ttbr = 0;
748    int tsz = 0, ps = 0;
749    GrainSize tg = Grain4KB; // grain size computed from tg* field
750    bool fault = false;
751
752    LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
753
754    switch (currState->el) {
755      case EL0:
756      case EL1:
757        if (isStage2) {
758            DPRINTF(TLB, " - Selecting VTTBR0 (AArch64 stage 2)\n");
759            ttbr = currState->tc->readMiscReg(MISCREG_VTTBR_EL2);
760            tsz = 64 - currState->vtcr.t0sz64;
761            tg = GrainMapDefault[currState->vtcr.tg0];
762            // ARM DDI 0487A.f D7-2148
763            // The starting level of stage 2 translation depends on
764            // VTCR_EL2.SL0 and VTCR_EL2.TG0
765            LookupLevel __ = MAX_LOOKUP_LEVELS; // invalid level
766            uint8_t sl_tg = (currState->vtcr.sl0 << 2) | currState->vtcr.tg0;
767            static const LookupLevel SLL[] = {
768                L2, L3, L3, __, // sl0 == 0
769                L1, L2, L2, __, // sl0 == 1, etc.
770                L0, L1, L1, __,
771                __, __, __, __
772            };
773            start_lookup_level = SLL[sl_tg];
774            panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
775                     "Cannot discern lookup level from vtcr.{sl0,tg0}");
776        } else switch (bits(currState->vaddr, 63,48)) {
777          case 0:
778            DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
779            ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
780            tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
781            tg = GrainMapDefault[currState->tcr.tg0];
782            if (bits(currState->vaddr, 63, tsz) != 0x0 ||
783                currState->tcr.epd0)
784              fault = true;
785            break;
786          case 0xffff:
787            DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
788            ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
789            tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
790            tg = GrainMap_EL1_tg1[currState->tcr.tg1];
791            if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
792                currState->tcr.epd1)
793              fault = true;
794            break;
795          default:
796            // top two bytes must be all 0s or all 1s, else invalid addr
797            fault = true;
798        }
799        ps = currState->tcr.ips;
800        break;
801      case EL2:
802      case EL3:
803        switch(bits(currState->vaddr, 63,48)) {
804            case 0:
805                DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
806                if (currState->el == EL2)
807                    ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
808                else
809                    ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
810                tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
811                tg = GrainMapDefault[currState->tcr.tg0];
812                break;
813            default:
814                // invalid addr if top two bytes are not all 0s
815                fault = true;
816        }
817        ps = currState->tcr.ips;
818        break;
819    }
820
821    if (fault) {
822        Fault f;
823        if (currState->isFetch)
824            f =  std::make_shared<PrefetchAbort>(
825                currState->vaddr_tainted,
826                ArmFault::TranslationLL + L0, isStage2,
827                ArmFault::LpaeTran);
828        else
829            f = std::make_shared<DataAbort>(
830                currState->vaddr_tainted,
831                TlbEntry::DomainType::NoAccess,
832                currState->isWrite,
833                ArmFault::TranslationLL + L0,
834                isStage2, ArmFault::LpaeTran);
835
836        if (currState->timing) {
837            pending = false;
838            nextWalk(currState->tc);
839            currState = NULL;
840        } else {
841            currState->tc = NULL;
842            currState->req = NULL;
843        }
844        return f;
845
846    }
847
848    if (tg == ReservedGrain) {
849        warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
850                  "DEFINED behavior takes this to mean 4KB granules\n");
851        tg = Grain4KB;
852    }
853
854    // Determine starting lookup level
855    // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
856    // in ARM DDI 0487A.  These table values correspond to the cascading tests
857    // to compute the lookup level and are of the form
858    // (grain_size + N*stride), for N = {1, 2, 3}.
859    // A value of 64 will never succeed and a value of 0 will always succeed.
860    if (start_lookup_level == MAX_LOOKUP_LEVELS) {
861        struct GrainMap {
862            GrainSize grain_size;
863            unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
864        };
865        static const GrainMap GM[] = {
866            { Grain4KB,  { 39, 30,  0, 0 } },
867            { Grain16KB, { 47, 36, 25, 0 } },
868            { Grain64KB, { 64, 42, 29, 0 } }
869        };
870
871        const unsigned *lookup = NULL; // points to a lookup_level_cutoff
872
873        for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
874            if (tg == GM[i].grain_size) {
875                lookup = GM[i].lookup_level_cutoff;
876                break;
877            }
878        }
879        assert(lookup);
880
881        for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
882            if (tsz > lookup[L]) {
883                start_lookup_level = (LookupLevel) L;
884                break;
885            }
886        }
887        panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
888                 "Table walker couldn't find lookup level\n");
889    }
890
891    int stride = tg - 3;
892
893    // Determine table base address
894    int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
895    Addr base_addr = mbits(ttbr, 47, base_addr_lo);
896
897    // Determine physical address size and raise an Address Size Fault if
898    // necessary
899    int pa_range = decodePhysAddrRange64(ps);
900    // Clamp to lower limit
901    if (pa_range > physAddrRange)
902        currState->physAddrRange = physAddrRange;
903    else
904        currState->physAddrRange = pa_range;
905    if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
906        DPRINTF(TLB, "Address size fault before any lookup\n");
907        Fault f;
908        if (currState->isFetch)
909            f = std::make_shared<PrefetchAbort>(
910                currState->vaddr_tainted,
911                ArmFault::AddressSizeLL + start_lookup_level,
912                isStage2,
913                ArmFault::LpaeTran);
914        else
915            f = std::make_shared<DataAbort>(
916                currState->vaddr_tainted,
917                TlbEntry::DomainType::NoAccess,
918                currState->isWrite,
919                ArmFault::AddressSizeLL + start_lookup_level,
920                isStage2,
921                ArmFault::LpaeTran);
922
923
924        if (currState->timing) {
925            pending = false;
926            nextWalk(currState->tc);
927            currState = NULL;
928        } else {
929            currState->tc = NULL;
930            currState->req = NULL;
931        }
932        return f;
933
934   }
935
936    // Determine descriptor address
937    Addr desc_addr = base_addr |
938        (bits(currState->vaddr, tsz - 1,
939              stride * (3 - start_lookup_level) + tg) << 3);
940
941    // Trickbox address check
942    Fault f = testWalk(desc_addr, sizeof(uint64_t),
943                       TlbEntry::DomainType::NoAccess, start_lookup_level);
944    if (f) {
945        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
946        if (currState->timing) {
947            pending = false;
948            nextWalk(currState->tc);
949            currState = NULL;
950        } else {
951            currState->tc = NULL;
952            currState->req = NULL;
953        }
954        return f;
955    }
956
957    Request::Flags flag = Request::PT_WALK;
958    if (currState->sctlr.c == 0) {
959        flag.set(Request::UNCACHEABLE);
960    }
961
962    if (currState->isSecure) {
963        flag.set(Request::SECURE);
964    }
965
966    currState->longDesc.lookupLevel = start_lookup_level;
967    currState->longDesc.aarch64 = true;
968    currState->longDesc.grainSize = tg;
969
970    if (currState->timing) {
971        fetchDescriptor(desc_addr, (uint8_t*) &currState->longDesc.data,
972                        sizeof(uint64_t), flag, start_lookup_level,
973                        LongDescEventByLevel[start_lookup_level], NULL);
974    } else {
975        fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
976                        sizeof(uint64_t), flag, -1, NULL,
977                        &TableWalker::doLongDescriptor);
978        f = currState->fault;
979    }
980
981    return f;
982}
983
984void
985TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
986                      uint8_t texcb, bool s)
987{
988    // Note: tc and sctlr local variables are hiding tc and sctrl class
989    // variables
990    DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
991    te.shareable = false; // default value
992    te.nonCacheable = false;
993    te.outerShareable = false;
994    if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
995        switch(texcb) {
996          case 0: // Stongly-ordered
997            te.nonCacheable = true;
998            te.mtype = TlbEntry::MemoryType::StronglyOrdered;
999            te.shareable = true;
1000            te.innerAttrs = 1;
1001            te.outerAttrs = 0;
1002            break;
1003          case 1: // Shareable Device
1004            te.nonCacheable = true;
1005            te.mtype = TlbEntry::MemoryType::Device;
1006            te.shareable = true;
1007            te.innerAttrs = 3;
1008            te.outerAttrs = 0;
1009            break;
1010          case 2: // Outer and Inner Write-Through, no Write-Allocate
1011            te.mtype = TlbEntry::MemoryType::Normal;
1012            te.shareable = s;
1013            te.innerAttrs = 6;
1014            te.outerAttrs = bits(texcb, 1, 0);
1015            break;
1016          case 3: // Outer and Inner Write-Back, no Write-Allocate
1017            te.mtype = TlbEntry::MemoryType::Normal;
1018            te.shareable = s;
1019            te.innerAttrs = 7;
1020            te.outerAttrs = bits(texcb, 1, 0);
1021            break;
1022          case 4: // Outer and Inner Non-cacheable
1023            te.nonCacheable = true;
1024            te.mtype = TlbEntry::MemoryType::Normal;
1025            te.shareable = s;
1026            te.innerAttrs = 0;
1027            te.outerAttrs = bits(texcb, 1, 0);
1028            break;
1029          case 5: // Reserved
1030            panic("Reserved texcb value!\n");
1031            break;
1032          case 6: // Implementation Defined
1033            panic("Implementation-defined texcb value!\n");
1034            break;
1035          case 7: // Outer and Inner Write-Back, Write-Allocate
1036            te.mtype = TlbEntry::MemoryType::Normal;
1037            te.shareable = s;
1038            te.innerAttrs = 5;
1039            te.outerAttrs = 1;
1040            break;
1041          case 8: // Non-shareable Device
1042            te.nonCacheable = true;
1043            te.mtype = TlbEntry::MemoryType::Device;
1044            te.shareable = false;
1045            te.innerAttrs = 3;
1046            te.outerAttrs = 0;
1047            break;
1048          case 9 ... 15:  // Reserved
1049            panic("Reserved texcb value!\n");
1050            break;
1051          case 16 ... 31: // Cacheable Memory
1052            te.mtype = TlbEntry::MemoryType::Normal;
1053            te.shareable = s;
1054            if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1055                te.nonCacheable = true;
1056            te.innerAttrs = bits(texcb, 1, 0);
1057            te.outerAttrs = bits(texcb, 3, 2);
1058            break;
1059          default:
1060            panic("More than 32 states for 5 bits?\n");
1061        }
1062    } else {
1063        assert(tc);
1064        PRRR prrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_PRRR,
1065                                    currState->tc, !currState->isSecure));
1066        NMRR nmrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_NMRR,
1067                                    currState->tc, !currState->isSecure));
1068        DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1069        uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1070        switch(bits(texcb, 2,0)) {
1071          case 0:
1072            curr_tr = prrr.tr0;
1073            curr_ir = nmrr.ir0;
1074            curr_or = nmrr.or0;
1075            te.outerShareable = (prrr.nos0 == 0);
1076            break;
1077          case 1:
1078            curr_tr = prrr.tr1;
1079            curr_ir = nmrr.ir1;
1080            curr_or = nmrr.or1;
1081            te.outerShareable = (prrr.nos1 == 0);
1082            break;
1083          case 2:
1084            curr_tr = prrr.tr2;
1085            curr_ir = nmrr.ir2;
1086            curr_or = nmrr.or2;
1087            te.outerShareable = (prrr.nos2 == 0);
1088            break;
1089          case 3:
1090            curr_tr = prrr.tr3;
1091            curr_ir = nmrr.ir3;
1092            curr_or = nmrr.or3;
1093            te.outerShareable = (prrr.nos3 == 0);
1094            break;
1095          case 4:
1096            curr_tr = prrr.tr4;
1097            curr_ir = nmrr.ir4;
1098            curr_or = nmrr.or4;
1099            te.outerShareable = (prrr.nos4 == 0);
1100            break;
1101          case 5:
1102            curr_tr = prrr.tr5;
1103            curr_ir = nmrr.ir5;
1104            curr_or = nmrr.or5;
1105            te.outerShareable = (prrr.nos5 == 0);
1106            break;
1107          case 6:
1108            panic("Imp defined type\n");
1109          case 7:
1110            curr_tr = prrr.tr7;
1111            curr_ir = nmrr.ir7;
1112            curr_or = nmrr.or7;
1113            te.outerShareable = (prrr.nos7 == 0);
1114            break;
1115        }
1116
1117        switch(curr_tr) {
1118          case 0:
1119            DPRINTF(TLBVerbose, "StronglyOrdered\n");
1120            te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1121            te.nonCacheable = true;
1122            te.innerAttrs = 1;
1123            te.outerAttrs = 0;
1124            te.shareable = true;
1125            break;
1126          case 1:
1127            DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1128                    prrr.ds1, prrr.ds0, s);
1129            te.mtype = TlbEntry::MemoryType::Device;
1130            te.nonCacheable = true;
1131            te.innerAttrs = 3;
1132            te.outerAttrs = 0;
1133            if (prrr.ds1 && s)
1134                te.shareable = true;
1135            if (prrr.ds0 && !s)
1136                te.shareable = true;
1137            break;
1138          case 2:
1139            DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1140                    prrr.ns1, prrr.ns0, s);
1141            te.mtype = TlbEntry::MemoryType::Normal;
1142            if (prrr.ns1 && s)
1143                te.shareable = true;
1144            if (prrr.ns0 && !s)
1145                te.shareable = true;
1146            break;
1147          case 3:
1148            panic("Reserved type");
1149        }
1150
1151        if (te.mtype == TlbEntry::MemoryType::Normal){
1152            switch(curr_ir) {
1153              case 0:
1154                te.nonCacheable = true;
1155                te.innerAttrs = 0;
1156                break;
1157              case 1:
1158                te.innerAttrs = 5;
1159                break;
1160              case 2:
1161                te.innerAttrs = 6;
1162                break;
1163              case 3:
1164                te.innerAttrs = 7;
1165                break;
1166            }
1167
1168            switch(curr_or) {
1169              case 0:
1170                te.nonCacheable = true;
1171                te.outerAttrs = 0;
1172                break;
1173              case 1:
1174                te.outerAttrs = 1;
1175                break;
1176              case 2:
1177                te.outerAttrs = 2;
1178                break;
1179              case 3:
1180                te.outerAttrs = 3;
1181                break;
1182            }
1183        }
1184    }
1185    DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1186            "outerAttrs: %d\n",
1187            te.shareable, te.innerAttrs, te.outerAttrs);
1188    te.setAttributes(false);
1189}
1190
1191void
1192TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1193    LongDescriptor &lDescriptor)
1194{
1195    assert(_haveLPAE);
1196
1197    uint8_t attr;
1198    uint8_t sh = lDescriptor.sh();
1199    // Different format and source of attributes if this is a stage 2
1200    // translation
1201    if (isStage2) {
1202        attr = lDescriptor.memAttr();
1203        uint8_t attr_3_2 = (attr >> 2) & 0x3;
1204        uint8_t attr_1_0 =  attr       & 0x3;
1205
1206        DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1207
1208        if (attr_3_2 == 0) {
1209            te.mtype        = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1210                                            : TlbEntry::MemoryType::Device;
1211            te.outerAttrs   = 0;
1212            te.innerAttrs   = attr_1_0 == 0 ? 1 : 3;
1213            te.nonCacheable = true;
1214        } else {
1215            te.mtype        = TlbEntry::MemoryType::Normal;
1216            te.outerAttrs   = attr_3_2 == 1 ? 0 :
1217                              attr_3_2 == 2 ? 2 : 1;
1218            te.innerAttrs   = attr_1_0 == 1 ? 0 :
1219                              attr_1_0 == 2 ? 6 : 5;
1220            te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1221        }
1222    } else {
1223        uint8_t attrIndx = lDescriptor.attrIndx();
1224
1225        // LPAE always uses remapping of memory attributes, irrespective of the
1226        // value of SCTLR.TRE
1227        MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1228        int reg_as_int = flattenMiscRegNsBanked(reg, currState->tc,
1229                                                !currState->isSecure);
1230        uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1231        attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1232        uint8_t attr_7_4 = bits(attr, 7, 4);
1233        uint8_t attr_3_0 = bits(attr, 3, 0);
1234        DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1235
1236        // Note: the memory subsystem only cares about the 'cacheable' memory
1237        // attribute. The other attributes are only used to fill the PAR register
1238        // accordingly to provide the illusion of full support
1239        te.nonCacheable = false;
1240
1241        switch (attr_7_4) {
1242          case 0x0:
1243            // Strongly-ordered or Device memory
1244            if (attr_3_0 == 0x0)
1245                te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1246            else if (attr_3_0 == 0x4)
1247                te.mtype = TlbEntry::MemoryType::Device;
1248            else
1249                panic("Unpredictable behavior\n");
1250            te.nonCacheable = true;
1251            te.outerAttrs   = 0;
1252            break;
1253          case 0x4:
1254            // Normal memory, Outer Non-cacheable
1255            te.mtype = TlbEntry::MemoryType::Normal;
1256            te.outerAttrs = 0;
1257            if (attr_3_0 == 0x4)
1258                // Inner Non-cacheable
1259                te.nonCacheable = true;
1260            else if (attr_3_0 < 0x8)
1261                panic("Unpredictable behavior\n");
1262            break;
1263          case 0x8:
1264          case 0x9:
1265          case 0xa:
1266          case 0xb:
1267          case 0xc:
1268          case 0xd:
1269          case 0xe:
1270          case 0xf:
1271            if (attr_7_4 & 0x4) {
1272                te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1273            } else {
1274                te.outerAttrs = 0x2;
1275            }
1276            // Normal memory, Outer Cacheable
1277            te.mtype = TlbEntry::MemoryType::Normal;
1278            if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1279                panic("Unpredictable behavior\n");
1280            break;
1281          default:
1282            panic("Unpredictable behavior\n");
1283            break;
1284        }
1285
1286        switch (attr_3_0) {
1287          case 0x0:
1288            te.innerAttrs = 0x1;
1289            break;
1290          case 0x4:
1291            te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1292            break;
1293          case 0x8:
1294          case 0x9:
1295          case 0xA:
1296          case 0xB:
1297            te.innerAttrs = 6;
1298            break;
1299          case 0xC:
1300          case 0xD:
1301          case 0xE:
1302          case 0xF:
1303            te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1304            break;
1305          default:
1306            panic("Unpredictable behavior\n");
1307            break;
1308        }
1309    }
1310
1311    te.outerShareable = sh == 2;
1312    te.shareable       = (sh & 0x2) ? true : false;
1313    te.setAttributes(true);
1314    te.attributes |= (uint64_t) attr << 56;
1315}
1316
1317void
1318TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te,
1319                             LongDescriptor &lDescriptor)
1320{
1321    uint8_t attr;
1322    uint8_t attr_hi;
1323    uint8_t attr_lo;
1324    uint8_t sh = lDescriptor.sh();
1325
1326    if (isStage2) {
1327        attr = lDescriptor.memAttr();
1328        uint8_t attr_hi = (attr >> 2) & 0x3;
1329        uint8_t attr_lo =  attr       & 0x3;
1330
1331        DPRINTF(TLBVerbose, "memAttrsAArch64 MemAttr:%#x sh:%#x\n", attr, sh);
1332
1333        if (attr_hi == 0) {
1334            te.mtype        = attr_lo == 0 ? TlbEntry::MemoryType::StronglyOrdered
1335                                            : TlbEntry::MemoryType::Device;
1336            te.outerAttrs   = 0;
1337            te.innerAttrs   = attr_lo == 0 ? 1 : 3;
1338            te.nonCacheable = true;
1339        } else {
1340            te.mtype        = TlbEntry::MemoryType::Normal;
1341            te.outerAttrs   = attr_hi == 1 ? 0 :
1342                              attr_hi == 2 ? 2 : 1;
1343            te.innerAttrs   = attr_lo == 1 ? 0 :
1344                              attr_lo == 2 ? 6 : 5;
1345            // Treat write-through memory as uncacheable, this is safe
1346            // but for performance reasons not optimal.
1347            te.nonCacheable = (attr_hi == 1) || (attr_hi == 2) ||
1348                (attr_lo == 1) || (attr_lo == 2);
1349        }
1350    } else {
1351        uint8_t attrIndx = lDescriptor.attrIndx();
1352
1353        DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1354
1355        // Select MAIR
1356        uint64_t mair;
1357        switch (currState->el) {
1358          case EL0:
1359          case EL1:
1360            mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1361            break;
1362          case EL2:
1363            mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1364            break;
1365          case EL3:
1366            mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1367            break;
1368          default:
1369            panic("Invalid exception level");
1370            break;
1371        }
1372
1373        // Select attributes
1374        attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1375        attr_lo = bits(attr, 3, 0);
1376        attr_hi = bits(attr, 7, 4);
1377
1378        // Memory type
1379        te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1380
1381        // Cacheability
1382        te.nonCacheable = false;
1383        if (te.mtype == TlbEntry::MemoryType::Device) {  // Device memory
1384            te.nonCacheable = true;
1385        }
1386        // Treat write-through memory as uncacheable, this is safe
1387        // but for performance reasons not optimal.
1388        switch (attr_hi) {
1389          case 0x1 ... 0x3: // Normal Memory, Outer Write-through transient
1390          case 0x4:         // Normal memory, Outer Non-cacheable
1391          case 0x8 ... 0xb: // Normal Memory, Outer Write-through non-transient
1392            te.nonCacheable = true;
1393        }
1394        switch (attr_lo) {
1395          case 0x1 ... 0x3: // Normal Memory, Inner Write-through transient
1396          case 0x9 ... 0xb: // Normal Memory, Inner Write-through non-transient
1397            warn_if(!attr_hi, "Unpredictable behavior");
1398          case 0x4:         // Device-nGnRE memory or
1399                            // Normal memory, Inner Non-cacheable
1400          case 0x8:         // Device-nGRE memory or
1401                            // Normal memory, Inner Write-through non-transient
1402            te.nonCacheable = true;
1403        }
1404
1405        te.shareable       = sh == 2;
1406        te.outerShareable = (sh & 0x2) ? true : false;
1407        // Attributes formatted according to the 64-bit PAR
1408        te.attributes = ((uint64_t) attr << 56) |
1409            (1 << 11) |     // LPAE bit
1410            (te.ns << 9) |  // NS bit
1411            (sh << 7);
1412    }
1413}
1414
1415void
1416TableWalker::doL1Descriptor()
1417{
1418    if (currState->fault != NoFault) {
1419        return;
1420    }
1421
1422    DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1423            currState->vaddr_tainted, currState->l1Desc.data);
1424    TlbEntry te;
1425
1426    switch (currState->l1Desc.type()) {
1427      case L1Descriptor::Ignore:
1428      case L1Descriptor::Reserved:
1429        if (!currState->timing) {
1430            currState->tc = NULL;
1431            currState->req = NULL;
1432        }
1433        DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1434        if (currState->isFetch)
1435            currState->fault =
1436                std::make_shared<PrefetchAbort>(
1437                    currState->vaddr_tainted,
1438                    ArmFault::TranslationLL + L1,
1439                    isStage2,
1440                    ArmFault::VmsaTran);
1441        else
1442            currState->fault =
1443                std::make_shared<DataAbort>(
1444                    currState->vaddr_tainted,
1445                    TlbEntry::DomainType::NoAccess,
1446                    currState->isWrite,
1447                    ArmFault::TranslationLL + L1, isStage2,
1448                    ArmFault::VmsaTran);
1449        return;
1450      case L1Descriptor::Section:
1451        if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1452            /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1453              * enabled if set, do l1.Desc.setAp0() instead of generating
1454              * AccessFlag0
1455              */
1456
1457            currState->fault = std::make_shared<DataAbort>(
1458                currState->vaddr_tainted,
1459                currState->l1Desc.domain(),
1460                currState->isWrite,
1461                ArmFault::AccessFlagLL + L1,
1462                isStage2,
1463                ArmFault::VmsaTran);
1464        }
1465        if (currState->l1Desc.supersection()) {
1466            panic("Haven't implemented supersections\n");
1467        }
1468        insertTableEntry(currState->l1Desc, false);
1469        return;
1470      case L1Descriptor::PageTable:
1471        {
1472            Addr l2desc_addr;
1473            l2desc_addr = currState->l1Desc.l2Addr() |
1474                (bits(currState->vaddr, 19, 12) << 2);
1475            DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1476                    l2desc_addr, currState->isSecure ? "s" : "ns");
1477
1478            // Trickbox address check
1479            currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1480                                        currState->l1Desc.domain(), L2);
1481
1482            if (currState->fault) {
1483                if (!currState->timing) {
1484                    currState->tc = NULL;
1485                    currState->req = NULL;
1486                }
1487                return;
1488            }
1489
1490            Request::Flags flag = Request::PT_WALK;
1491            if (currState->isSecure)
1492                flag.set(Request::SECURE);
1493
1494            bool delayed;
1495            delayed = fetchDescriptor(l2desc_addr,
1496                                      (uint8_t*)&currState->l2Desc.data,
1497                                      sizeof(uint32_t), flag, -1, &doL2DescEvent,
1498                                      &TableWalker::doL2Descriptor);
1499            if (delayed) {
1500                currState->delayed = true;
1501            }
1502
1503            return;
1504        }
1505      default:
1506        panic("A new type in a 2 bit field?\n");
1507    }
1508}
1509
1510void
1511TableWalker::doLongDescriptor()
1512{
1513    if (currState->fault != NoFault) {
1514        return;
1515    }
1516
1517    DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1518            currState->longDesc.lookupLevel, currState->vaddr_tainted,
1519            currState->longDesc.data,
1520            currState->aarch64 ? "AArch64" : "long-desc.");
1521
1522    if ((currState->longDesc.type() == LongDescriptor::Block) ||
1523        (currState->longDesc.type() == LongDescriptor::Page)) {
1524        DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1525                "xn: %d, ap: %d, af: %d, type: %d\n",
1526                currState->longDesc.lookupLevel,
1527                currState->longDesc.data,
1528                currState->longDesc.pxn(),
1529                currState->longDesc.xn(),
1530                currState->longDesc.ap(),
1531                currState->longDesc.af(),
1532                currState->longDesc.type());
1533    } else {
1534        DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1535                currState->longDesc.lookupLevel,
1536                currState->longDesc.data,
1537                currState->longDesc.type());
1538    }
1539
1540    TlbEntry te;
1541
1542    switch (currState->longDesc.type()) {
1543      case LongDescriptor::Invalid:
1544        if (!currState->timing) {
1545            currState->tc = NULL;
1546            currState->req = NULL;
1547        }
1548
1549        DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1550                currState->longDesc.lookupLevel,
1551                ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1552        if (currState->isFetch)
1553            currState->fault = std::make_shared<PrefetchAbort>(
1554                currState->vaddr_tainted,
1555                ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1556                isStage2,
1557                ArmFault::LpaeTran);
1558        else
1559            currState->fault = std::make_shared<DataAbort>(
1560                currState->vaddr_tainted,
1561                TlbEntry::DomainType::NoAccess,
1562                currState->isWrite,
1563                ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1564                isStage2,
1565                ArmFault::LpaeTran);
1566        return;
1567      case LongDescriptor::Block:
1568      case LongDescriptor::Page:
1569        {
1570            bool fault = false;
1571            bool aff = false;
1572            // Check for address size fault
1573            if (checkAddrSizeFaultAArch64(
1574                    mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1575                          currState->longDesc.offsetBits()),
1576                    currState->physAddrRange)) {
1577                fault = true;
1578                DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1579                        currState->longDesc.lookupLevel);
1580            // Check for access fault
1581            } else if (currState->longDesc.af() == 0) {
1582                fault = true;
1583                DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1584                        currState->longDesc.lookupLevel);
1585                aff = true;
1586            }
1587            if (fault) {
1588                if (currState->isFetch)
1589                    currState->fault = std::make_shared<PrefetchAbort>(
1590                        currState->vaddr_tainted,
1591                        (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1592                        currState->longDesc.lookupLevel,
1593                        isStage2,
1594                        ArmFault::LpaeTran);
1595                else
1596                    currState->fault = std::make_shared<DataAbort>(
1597                        currState->vaddr_tainted,
1598                        TlbEntry::DomainType::NoAccess, currState->isWrite,
1599                        (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1600                        currState->longDesc.lookupLevel,
1601                        isStage2,
1602                        ArmFault::LpaeTran);
1603            } else {
1604                insertTableEntry(currState->longDesc, true);
1605            }
1606        }
1607        return;
1608      case LongDescriptor::Table:
1609        {
1610            // Set hierarchical permission flags
1611            currState->secureLookup = currState->secureLookup &&
1612                currState->longDesc.secureTable();
1613            currState->rwTable = currState->rwTable &&
1614                currState->longDesc.rwTable();
1615            currState->userTable = currState->userTable &&
1616                currState->longDesc.userTable();
1617            currState->xnTable = currState->xnTable ||
1618                currState->longDesc.xnTable();
1619            currState->pxnTable = currState->pxnTable ||
1620                currState->longDesc.pxnTable();
1621
1622            // Set up next level lookup
1623            Addr next_desc_addr = currState->longDesc.nextDescAddr(
1624                currState->vaddr);
1625
1626            DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1627                    currState->longDesc.lookupLevel,
1628                    currState->longDesc.lookupLevel + 1,
1629                    next_desc_addr,
1630                    currState->secureLookup ? "s" : "ns");
1631
1632            // Check for address size fault
1633            if (currState->aarch64 && checkAddrSizeFaultAArch64(
1634                    next_desc_addr, currState->physAddrRange)) {
1635                DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1636                        currState->longDesc.lookupLevel);
1637                if (currState->isFetch)
1638                    currState->fault = std::make_shared<PrefetchAbort>(
1639                        currState->vaddr_tainted,
1640                        ArmFault::AddressSizeLL
1641                        + currState->longDesc.lookupLevel,
1642                        isStage2,
1643                        ArmFault::LpaeTran);
1644                else
1645                    currState->fault = std::make_shared<DataAbort>(
1646                        currState->vaddr_tainted,
1647                        TlbEntry::DomainType::NoAccess, currState->isWrite,
1648                        ArmFault::AddressSizeLL
1649                        + currState->longDesc.lookupLevel,
1650                        isStage2,
1651                        ArmFault::LpaeTran);
1652                return;
1653            }
1654
1655            // Trickbox address check
1656            currState->fault = testWalk(
1657                next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1658                toLookupLevel(currState->longDesc.lookupLevel +1));
1659
1660            if (currState->fault) {
1661                if (!currState->timing) {
1662                    currState->tc = NULL;
1663                    currState->req = NULL;
1664                }
1665                return;
1666            }
1667
1668            Request::Flags flag = Request::PT_WALK;
1669            if (currState->secureLookup)
1670                flag.set(Request::SECURE);
1671
1672            LookupLevel L = currState->longDesc.lookupLevel =
1673                (LookupLevel) (currState->longDesc.lookupLevel + 1);
1674            Event *event = NULL;
1675            switch (L) {
1676              case L1:
1677                assert(currState->aarch64);
1678              case L2:
1679              case L3:
1680                event = LongDescEventByLevel[L];
1681                break;
1682              default:
1683                panic("Wrong lookup level in table walk\n");
1684                break;
1685            }
1686
1687            bool delayed;
1688            delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1689                                      sizeof(uint64_t), flag, -1, event,
1690                                      &TableWalker::doLongDescriptor);
1691            if (delayed) {
1692                 currState->delayed = true;
1693            }
1694        }
1695        return;
1696      default:
1697        panic("A new type in a 2 bit field?\n");
1698    }
1699}
1700
1701void
1702TableWalker::doL2Descriptor()
1703{
1704    if (currState->fault != NoFault) {
1705        return;
1706    }
1707
1708    DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1709            currState->vaddr_tainted, currState->l2Desc.data);
1710    TlbEntry te;
1711
1712    if (currState->l2Desc.invalid()) {
1713        DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1714        if (!currState->timing) {
1715            currState->tc = NULL;
1716            currState->req = NULL;
1717        }
1718        if (currState->isFetch)
1719            currState->fault = std::make_shared<PrefetchAbort>(
1720                    currState->vaddr_tainted,
1721                    ArmFault::TranslationLL + L2,
1722                    isStage2,
1723                    ArmFault::VmsaTran);
1724        else
1725            currState->fault = std::make_shared<DataAbort>(
1726                currState->vaddr_tainted, currState->l1Desc.domain(),
1727                currState->isWrite, ArmFault::TranslationLL + L2,
1728                isStage2,
1729                ArmFault::VmsaTran);
1730        return;
1731    }
1732
1733    if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1734        /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1735          * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1736          */
1737         DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1738                 currState->sctlr.afe, currState->l2Desc.ap());
1739
1740        currState->fault = std::make_shared<DataAbort>(
1741            currState->vaddr_tainted,
1742            TlbEntry::DomainType::NoAccess, currState->isWrite,
1743            ArmFault::AccessFlagLL + L2, isStage2,
1744            ArmFault::VmsaTran);
1745    }
1746
1747    insertTableEntry(currState->l2Desc, false);
1748}
1749
1750void
1751TableWalker::doL1DescriptorWrapper()
1752{
1753    currState = stateQueues[L1].front();
1754    currState->delayed = false;
1755    // if there's a stage2 translation object we don't need it any more
1756    if (currState->stage2Tran) {
1757        delete currState->stage2Tran;
1758        currState->stage2Tran = NULL;
1759    }
1760
1761
1762    DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1763    DPRINTF(TLBVerbose, "L1 Desc object      data: %08x\n",currState->l1Desc.data);
1764
1765    DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1766    doL1Descriptor();
1767
1768    stateQueues[L1].pop_front();
1769    // Check if fault was generated
1770    if (currState->fault != NoFault) {
1771        currState->transState->finish(currState->fault, currState->req,
1772                                      currState->tc, currState->mode);
1773        statWalksShortTerminatedAtLevel[0]++;
1774
1775        pending = false;
1776        nextWalk(currState->tc);
1777
1778        currState->req = NULL;
1779        currState->tc = NULL;
1780        currState->delayed = false;
1781        delete currState;
1782    }
1783    else if (!currState->delayed) {
1784        // delay is not set so there is no L2 to do
1785        // Don't finish the translation if a stage 2 look up is underway
1786        if (!currState->doingStage2) {
1787            statWalkServiceTime.sample(curTick() - currState->startTime);
1788            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1789            currState->fault = tlb->translateTiming(currState->req, currState->tc,
1790                currState->transState, currState->mode);
1791            statWalksShortTerminatedAtLevel[0]++;
1792        }
1793
1794        pending = false;
1795        nextWalk(currState->tc);
1796
1797        currState->req = NULL;
1798        currState->tc = NULL;
1799        currState->delayed = false;
1800        delete currState;
1801    } else {
1802        // need to do L2 descriptor
1803        stateQueues[L2].push_back(currState);
1804    }
1805    currState = NULL;
1806}
1807
1808void
1809TableWalker::doL2DescriptorWrapper()
1810{
1811    currState = stateQueues[L2].front();
1812    assert(currState->delayed);
1813    // if there's a stage2 translation object we don't need it any more
1814    if (currState->stage2Tran) {
1815        delete currState->stage2Tran;
1816        currState->stage2Tran = NULL;
1817    }
1818
1819    DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1820            currState->vaddr_tainted);
1821    doL2Descriptor();
1822
1823    // Check if fault was generated
1824    if (currState->fault != NoFault) {
1825        currState->transState->finish(currState->fault, currState->req,
1826                                      currState->tc, currState->mode);
1827        statWalksShortTerminatedAtLevel[1]++;
1828    }
1829    else {
1830        // Don't finish the translation if a stage 2 look up is underway
1831        if (!currState->doingStage2) {
1832            statWalkServiceTime.sample(curTick() - currState->startTime);
1833            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1834            currState->fault = tlb->translateTiming(currState->req,
1835                currState->tc, currState->transState, currState->mode);
1836            statWalksShortTerminatedAtLevel[1]++;
1837        }
1838    }
1839
1840
1841    stateQueues[L2].pop_front();
1842    pending = false;
1843    nextWalk(currState->tc);
1844
1845    currState->req = NULL;
1846    currState->tc = NULL;
1847    currState->delayed = false;
1848
1849    delete currState;
1850    currState = NULL;
1851}
1852
1853void
1854TableWalker::doL0LongDescriptorWrapper()
1855{
1856    doLongDescriptorWrapper(L0);
1857}
1858
1859void
1860TableWalker::doL1LongDescriptorWrapper()
1861{
1862    doLongDescriptorWrapper(L1);
1863}
1864
1865void
1866TableWalker::doL2LongDescriptorWrapper()
1867{
1868    doLongDescriptorWrapper(L2);
1869}
1870
1871void
1872TableWalker::doL3LongDescriptorWrapper()
1873{
1874    doLongDescriptorWrapper(L3);
1875}
1876
1877void
1878TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1879{
1880    currState = stateQueues[curr_lookup_level].front();
1881    assert(curr_lookup_level == currState->longDesc.lookupLevel);
1882    currState->delayed = false;
1883
1884    // if there's a stage2 translation object we don't need it any more
1885    if (currState->stage2Tran) {
1886        delete currState->stage2Tran;
1887        currState->stage2Tran = NULL;
1888    }
1889
1890    DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1891            currState->vaddr_tainted);
1892    doLongDescriptor();
1893
1894    stateQueues[curr_lookup_level].pop_front();
1895
1896    if (currState->fault != NoFault) {
1897        // A fault was generated
1898        currState->transState->finish(currState->fault, currState->req,
1899                                      currState->tc, currState->mode);
1900
1901        pending = false;
1902        nextWalk(currState->tc);
1903
1904        currState->req = NULL;
1905        currState->tc = NULL;
1906        currState->delayed = false;
1907        delete currState;
1908    } else if (!currState->delayed) {
1909        // No additional lookups required
1910        // Don't finish the translation if a stage 2 look up is underway
1911        if (!currState->doingStage2) {
1912            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1913            statWalkServiceTime.sample(curTick() - currState->startTime);
1914            currState->fault = tlb->translateTiming(currState->req, currState->tc,
1915                                                    currState->transState,
1916                                                    currState->mode);
1917            statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1918        }
1919
1920        pending = false;
1921        nextWalk(currState->tc);
1922
1923        currState->req = NULL;
1924        currState->tc = NULL;
1925        currState->delayed = false;
1926        delete currState;
1927    } else {
1928        if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1929            panic("Max. number of lookups already reached in table walk\n");
1930        // Need to perform additional lookups
1931        stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1932    }
1933    currState = NULL;
1934}
1935
1936
1937void
1938TableWalker::nextWalk(ThreadContext *tc)
1939{
1940    if (pendingQueue.size())
1941        schedule(doProcessEvent, clockEdge(Cycles(1)));
1942    else
1943        completeDrain();
1944}
1945
1946bool
1947TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1948    Request::Flags flags, int queueIndex, Event *event,
1949    void (TableWalker::*doDescriptor)())
1950{
1951    bool isTiming = currState->timing;
1952
1953    DPRINTF(TLBVerbose, "Fetching descriptor at address: 0x%x stage2Req: %d\n",
1954            descAddr, currState->stage2Req);
1955
1956    // If this translation has a stage 2 then we know descAddr is an IPA and
1957    // needs to be translated before we can access the page table. Do that
1958    // check here.
1959    if (currState->stage2Req) {
1960        Fault fault;
1961        flags = flags | TLB::MustBeOne;
1962
1963        if (isTiming) {
1964            Stage2MMU::Stage2Translation *tran = new
1965                Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1966                                             currState->vaddr);
1967            currState->stage2Tran = tran;
1968            stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1969                                     flags);
1970            fault = tran->fault;
1971        } else {
1972            fault = stage2Mmu->readDataUntimed(currState->tc,
1973                currState->vaddr, descAddr, data, numBytes, flags,
1974                currState->functional);
1975        }
1976
1977        if (fault != NoFault) {
1978            currState->fault = fault;
1979        }
1980        if (isTiming) {
1981            if (queueIndex >= 0) {
1982                DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1983                        stateQueues[queueIndex].size());
1984                stateQueues[queueIndex].push_back(currState);
1985                currState = NULL;
1986            }
1987        } else {
1988            (this->*doDescriptor)();
1989        }
1990    } else {
1991        if (isTiming) {
1992            port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
1993                           currState->tc->getCpuPtr()->clockPeriod(),flags);
1994            if (queueIndex >= 0) {
1995                DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1996                        stateQueues[queueIndex].size());
1997                stateQueues[queueIndex].push_back(currState);
1998                currState = NULL;
1999            }
2000        } else if (!currState->functional) {
2001            port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
2002                           currState->tc->getCpuPtr()->clockPeriod(), flags);
2003            (this->*doDescriptor)();
2004        } else {
2005            RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
2006            req->taskId(ContextSwitchTaskId::DMA);
2007            PacketPtr  pkt = new Packet(req, MemCmd::ReadReq);
2008            pkt->dataStatic(data);
2009            port->sendFunctional(pkt);
2010            (this->*doDescriptor)();
2011            delete req;
2012            delete pkt;
2013        }
2014    }
2015    return (isTiming);
2016}
2017
2018void
2019TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
2020{
2021    TlbEntry te;
2022
2023    // Create and fill a new page table entry
2024    te.valid          = true;
2025    te.longDescFormat = longDescriptor;
2026    te.isHyp          = currState->isHyp;
2027    te.asid           = currState->asid;
2028    te.vmid           = currState->vmid;
2029    te.N              = descriptor.offsetBits();
2030    te.vpn            = currState->vaddr >> te.N;
2031    te.size           = (1<<te.N) - 1;
2032    te.pfn            = descriptor.pfn();
2033    te.domain         = descriptor.domain();
2034    te.lookupLevel    = descriptor.lookupLevel;
2035    te.ns             = !descriptor.secure(haveSecurity, currState) || isStage2;
2036    te.nstid          = !currState->isSecure;
2037    te.xn             = descriptor.xn();
2038    if (currState->aarch64)
2039        te.el         = currState->el;
2040    else
2041        te.el         = 1;
2042
2043    statPageSizes[pageSizeNtoStatBin(te.N)]++;
2044    statRequestOrigin[COMPLETED][currState->isFetch]++;
2045
2046    // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2047    // as global
2048    te.global         = descriptor.global(currState) || isStage2;
2049    if (longDescriptor) {
2050        LongDescriptor lDescriptor =
2051            dynamic_cast<LongDescriptor &>(descriptor);
2052
2053        te.xn |= currState->xnTable;
2054        te.pxn = currState->pxnTable || lDescriptor.pxn();
2055        if (isStage2) {
2056            // this is actually the HAP field, but its stored in the same bit
2057            // possitions as the AP field in a stage 1 translation.
2058            te.hap = lDescriptor.ap();
2059        } else {
2060           te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2061               (currState->userTable && (descriptor.ap() & 0x1));
2062        }
2063        if (currState->aarch64)
2064            memAttrsAArch64(currState->tc, te, lDescriptor);
2065        else
2066            memAttrsLPAE(currState->tc, te, lDescriptor);
2067    } else {
2068        te.ap = descriptor.ap();
2069        memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2070                 descriptor.shareable());
2071    }
2072
2073    // Debug output
2074    DPRINTF(TLB, descriptor.dbgHeader().c_str());
2075    DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2076            te.N, te.pfn, te.size, te.global, te.valid);
2077    DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2078            "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2079            te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2080            te.nonCacheable, te.ns);
2081    DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2082            descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2083            descriptor.getRawData());
2084
2085    // Insert the entry into the TLB
2086    tlb->insert(currState->vaddr, te);
2087    if (!currState->timing) {
2088        currState->tc  = NULL;
2089        currState->req = NULL;
2090    }
2091}
2092
2093ArmISA::TableWalker *
2094ArmTableWalkerParams::create()
2095{
2096    return new ArmISA::TableWalker(this);
2097}
2098
2099LookupLevel
2100TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2101{
2102    switch (lookup_level_as_int) {
2103      case L1:
2104        return L1;
2105      case L2:
2106        return L2;
2107      case L3:
2108        return L3;
2109      default:
2110        panic("Invalid lookup level conversion");
2111    }
2112}
2113
2114/* this method keeps track of the table walker queue's residency, so
2115 * needs to be called whenever requests start and complete. */
2116void
2117TableWalker::pendingChange()
2118{
2119    unsigned n = pendingQueue.size();
2120    if ((currState != NULL) && (currState != pendingQueue.front())) {
2121        ++n;
2122    }
2123
2124    if (n != pendingReqs) {
2125        Tick now = curTick();
2126        statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2127        pendingReqs = n;
2128        pendingChangeTick = now;
2129    }
2130}
2131
2132Fault
2133TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2134                      LookupLevel lookup_level)
2135{
2136    return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2137                         currState->mode, domain, lookup_level);
2138}
2139
2140
2141uint8_t
2142TableWalker::pageSizeNtoStatBin(uint8_t N)
2143{
2144    /* for statPageSizes */
2145    switch(N) {
2146        case 12: return 0; // 4K
2147        case 14: return 1; // 16K (using 16K granule in v8-64)
2148        case 16: return 2; // 64K
2149        case 20: return 3; // 1M
2150        case 21: return 4; // 2M-LPAE
2151        case 24: return 5; // 16M
2152        case 25: return 6; // 32M (using 16K granule in v8-64)
2153        case 29: return 7; // 512M (using 64K granule in v8-64)
2154        case 30: return 8; // 1G-LPAE
2155        default:
2156            panic("unknown page size");
2157            return 255;
2158    }
2159}
2160
2161void
2162TableWalker::regStats()
2163{
2164    ClockedObject::regStats();
2165
2166    statWalks
2167        .name(name() + ".walks")
2168        .desc("Table walker walks requested")
2169        ;
2170
2171    statWalksShortDescriptor
2172        .name(name() + ".walksShort")
2173        .desc("Table walker walks initiated with short descriptors")
2174        .flags(Stats::nozero)
2175        ;
2176
2177    statWalksLongDescriptor
2178        .name(name() + ".walksLong")
2179        .desc("Table walker walks initiated with long descriptors")
2180        .flags(Stats::nozero)
2181        ;
2182
2183    statWalksShortTerminatedAtLevel
2184        .init(2)
2185        .name(name() + ".walksShortTerminationLevel")
2186        .desc("Level at which table walker walks "
2187              "with short descriptors terminate")
2188        .flags(Stats::nozero)
2189        ;
2190    statWalksShortTerminatedAtLevel.subname(0, "Level1");
2191    statWalksShortTerminatedAtLevel.subname(1, "Level2");
2192
2193    statWalksLongTerminatedAtLevel
2194        .init(4)
2195        .name(name() + ".walksLongTerminationLevel")
2196        .desc("Level at which table walker walks "
2197              "with long descriptors terminate")
2198        .flags(Stats::nozero)
2199        ;
2200    statWalksLongTerminatedAtLevel.subname(0, "Level0");
2201    statWalksLongTerminatedAtLevel.subname(1, "Level1");
2202    statWalksLongTerminatedAtLevel.subname(2, "Level2");
2203    statWalksLongTerminatedAtLevel.subname(3, "Level3");
2204
2205    statSquashedBefore
2206        .name(name() + ".walksSquashedBefore")
2207        .desc("Table walks squashed before starting")
2208        .flags(Stats::nozero)
2209        ;
2210
2211    statSquashedAfter
2212        .name(name() + ".walksSquashedAfter")
2213        .desc("Table walks squashed after completion")
2214        .flags(Stats::nozero)
2215        ;
2216
2217    statWalkWaitTime
2218        .init(16)
2219        .name(name() + ".walkWaitTime")
2220        .desc("Table walker wait (enqueue to first request) latency")
2221        .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2222        ;
2223
2224    statWalkServiceTime
2225        .init(16)
2226        .name(name() + ".walkCompletionTime")
2227        .desc("Table walker service (enqueue to completion) latency")
2228        .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2229        ;
2230
2231    statPendingWalks
2232        .init(16)
2233        .name(name() + ".walksPending")
2234        .desc("Table walker pending requests distribution")
2235        .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2236        ;
2237
2238    statPageSizes // see DDI 0487A D4-1661
2239        .init(9)
2240        .name(name() + ".walkPageSizes")
2241        .desc("Table walker page sizes translated")
2242        .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2243        ;
2244    statPageSizes.subname(0, "4K");
2245    statPageSizes.subname(1, "16K");
2246    statPageSizes.subname(2, "64K");
2247    statPageSizes.subname(3, "1M");
2248    statPageSizes.subname(4, "2M");
2249    statPageSizes.subname(5, "16M");
2250    statPageSizes.subname(6, "32M");
2251    statPageSizes.subname(7, "512M");
2252    statPageSizes.subname(8, "1G");
2253
2254    statRequestOrigin
2255        .init(2,2) // Instruction/Data, requests/completed
2256        .name(name() + ".walkRequestOrigin")
2257        .desc("Table walker requests started/completed, data/inst")
2258        .flags(Stats::total)
2259        ;
2260    statRequestOrigin.subname(0,"Requested");
2261    statRequestOrigin.subname(1,"Completed");
2262    statRequestOrigin.ysubname(0,"Data");
2263    statRequestOrigin.ysubname(1,"Inst");
2264}
2265