table_walker.cc revision 11517
1/*
2 * Copyright (c) 2010, 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 *          Giacomo Gabrielli
39 */
40#include "arch/arm/table_walker.hh"
41
42#include <memory>
43
44#include "arch/arm/faults.hh"
45#include "arch/arm/stage2_mmu.hh"
46#include "arch/arm/system.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "dev/dma_device.hh"
55#include "sim/system.hh"
56
57using namespace ArmISA;
58
59TableWalker::TableWalker(const Params *p)
60    : MemObject(p),
61      stage2Mmu(NULL), port(NULL), masterId(Request::invldMasterId),
62      isStage2(p->is_stage2), tlb(NULL),
63      currState(NULL), pending(false),
64      numSquashable(p->num_squash_per_cycle),
65      pendingReqs(0),
66      pendingChangeTick(curTick()),
67      doL1DescEvent(this), doL2DescEvent(this),
68      doL0LongDescEvent(this), doL1LongDescEvent(this), doL2LongDescEvent(this),
69      doL3LongDescEvent(this),
70      doProcessEvent(this)
71{
72    sctlr = 0;
73
74    // Cache system-level properties
75    if (FullSystem) {
76        ArmSystem *armSys = dynamic_cast<ArmSystem *>(p->sys);
77        assert(armSys);
78        haveSecurity = armSys->haveSecurity();
79        _haveLPAE = armSys->haveLPAE();
80        _haveVirtualization = armSys->haveVirtualization();
81        physAddrRange = armSys->physAddrRange();
82        _haveLargeAsid64 = armSys->haveLargeAsid64();
83    } else {
84        haveSecurity = _haveLPAE = _haveVirtualization = false;
85        _haveLargeAsid64 = false;
86        physAddrRange = 32;
87    }
88
89}
90
91TableWalker::~TableWalker()
92{
93    ;
94}
95
96void
97TableWalker::setMMU(Stage2MMU *m, MasterID master_id)
98{
99    stage2Mmu = m;
100    port = &m->getPort();
101    masterId = master_id;
102}
103
104void
105TableWalker::init()
106{
107    fatal_if(!stage2Mmu, "Table walker must have a valid stage-2 MMU\n");
108    fatal_if(!port, "Table walker must have a valid port\n");
109    fatal_if(!tlb, "Table walker must have a valid TLB\n");
110}
111
112BaseMasterPort&
113TableWalker::getMasterPort(const std::string &if_name, PortID idx)
114{
115    if (if_name == "port") {
116        if (!isStage2) {
117            return *port;
118        } else {
119            fatal("Cannot access table walker port through stage-two walker\n");
120        }
121    }
122    return MemObject::getMasterPort(if_name, idx);
123}
124
125TableWalker::WalkerState::WalkerState() :
126    tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
127    asid(0), vmid(0), isHyp(false), transState(nullptr),
128    vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
129    secureLookup(false), rwTable(false), userTable(false), xnTable(false),
130    pxnTable(false), stage2Req(false), doingStage2(false),
131    stage2Tran(nullptr), timing(false), functional(false),
132    mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
133    delayed(false), tableWalker(nullptr)
134{
135}
136
137void
138TableWalker::completeDrain()
139{
140    if (drainState() == DrainState::Draining &&
141        stateQueues[L1].empty() && stateQueues[L2].empty() &&
142        pendingQueue.empty()) {
143
144        DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
145        signalDrainDone();
146    }
147}
148
149DrainState
150TableWalker::drain()
151{
152    bool state_queues_not_empty = false;
153
154    for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
155        if (!stateQueues[i].empty()) {
156            state_queues_not_empty = true;
157            break;
158        }
159    }
160
161    if (state_queues_not_empty || pendingQueue.size()) {
162        DPRINTF(Drain, "TableWalker not drained\n");
163        return DrainState::Draining;
164    } else {
165        DPRINTF(Drain, "TableWalker free, no need to drain\n");
166        return DrainState::Drained;
167    }
168}
169
170void
171TableWalker::drainResume()
172{
173    if (params()->sys->isTimingMode() && currState) {
174        delete currState;
175        currState = NULL;
176        pendingChange();
177    }
178}
179
180Fault
181TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
182                  uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
183                  TLB::Translation *_trans, bool _timing, bool _functional,
184                  bool secure, TLB::ArmTranslationType tranType)
185{
186    assert(!(_functional && _timing));
187    ++statWalks;
188
189    WalkerState *savedCurrState = NULL;
190
191    if (!currState && !_functional) {
192        // For atomic mode, a new WalkerState instance should be only created
193        // once per TLB. For timing mode, a new instance is generated for every
194        // TLB miss.
195        DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
196
197        currState = new WalkerState();
198        currState->tableWalker = this;
199    } else if (_functional) {
200        // If we are mixing functional mode with timing (or even
201        // atomic), we need to to be careful and clean up after
202        // ourselves to not risk getting into an inconsistent state.
203        DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
204        savedCurrState = currState;
205        currState = new WalkerState();
206        currState->tableWalker = this;
207    } else if (_timing) {
208        // This is a translation that was completed and then faulted again
209        // because some underlying parameters that affect the translation
210        // changed out from under us (e.g. asid). It will either be a
211        // misprediction, in which case nothing will happen or we'll use
212        // this fault to re-execute the faulting instruction which should clean
213        // up everything.
214        if (currState->vaddr_tainted == _req->getVaddr()) {
215            ++statSquashedBefore;
216            return std::make_shared<ReExec>();
217        }
218    }
219    pendingChange();
220
221    currState->startTime = curTick();
222    currState->tc = _tc;
223    // ARM DDI 0487A.f (ARMv8 ARM) pg J8-5672
224    // aarch32/translation/translation/AArch32.TranslateAddress dictates
225    // even AArch32 EL0 will use AArch64 translation if EL1 is in AArch64.
226    currState->aarch64 = opModeIs64(currOpMode(_tc)) ||
227                         ((currEL(_tc) == EL0) && ELIs64(_tc, EL1));
228    currState->el = currEL(_tc);
229    currState->transState = _trans;
230    currState->req = _req;
231    currState->fault = NoFault;
232    currState->asid = _asid;
233    currState->vmid = _vmid;
234    currState->isHyp = _isHyp;
235    currState->timing = _timing;
236    currState->functional = _functional;
237    currState->mode = _mode;
238    currState->tranType = tranType;
239    currState->isSecure = secure;
240    currState->physAddrRange = physAddrRange;
241
242    /** @todo These should be cached or grabbed from cached copies in
243     the TLB, all these miscreg reads are expensive */
244    currState->vaddr_tainted = currState->req->getVaddr();
245    if (currState->aarch64)
246        currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
247                                            currState->tc, currState->el);
248    else
249        currState->vaddr = currState->vaddr_tainted;
250
251    if (currState->aarch64) {
252        switch (currState->el) {
253          case EL0:
254          case EL1:
255            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
256            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
257            break;
258          // @todo: uncomment this to enable Virtualization
259          // case EL2:
260          //   assert(haveVirtualization);
261          //   currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
262          //   currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
263          //   break;
264          case EL3:
265            assert(haveSecurity);
266            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
267            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
268            break;
269          default:
270            panic("Invalid exception level");
271            break;
272        }
273    } else {
274        currState->sctlr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
275            MISCREG_SCTLR, currState->tc, !currState->isSecure));
276        currState->ttbcr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
277            MISCREG_TTBCR, currState->tc, !currState->isSecure));
278        currState->htcr  = currState->tc->readMiscReg(MISCREG_HTCR);
279        currState->hcr   = currState->tc->readMiscReg(MISCREG_HCR);
280        currState->vtcr  = currState->tc->readMiscReg(MISCREG_VTCR);
281    }
282    sctlr = currState->sctlr;
283
284    currState->isFetch = (currState->mode == TLB::Execute);
285    currState->isWrite = (currState->mode == TLB::Write);
286
287    statRequestOrigin[REQUESTED][currState->isFetch]++;
288
289    // We only do a second stage of translation if we're not secure, or in
290    // hyp mode, the second stage MMU is enabled, and this table walker
291    // instance is the first stage.
292    currState->doingStage2 = false;
293    // @todo: for now disable this in AArch64 (HCR is not set)
294    currState->stage2Req = !currState->aarch64 && currState->hcr.vm &&
295                           !isStage2 && !currState->isSecure && !currState->isHyp;
296
297    bool long_desc_format = currState->aarch64 || _isHyp || isStage2 ||
298                            longDescFormatInUse(currState->tc);
299
300    if (long_desc_format) {
301        // Helper variables used for hierarchical permissions
302        currState->secureLookup = currState->isSecure;
303        currState->rwTable = true;
304        currState->userTable = true;
305        currState->xnTable = false;
306        currState->pxnTable = false;
307
308        ++statWalksLongDescriptor;
309    } else {
310        ++statWalksShortDescriptor;
311    }
312
313    if (!currState->timing) {
314        Fault fault = NoFault;
315        if (currState->aarch64)
316            fault = processWalkAArch64();
317        else if (long_desc_format)
318            fault = processWalkLPAE();
319        else
320            fault = processWalk();
321
322        // If this was a functional non-timing access restore state to
323        // how we found it.
324        if (currState->functional) {
325            delete currState;
326            currState = savedCurrState;
327        }
328        return fault;
329    }
330
331    if (pending || pendingQueue.size()) {
332        pendingQueue.push_back(currState);
333        currState = NULL;
334        pendingChange();
335    } else {
336        pending = true;
337        pendingChange();
338        if (currState->aarch64)
339            return processWalkAArch64();
340        else if (long_desc_format)
341            return processWalkLPAE();
342        else
343            return processWalk();
344    }
345
346    return NoFault;
347}
348
349void
350TableWalker::processWalkWrapper()
351{
352    assert(!currState);
353    assert(pendingQueue.size());
354    pendingChange();
355    currState = pendingQueue.front();
356
357    ExceptionLevel target_el = EL0;
358    if (currState->aarch64)
359        target_el = currEL(currState->tc);
360    else
361        target_el = EL1;
362
363    // Check if a previous walk filled this request already
364    // @TODO Should this always be the TLB or should we look in the stage2 TLB?
365    TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
366            currState->vmid, currState->isHyp, currState->isSecure, true, false,
367            target_el);
368
369    // Check if we still need to have a walk for this request. If the requesting
370    // instruction has been squashed, or a previous walk has filled the TLB with
371    // a match, we just want to get rid of the walk. The latter could happen
372    // when there are multiple outstanding misses to a single page and a
373    // previous request has been successfully translated.
374    if (!currState->transState->squashed() && !te) {
375        // We've got a valid request, lets process it
376        pending = true;
377        pendingQueue.pop_front();
378        // Keep currState in case one of the processWalk... calls NULLs it
379        WalkerState *curr_state_copy = currState;
380        Fault f;
381        if (currState->aarch64)
382            f = processWalkAArch64();
383        else if (longDescFormatInUse(currState->tc) ||
384                 currState->isHyp || isStage2)
385            f = processWalkLPAE();
386        else
387            f = processWalk();
388
389        if (f != NoFault) {
390            curr_state_copy->transState->finish(f, curr_state_copy->req,
391                    curr_state_copy->tc, curr_state_copy->mode);
392
393            delete curr_state_copy;
394        }
395        return;
396    }
397
398
399    // If the instruction that we were translating for has been
400    // squashed we shouldn't bother.
401    unsigned num_squashed = 0;
402    ThreadContext *tc = currState->tc;
403    while ((num_squashed < numSquashable) && currState &&
404           (currState->transState->squashed() || te)) {
405        pendingQueue.pop_front();
406        num_squashed++;
407        statSquashedBefore++;
408
409        DPRINTF(TLB, "Squashing table walk for address %#x\n",
410                      currState->vaddr_tainted);
411
412        if (currState->transState->squashed()) {
413            // finish the translation which will delete the translation object
414            currState->transState->finish(
415                std::make_shared<UnimpFault>("Squashed Inst"),
416                currState->req, currState->tc, currState->mode);
417        } else {
418            // translate the request now that we know it will work
419            statWalkServiceTime.sample(curTick() - currState->startTime);
420            tlb->translateTiming(currState->req, currState->tc,
421                        currState->transState, currState->mode);
422
423        }
424
425        // delete the current request
426        delete currState;
427
428        // peak at the next one
429        if (pendingQueue.size()) {
430            currState = pendingQueue.front();
431            te = tlb->lookup(currState->vaddr, currState->asid,
432                currState->vmid, currState->isHyp, currState->isSecure, true,
433                false, target_el);
434        } else {
435            // Terminate the loop, nothing more to do
436            currState = NULL;
437        }
438    }
439    pendingChange();
440
441    // if we still have pending translations, schedule more work
442    nextWalk(tc);
443    currState = NULL;
444}
445
446Fault
447TableWalker::processWalk()
448{
449    Addr ttbr = 0;
450
451    // If translation isn't enabled, we shouldn't be here
452    assert(currState->sctlr.m || isStage2);
453
454    DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
455            currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
456                                                      32 - currState->ttbcr.n));
457
458    statWalkWaitTime.sample(curTick() - currState->startTime);
459
460    if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
461                                          32 - currState->ttbcr.n)) {
462        DPRINTF(TLB, " - Selecting TTBR0\n");
463        // Check if table walk is allowed when Security Extensions are enabled
464        if (haveSecurity && currState->ttbcr.pd0) {
465            if (currState->isFetch)
466                return std::make_shared<PrefetchAbort>(
467                    currState->vaddr_tainted,
468                    ArmFault::TranslationLL + L1,
469                    isStage2,
470                    ArmFault::VmsaTran);
471            else
472                return std::make_shared<DataAbort>(
473                    currState->vaddr_tainted,
474                    TlbEntry::DomainType::NoAccess, currState->isWrite,
475                    ArmFault::TranslationLL + L1, isStage2,
476                    ArmFault::VmsaTran);
477        }
478        ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
479            MISCREG_TTBR0, currState->tc, !currState->isSecure));
480    } else {
481        DPRINTF(TLB, " - Selecting TTBR1\n");
482        // Check if table walk is allowed when Security Extensions are enabled
483        if (haveSecurity && currState->ttbcr.pd1) {
484            if (currState->isFetch)
485                return std::make_shared<PrefetchAbort>(
486                    currState->vaddr_tainted,
487                    ArmFault::TranslationLL + L1,
488                    isStage2,
489                    ArmFault::VmsaTran);
490            else
491                return std::make_shared<DataAbort>(
492                    currState->vaddr_tainted,
493                    TlbEntry::DomainType::NoAccess, currState->isWrite,
494                    ArmFault::TranslationLL + L1, isStage2,
495                    ArmFault::VmsaTran);
496        }
497        ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
498            MISCREG_TTBR1, currState->tc, !currState->isSecure));
499        currState->ttbcr.n = 0;
500    }
501
502    Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
503        (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
504    DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
505            currState->isSecure ? "s" : "ns");
506
507    // Trickbox address check
508    Fault f;
509    f = testWalk(l1desc_addr, sizeof(uint32_t),
510                 TlbEntry::DomainType::NoAccess, L1);
511    if (f) {
512        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
513        if (currState->timing) {
514            pending = false;
515            nextWalk(currState->tc);
516            currState = NULL;
517        } else {
518            currState->tc = NULL;
519            currState->req = NULL;
520        }
521        return f;
522    }
523
524    Request::Flags flag = Request::PT_WALK;
525    if (currState->sctlr.c == 0) {
526        flag.set(Request::UNCACHEABLE);
527    }
528
529    if (currState->isSecure) {
530        flag.set(Request::SECURE);
531    }
532
533    bool delayed;
534    delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
535                              sizeof(uint32_t), flag, L1, &doL1DescEvent,
536                              &TableWalker::doL1Descriptor);
537    if (!delayed) {
538       f = currState->fault;
539    }
540
541    return f;
542}
543
544Fault
545TableWalker::processWalkLPAE()
546{
547    Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
548    int tsz, n;
549    LookupLevel start_lookup_level = L1;
550
551    DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
552            currState->vaddr_tainted, currState->ttbcr);
553
554    statWalkWaitTime.sample(curTick() - currState->startTime);
555
556    Request::Flags flag = Request::PT_WALK;
557    if (currState->isSecure)
558        flag.set(Request::SECURE);
559
560    // work out which base address register to use, if in hyp mode we always
561    // use HTTBR
562    if (isStage2) {
563        DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
564        ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
565        tsz  = sext<4>(currState->vtcr.t0sz);
566        start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
567    } else if (currState->isHyp) {
568        DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
569        ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
570        tsz  = currState->htcr.t0sz;
571    } else {
572        assert(longDescFormatInUse(currState->tc));
573
574        // Determine boundaries of TTBR0/1 regions
575        if (currState->ttbcr.t0sz)
576            ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
577        else if (currState->ttbcr.t1sz)
578            ttbr0_max = (1ULL << 32) -
579                (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
580        else
581            ttbr0_max = (1ULL << 32) - 1;
582        if (currState->ttbcr.t1sz)
583            ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
584        else
585            ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
586
587        // The following code snippet selects the appropriate translation table base
588        // address (TTBR0 or TTBR1) and the appropriate starting lookup level
589        // depending on the address range supported by the translation table (ARM
590        // ARM issue C B3.6.4)
591        if (currState->vaddr <= ttbr0_max) {
592            DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
593            // Check if table walk is allowed
594            if (currState->ttbcr.epd0) {
595                if (currState->isFetch)
596                    return std::make_shared<PrefetchAbort>(
597                        currState->vaddr_tainted,
598                        ArmFault::TranslationLL + L1,
599                        isStage2,
600                        ArmFault::LpaeTran);
601                else
602                    return std::make_shared<DataAbort>(
603                        currState->vaddr_tainted,
604                        TlbEntry::DomainType::NoAccess,
605                        currState->isWrite,
606                        ArmFault::TranslationLL + L1,
607                        isStage2,
608                        ArmFault::LpaeTran);
609            }
610            ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
611                MISCREG_TTBR0, currState->tc, !currState->isSecure));
612            tsz = currState->ttbcr.t0sz;
613            if (ttbr0_max < (1ULL << 30))  // Upper limit < 1 GB
614                start_lookup_level = L2;
615        } else if (currState->vaddr >= ttbr1_min) {
616            DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
617            // Check if table walk is allowed
618            if (currState->ttbcr.epd1) {
619                if (currState->isFetch)
620                    return std::make_shared<PrefetchAbort>(
621                        currState->vaddr_tainted,
622                        ArmFault::TranslationLL + L1,
623                        isStage2,
624                        ArmFault::LpaeTran);
625                else
626                    return std::make_shared<DataAbort>(
627                        currState->vaddr_tainted,
628                        TlbEntry::DomainType::NoAccess,
629                        currState->isWrite,
630                        ArmFault::TranslationLL + L1,
631                        isStage2,
632                        ArmFault::LpaeTran);
633            }
634            ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
635                MISCREG_TTBR1, currState->tc, !currState->isSecure));
636            tsz = currState->ttbcr.t1sz;
637            if (ttbr1_min >= (1ULL << 31) + (1ULL << 30))  // Lower limit >= 3 GB
638                start_lookup_level = L2;
639        } else {
640            // Out of boundaries -> translation fault
641            if (currState->isFetch)
642                return std::make_shared<PrefetchAbort>(
643                    currState->vaddr_tainted,
644                    ArmFault::TranslationLL + L1,
645                    isStage2,
646                    ArmFault::LpaeTran);
647            else
648                return std::make_shared<DataAbort>(
649                    currState->vaddr_tainted,
650                    TlbEntry::DomainType::NoAccess,
651                    currState->isWrite, ArmFault::TranslationLL + L1,
652                    isStage2, ArmFault::LpaeTran);
653        }
654
655    }
656
657    // Perform lookup (ARM ARM issue C B3.6.6)
658    if (start_lookup_level == L1) {
659        n = 5 - tsz;
660        desc_addr = mbits(ttbr, 39, n) |
661            (bits(currState->vaddr, n + 26, 30) << 3);
662        DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
663                desc_addr, currState->isSecure ? "s" : "ns");
664    } else {
665        // Skip first-level lookup
666        n = (tsz >= 2 ? 14 - tsz : 12);
667        desc_addr = mbits(ttbr, 39, n) |
668            (bits(currState->vaddr, n + 17, 21) << 3);
669        DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
670                desc_addr, currState->isSecure ? "s" : "ns");
671    }
672
673    // Trickbox address check
674    Fault f = testWalk(desc_addr, sizeof(uint64_t),
675                       TlbEntry::DomainType::NoAccess, start_lookup_level);
676    if (f) {
677        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
678        if (currState->timing) {
679            pending = false;
680            nextWalk(currState->tc);
681            currState = NULL;
682        } else {
683            currState->tc = NULL;
684            currState->req = NULL;
685        }
686        return f;
687    }
688
689    if (currState->sctlr.c == 0) {
690        flag.set(Request::UNCACHEABLE);
691    }
692
693    currState->longDesc.lookupLevel = start_lookup_level;
694    currState->longDesc.aarch64 = false;
695    currState->longDesc.grainSize = Grain4KB;
696
697    Event *event = start_lookup_level == L1 ? (Event *) &doL1LongDescEvent
698                                            : (Event *) &doL2LongDescEvent;
699
700    bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
701                                   sizeof(uint64_t), flag, start_lookup_level,
702                                   event, &TableWalker::doLongDescriptor);
703    if (!delayed) {
704        f = currState->fault;
705    }
706
707    return f;
708}
709
710unsigned
711TableWalker::adjustTableSizeAArch64(unsigned tsz)
712{
713    if (tsz < 25)
714        return 25;
715    if (tsz > 48)
716        return 48;
717    return tsz;
718}
719
720bool
721TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
722{
723    return (currPhysAddrRange != MaxPhysAddrRange &&
724            bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
725}
726
727Fault
728TableWalker::processWalkAArch64()
729{
730    assert(currState->aarch64);
731
732    DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
733            currState->vaddr_tainted, currState->tcr);
734
735    static const GrainSize GrainMapDefault[] =
736      { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
737    static const GrainSize GrainMap_EL1_tg1[] =
738      { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
739
740    statWalkWaitTime.sample(curTick() - currState->startTime);
741
742    // Determine TTBR, table size, granule size and phys. address range
743    Addr ttbr = 0;
744    int tsz = 0, ps = 0;
745    GrainSize tg = Grain4KB; // grain size computed from tg* field
746    bool fault = false;
747    switch (currState->el) {
748      case EL0:
749      case EL1:
750        switch (bits(currState->vaddr, 63,48)) {
751          case 0:
752            DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
753            ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
754            tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
755            tg = GrainMapDefault[currState->tcr.tg0];
756            if (bits(currState->vaddr, 63, tsz) != 0x0 ||
757                currState->tcr.epd0)
758              fault = true;
759            break;
760          case 0xffff:
761            DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
762            ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
763            tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
764            tg = GrainMap_EL1_tg1[currState->tcr.tg1];
765            if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
766                currState->tcr.epd1)
767              fault = true;
768            break;
769          default:
770            // top two bytes must be all 0s or all 1s, else invalid addr
771            fault = true;
772        }
773        ps = currState->tcr.ips;
774        break;
775      case EL2:
776      case EL3:
777        switch(bits(currState->vaddr, 63,48)) {
778            case 0:
779                DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
780                if (currState->el == EL2)
781                    ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
782                else
783                    ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
784                tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
785                tg = GrainMapDefault[currState->tcr.tg0];
786                break;
787            default:
788                // invalid addr if top two bytes are not all 0s
789                fault = true;
790        }
791        ps = currState->tcr.ips;
792        break;
793    }
794
795    if (fault) {
796        Fault f;
797        if (currState->isFetch)
798            f =  std::make_shared<PrefetchAbort>(
799                currState->vaddr_tainted,
800                ArmFault::TranslationLL + L0, isStage2,
801                ArmFault::LpaeTran);
802        else
803            f = std::make_shared<DataAbort>(
804                currState->vaddr_tainted,
805                TlbEntry::DomainType::NoAccess,
806                currState->isWrite,
807                ArmFault::TranslationLL + L0,
808                isStage2, ArmFault::LpaeTran);
809
810        if (currState->timing) {
811            pending = false;
812            nextWalk(currState->tc);
813            currState = NULL;
814        } else {
815            currState->tc = NULL;
816            currState->req = NULL;
817        }
818        return f;
819
820    }
821
822    if (tg == ReservedGrain) {
823        warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
824                  "DEFINED behavior takes this to mean 4KB granules\n");
825        tg = Grain4KB;
826    }
827
828    int stride = tg - 3;
829    LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
830
831    // Determine starting lookup level
832    // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
833    // in ARM DDI 0487A.  These table values correspond to the cascading tests
834    // to compute the lookup level and are of the form
835    // (grain_size + N*stride), for N = {1, 2, 3}.
836    // A value of 64 will never succeed and a value of 0 will always succeed.
837    {
838        struct GrainMap {
839            GrainSize grain_size;
840            unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
841        };
842        static const GrainMap GM[] = {
843            { Grain4KB,  { 39, 30,  0, 0 } },
844            { Grain16KB, { 47, 36, 25, 0 } },
845            { Grain64KB, { 64, 42, 29, 0 } }
846        };
847
848        const unsigned *lookup = NULL; // points to a lookup_level_cutoff
849
850        for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
851            if (tg == GM[i].grain_size) {
852                lookup = GM[i].lookup_level_cutoff;
853                break;
854            }
855        }
856        assert(lookup);
857
858        for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
859            if (tsz > lookup[L]) {
860                start_lookup_level = (LookupLevel) L;
861                break;
862            }
863        }
864        panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
865                 "Table walker couldn't find lookup level\n");
866    }
867
868    // Determine table base address
869    int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
870    Addr base_addr = mbits(ttbr, 47, base_addr_lo);
871
872    // Determine physical address size and raise an Address Size Fault if
873    // necessary
874    int pa_range = decodePhysAddrRange64(ps);
875    // Clamp to lower limit
876    if (pa_range > physAddrRange)
877        currState->physAddrRange = physAddrRange;
878    else
879        currState->physAddrRange = pa_range;
880    if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
881        DPRINTF(TLB, "Address size fault before any lookup\n");
882        Fault f;
883        if (currState->isFetch)
884            f = std::make_shared<PrefetchAbort>(
885                currState->vaddr_tainted,
886                ArmFault::AddressSizeLL + start_lookup_level,
887                isStage2,
888                ArmFault::LpaeTran);
889        else
890            f = std::make_shared<DataAbort>(
891                currState->vaddr_tainted,
892                TlbEntry::DomainType::NoAccess,
893                currState->isWrite,
894                ArmFault::AddressSizeLL + start_lookup_level,
895                isStage2,
896                ArmFault::LpaeTran);
897
898
899        if (currState->timing) {
900            pending = false;
901            nextWalk(currState->tc);
902            currState = NULL;
903        } else {
904            currState->tc = NULL;
905            currState->req = NULL;
906        }
907        return f;
908
909   }
910
911    // Determine descriptor address
912    Addr desc_addr = base_addr |
913        (bits(currState->vaddr, tsz - 1,
914              stride * (3 - start_lookup_level) + tg) << 3);
915
916    // Trickbox address check
917    Fault f = testWalk(desc_addr, sizeof(uint64_t),
918                       TlbEntry::DomainType::NoAccess, start_lookup_level);
919    if (f) {
920        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
921        if (currState->timing) {
922            pending = false;
923            nextWalk(currState->tc);
924            currState = NULL;
925        } else {
926            currState->tc = NULL;
927            currState->req = NULL;
928        }
929        return f;
930    }
931
932    Request::Flags flag = Request::PT_WALK;
933    if (currState->sctlr.c == 0) {
934        flag.set(Request::UNCACHEABLE);
935    }
936
937    if (currState->isSecure) {
938        flag.set(Request::SECURE);
939    }
940
941    currState->longDesc.lookupLevel = start_lookup_level;
942    currState->longDesc.aarch64 = true;
943    currState->longDesc.grainSize = tg;
944
945    if (currState->timing) {
946        Event *event;
947        switch (start_lookup_level) {
948          case L0:
949            event = (Event *) &doL0LongDescEvent;
950            break;
951          case L1:
952            event = (Event *) &doL1LongDescEvent;
953            break;
954          case L2:
955            event = (Event *) &doL2LongDescEvent;
956            break;
957          case L3:
958            event = (Event *) &doL3LongDescEvent;
959            break;
960          default:
961            panic("Invalid table lookup level");
962            break;
963        }
964        port->dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
965                       event, (uint8_t*) &currState->longDesc.data,
966                       currState->tc->getCpuPtr()->clockPeriod(), flag);
967        DPRINTF(TLBVerbose,
968                "Adding to walker fifo: queue size before adding: %d\n",
969                stateQueues[start_lookup_level].size());
970        stateQueues[start_lookup_level].push_back(currState);
971        currState = NULL;
972    } else if (!currState->functional) {
973        port->dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
974                       NULL, (uint8_t*) &currState->longDesc.data,
975                       currState->tc->getCpuPtr()->clockPeriod(), flag);
976        doLongDescriptor();
977        f = currState->fault;
978    } else {
979        RequestPtr req = new Request(desc_addr, sizeof(uint64_t), flag,
980                                     masterId);
981        PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
982        pkt->dataStatic((uint8_t*) &currState->longDesc.data);
983        port->sendFunctional(pkt);
984        doLongDescriptor();
985        delete req;
986        delete pkt;
987        f = currState->fault;
988    }
989
990    return f;
991}
992
993void
994TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
995                      uint8_t texcb, bool s)
996{
997    // Note: tc and sctlr local variables are hiding tc and sctrl class
998    // variables
999    DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
1000    te.shareable = false; // default value
1001    te.nonCacheable = false;
1002    te.outerShareable = false;
1003    if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
1004        switch(texcb) {
1005          case 0: // Stongly-ordered
1006            te.nonCacheable = true;
1007            te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1008            te.shareable = true;
1009            te.innerAttrs = 1;
1010            te.outerAttrs = 0;
1011            break;
1012          case 1: // Shareable Device
1013            te.nonCacheable = true;
1014            te.mtype = TlbEntry::MemoryType::Device;
1015            te.shareable = true;
1016            te.innerAttrs = 3;
1017            te.outerAttrs = 0;
1018            break;
1019          case 2: // Outer and Inner Write-Through, no Write-Allocate
1020            te.mtype = TlbEntry::MemoryType::Normal;
1021            te.shareable = s;
1022            te.innerAttrs = 6;
1023            te.outerAttrs = bits(texcb, 1, 0);
1024            break;
1025          case 3: // Outer and Inner Write-Back, no Write-Allocate
1026            te.mtype = TlbEntry::MemoryType::Normal;
1027            te.shareable = s;
1028            te.innerAttrs = 7;
1029            te.outerAttrs = bits(texcb, 1, 0);
1030            break;
1031          case 4: // Outer and Inner Non-cacheable
1032            te.nonCacheable = true;
1033            te.mtype = TlbEntry::MemoryType::Normal;
1034            te.shareable = s;
1035            te.innerAttrs = 0;
1036            te.outerAttrs = bits(texcb, 1, 0);
1037            break;
1038          case 5: // Reserved
1039            panic("Reserved texcb value!\n");
1040            break;
1041          case 6: // Implementation Defined
1042            panic("Implementation-defined texcb value!\n");
1043            break;
1044          case 7: // Outer and Inner Write-Back, Write-Allocate
1045            te.mtype = TlbEntry::MemoryType::Normal;
1046            te.shareable = s;
1047            te.innerAttrs = 5;
1048            te.outerAttrs = 1;
1049            break;
1050          case 8: // Non-shareable Device
1051            te.nonCacheable = true;
1052            te.mtype = TlbEntry::MemoryType::Device;
1053            te.shareable = false;
1054            te.innerAttrs = 3;
1055            te.outerAttrs = 0;
1056            break;
1057          case 9 ... 15:  // Reserved
1058            panic("Reserved texcb value!\n");
1059            break;
1060          case 16 ... 31: // Cacheable Memory
1061            te.mtype = TlbEntry::MemoryType::Normal;
1062            te.shareable = s;
1063            if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1064                te.nonCacheable = true;
1065            te.innerAttrs = bits(texcb, 1, 0);
1066            te.outerAttrs = bits(texcb, 3, 2);
1067            break;
1068          default:
1069            panic("More than 32 states for 5 bits?\n");
1070        }
1071    } else {
1072        assert(tc);
1073        PRRR prrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_PRRR,
1074                                    currState->tc, !currState->isSecure));
1075        NMRR nmrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_NMRR,
1076                                    currState->tc, !currState->isSecure));
1077        DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1078        uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1079        switch(bits(texcb, 2,0)) {
1080          case 0:
1081            curr_tr = prrr.tr0;
1082            curr_ir = nmrr.ir0;
1083            curr_or = nmrr.or0;
1084            te.outerShareable = (prrr.nos0 == 0);
1085            break;
1086          case 1:
1087            curr_tr = prrr.tr1;
1088            curr_ir = nmrr.ir1;
1089            curr_or = nmrr.or1;
1090            te.outerShareable = (prrr.nos1 == 0);
1091            break;
1092          case 2:
1093            curr_tr = prrr.tr2;
1094            curr_ir = nmrr.ir2;
1095            curr_or = nmrr.or2;
1096            te.outerShareable = (prrr.nos2 == 0);
1097            break;
1098          case 3:
1099            curr_tr = prrr.tr3;
1100            curr_ir = nmrr.ir3;
1101            curr_or = nmrr.or3;
1102            te.outerShareable = (prrr.nos3 == 0);
1103            break;
1104          case 4:
1105            curr_tr = prrr.tr4;
1106            curr_ir = nmrr.ir4;
1107            curr_or = nmrr.or4;
1108            te.outerShareable = (prrr.nos4 == 0);
1109            break;
1110          case 5:
1111            curr_tr = prrr.tr5;
1112            curr_ir = nmrr.ir5;
1113            curr_or = nmrr.or5;
1114            te.outerShareable = (prrr.nos5 == 0);
1115            break;
1116          case 6:
1117            panic("Imp defined type\n");
1118          case 7:
1119            curr_tr = prrr.tr7;
1120            curr_ir = nmrr.ir7;
1121            curr_or = nmrr.or7;
1122            te.outerShareable = (prrr.nos7 == 0);
1123            break;
1124        }
1125
1126        switch(curr_tr) {
1127          case 0:
1128            DPRINTF(TLBVerbose, "StronglyOrdered\n");
1129            te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1130            te.nonCacheable = true;
1131            te.innerAttrs = 1;
1132            te.outerAttrs = 0;
1133            te.shareable = true;
1134            break;
1135          case 1:
1136            DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1137                    prrr.ds1, prrr.ds0, s);
1138            te.mtype = TlbEntry::MemoryType::Device;
1139            te.nonCacheable = true;
1140            te.innerAttrs = 3;
1141            te.outerAttrs = 0;
1142            if (prrr.ds1 && s)
1143                te.shareable = true;
1144            if (prrr.ds0 && !s)
1145                te.shareable = true;
1146            break;
1147          case 2:
1148            DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1149                    prrr.ns1, prrr.ns0, s);
1150            te.mtype = TlbEntry::MemoryType::Normal;
1151            if (prrr.ns1 && s)
1152                te.shareable = true;
1153            if (prrr.ns0 && !s)
1154                te.shareable = true;
1155            break;
1156          case 3:
1157            panic("Reserved type");
1158        }
1159
1160        if (te.mtype == TlbEntry::MemoryType::Normal){
1161            switch(curr_ir) {
1162              case 0:
1163                te.nonCacheable = true;
1164                te.innerAttrs = 0;
1165                break;
1166              case 1:
1167                te.innerAttrs = 5;
1168                break;
1169              case 2:
1170                te.innerAttrs = 6;
1171                break;
1172              case 3:
1173                te.innerAttrs = 7;
1174                break;
1175            }
1176
1177            switch(curr_or) {
1178              case 0:
1179                te.nonCacheable = true;
1180                te.outerAttrs = 0;
1181                break;
1182              case 1:
1183                te.outerAttrs = 1;
1184                break;
1185              case 2:
1186                te.outerAttrs = 2;
1187                break;
1188              case 3:
1189                te.outerAttrs = 3;
1190                break;
1191            }
1192        }
1193    }
1194    DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1195            "outerAttrs: %d\n",
1196            te.shareable, te.innerAttrs, te.outerAttrs);
1197    te.setAttributes(false);
1198}
1199
1200void
1201TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1202    LongDescriptor &lDescriptor)
1203{
1204    assert(_haveLPAE);
1205
1206    uint8_t attr;
1207    uint8_t sh = lDescriptor.sh();
1208    // Different format and source of attributes if this is a stage 2
1209    // translation
1210    if (isStage2) {
1211        attr = lDescriptor.memAttr();
1212        uint8_t attr_3_2 = (attr >> 2) & 0x3;
1213        uint8_t attr_1_0 =  attr       & 0x3;
1214
1215        DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1216
1217        if (attr_3_2 == 0) {
1218            te.mtype        = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1219                                            : TlbEntry::MemoryType::Device;
1220            te.outerAttrs   = 0;
1221            te.innerAttrs   = attr_1_0 == 0 ? 1 : 3;
1222            te.nonCacheable = true;
1223        } else {
1224            te.mtype        = TlbEntry::MemoryType::Normal;
1225            te.outerAttrs   = attr_3_2 == 1 ? 0 :
1226                              attr_3_2 == 2 ? 2 : 1;
1227            te.innerAttrs   = attr_1_0 == 1 ? 0 :
1228                              attr_1_0 == 2 ? 6 : 5;
1229            te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1230        }
1231    } else {
1232        uint8_t attrIndx = lDescriptor.attrIndx();
1233
1234        // LPAE always uses remapping of memory attributes, irrespective of the
1235        // value of SCTLR.TRE
1236        MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1237        int reg_as_int = flattenMiscRegNsBanked(reg, currState->tc,
1238                                                !currState->isSecure);
1239        uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1240        attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1241        uint8_t attr_7_4 = bits(attr, 7, 4);
1242        uint8_t attr_3_0 = bits(attr, 3, 0);
1243        DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1244
1245        // Note: the memory subsystem only cares about the 'cacheable' memory
1246        // attribute. The other attributes are only used to fill the PAR register
1247        // accordingly to provide the illusion of full support
1248        te.nonCacheable = false;
1249
1250        switch (attr_7_4) {
1251          case 0x0:
1252            // Strongly-ordered or Device memory
1253            if (attr_3_0 == 0x0)
1254                te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1255            else if (attr_3_0 == 0x4)
1256                te.mtype = TlbEntry::MemoryType::Device;
1257            else
1258                panic("Unpredictable behavior\n");
1259            te.nonCacheable = true;
1260            te.outerAttrs   = 0;
1261            break;
1262          case 0x4:
1263            // Normal memory, Outer Non-cacheable
1264            te.mtype = TlbEntry::MemoryType::Normal;
1265            te.outerAttrs = 0;
1266            if (attr_3_0 == 0x4)
1267                // Inner Non-cacheable
1268                te.nonCacheable = true;
1269            else if (attr_3_0 < 0x8)
1270                panic("Unpredictable behavior\n");
1271            break;
1272          case 0x8:
1273          case 0x9:
1274          case 0xa:
1275          case 0xb:
1276          case 0xc:
1277          case 0xd:
1278          case 0xe:
1279          case 0xf:
1280            if (attr_7_4 & 0x4) {
1281                te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1282            } else {
1283                te.outerAttrs = 0x2;
1284            }
1285            // Normal memory, Outer Cacheable
1286            te.mtype = TlbEntry::MemoryType::Normal;
1287            if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1288                panic("Unpredictable behavior\n");
1289            break;
1290          default:
1291            panic("Unpredictable behavior\n");
1292            break;
1293        }
1294
1295        switch (attr_3_0) {
1296          case 0x0:
1297            te.innerAttrs = 0x1;
1298            break;
1299          case 0x4:
1300            te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1301            break;
1302          case 0x8:
1303          case 0x9:
1304          case 0xA:
1305          case 0xB:
1306            te.innerAttrs = 6;
1307            break;
1308          case 0xC:
1309          case 0xD:
1310          case 0xE:
1311          case 0xF:
1312            te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1313            break;
1314          default:
1315            panic("Unpredictable behavior\n");
1316            break;
1317        }
1318    }
1319
1320    te.outerShareable = sh == 2;
1321    te.shareable       = (sh & 0x2) ? true : false;
1322    te.setAttributes(true);
1323    te.attributes |= (uint64_t) attr << 56;
1324}
1325
1326void
1327TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te, uint8_t attrIndx,
1328                             uint8_t sh)
1329{
1330    DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1331
1332    // Select MAIR
1333    uint64_t mair;
1334    switch (currState->el) {
1335      case EL0:
1336      case EL1:
1337        mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1338        break;
1339      case EL2:
1340        mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1341        break;
1342      case EL3:
1343        mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1344        break;
1345      default:
1346        panic("Invalid exception level");
1347        break;
1348    }
1349
1350    // Select attributes
1351    uint8_t attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1352    uint8_t attr_lo = bits(attr, 3, 0);
1353    uint8_t attr_hi = bits(attr, 7, 4);
1354
1355    // Memory type
1356    te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1357
1358    // Cacheability
1359    te.nonCacheable = false;
1360    if (te.mtype == TlbEntry::MemoryType::Device ||  // Device memory
1361        attr_hi == 0x8 ||  // Normal memory, Outer Non-cacheable
1362        attr_lo == 0x8) {  // Normal memory, Inner Non-cacheable
1363        te.nonCacheable = true;
1364    }
1365
1366    te.shareable       = sh == 2;
1367    te.outerShareable = (sh & 0x2) ? true : false;
1368    // Attributes formatted according to the 64-bit PAR
1369    te.attributes = ((uint64_t) attr << 56) |
1370        (1 << 11) |     // LPAE bit
1371        (te.ns << 9) |  // NS bit
1372        (sh << 7);
1373}
1374
1375void
1376TableWalker::doL1Descriptor()
1377{
1378    if (currState->fault != NoFault) {
1379        return;
1380    }
1381
1382    DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1383            currState->vaddr_tainted, currState->l1Desc.data);
1384    TlbEntry te;
1385
1386    switch (currState->l1Desc.type()) {
1387      case L1Descriptor::Ignore:
1388      case L1Descriptor::Reserved:
1389        if (!currState->timing) {
1390            currState->tc = NULL;
1391            currState->req = NULL;
1392        }
1393        DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1394        if (currState->isFetch)
1395            currState->fault =
1396                std::make_shared<PrefetchAbort>(
1397                    currState->vaddr_tainted,
1398                    ArmFault::TranslationLL + L1,
1399                    isStage2,
1400                    ArmFault::VmsaTran);
1401        else
1402            currState->fault =
1403                std::make_shared<DataAbort>(
1404                    currState->vaddr_tainted,
1405                    TlbEntry::DomainType::NoAccess,
1406                    currState->isWrite,
1407                    ArmFault::TranslationLL + L1, isStage2,
1408                    ArmFault::VmsaTran);
1409        return;
1410      case L1Descriptor::Section:
1411        if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1412            /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1413              * enabled if set, do l1.Desc.setAp0() instead of generating
1414              * AccessFlag0
1415              */
1416
1417            currState->fault = std::make_shared<DataAbort>(
1418                currState->vaddr_tainted,
1419                currState->l1Desc.domain(),
1420                currState->isWrite,
1421                ArmFault::AccessFlagLL + L1,
1422                isStage2,
1423                ArmFault::VmsaTran);
1424        }
1425        if (currState->l1Desc.supersection()) {
1426            panic("Haven't implemented supersections\n");
1427        }
1428        insertTableEntry(currState->l1Desc, false);
1429        return;
1430      case L1Descriptor::PageTable:
1431        {
1432            Addr l2desc_addr;
1433            l2desc_addr = currState->l1Desc.l2Addr() |
1434                (bits(currState->vaddr, 19, 12) << 2);
1435            DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1436                    l2desc_addr, currState->isSecure ? "s" : "ns");
1437
1438            // Trickbox address check
1439            currState->fault = testWalk(l2desc_addr, sizeof(uint32_t),
1440                                        currState->l1Desc.domain(), L2);
1441
1442            if (currState->fault) {
1443                if (!currState->timing) {
1444                    currState->tc = NULL;
1445                    currState->req = NULL;
1446                }
1447                return;
1448            }
1449
1450            Request::Flags flag = Request::PT_WALK;
1451            if (currState->isSecure)
1452                flag.set(Request::SECURE);
1453
1454            bool delayed;
1455            delayed = fetchDescriptor(l2desc_addr,
1456                                      (uint8_t*)&currState->l2Desc.data,
1457                                      sizeof(uint32_t), flag, -1, &doL2DescEvent,
1458                                      &TableWalker::doL2Descriptor);
1459            if (delayed) {
1460                currState->delayed = true;
1461            }
1462
1463            return;
1464        }
1465      default:
1466        panic("A new type in a 2 bit field?\n");
1467    }
1468}
1469
1470void
1471TableWalker::doLongDescriptor()
1472{
1473    if (currState->fault != NoFault) {
1474        return;
1475    }
1476
1477    DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1478            currState->longDesc.lookupLevel, currState->vaddr_tainted,
1479            currState->longDesc.data,
1480            currState->aarch64 ? "AArch64" : "long-desc.");
1481
1482    if ((currState->longDesc.type() == LongDescriptor::Block) ||
1483        (currState->longDesc.type() == LongDescriptor::Page)) {
1484        DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1485                "xn: %d, ap: %d, af: %d, type: %d\n",
1486                currState->longDesc.lookupLevel,
1487                currState->longDesc.data,
1488                currState->longDesc.pxn(),
1489                currState->longDesc.xn(),
1490                currState->longDesc.ap(),
1491                currState->longDesc.af(),
1492                currState->longDesc.type());
1493    } else {
1494        DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1495                currState->longDesc.lookupLevel,
1496                currState->longDesc.data,
1497                currState->longDesc.type());
1498    }
1499
1500    TlbEntry te;
1501
1502    switch (currState->longDesc.type()) {
1503      case LongDescriptor::Invalid:
1504        if (!currState->timing) {
1505            currState->tc = NULL;
1506            currState->req = NULL;
1507        }
1508
1509        DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1510                currState->longDesc.lookupLevel,
1511                ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1512        if (currState->isFetch)
1513            currState->fault = std::make_shared<PrefetchAbort>(
1514                currState->vaddr_tainted,
1515                ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1516                isStage2,
1517                ArmFault::LpaeTran);
1518        else
1519            currState->fault = std::make_shared<DataAbort>(
1520                currState->vaddr_tainted,
1521                TlbEntry::DomainType::NoAccess,
1522                currState->isWrite,
1523                ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1524                isStage2,
1525                ArmFault::LpaeTran);
1526        return;
1527      case LongDescriptor::Block:
1528      case LongDescriptor::Page:
1529        {
1530            bool fault = false;
1531            bool aff = false;
1532            // Check for address size fault
1533            if (checkAddrSizeFaultAArch64(
1534                    mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1535                          currState->longDesc.offsetBits()),
1536                    currState->physAddrRange)) {
1537                fault = true;
1538                DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1539                        currState->longDesc.lookupLevel);
1540            // Check for access fault
1541            } else if (currState->longDesc.af() == 0) {
1542                fault = true;
1543                DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1544                        currState->longDesc.lookupLevel);
1545                aff = true;
1546            }
1547            if (fault) {
1548                if (currState->isFetch)
1549                    currState->fault = std::make_shared<PrefetchAbort>(
1550                        currState->vaddr_tainted,
1551                        (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1552                        currState->longDesc.lookupLevel,
1553                        isStage2,
1554                        ArmFault::LpaeTran);
1555                else
1556                    currState->fault = std::make_shared<DataAbort>(
1557                        currState->vaddr_tainted,
1558                        TlbEntry::DomainType::NoAccess, currState->isWrite,
1559                        (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1560                        currState->longDesc.lookupLevel,
1561                        isStage2,
1562                        ArmFault::LpaeTran);
1563            } else {
1564                insertTableEntry(currState->longDesc, true);
1565            }
1566        }
1567        return;
1568      case LongDescriptor::Table:
1569        {
1570            // Set hierarchical permission flags
1571            currState->secureLookup = currState->secureLookup &&
1572                currState->longDesc.secureTable();
1573            currState->rwTable = currState->rwTable &&
1574                currState->longDesc.rwTable();
1575            currState->userTable = currState->userTable &&
1576                currState->longDesc.userTable();
1577            currState->xnTable = currState->xnTable ||
1578                currState->longDesc.xnTable();
1579            currState->pxnTable = currState->pxnTable ||
1580                currState->longDesc.pxnTable();
1581
1582            // Set up next level lookup
1583            Addr next_desc_addr = currState->longDesc.nextDescAddr(
1584                currState->vaddr);
1585
1586            DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1587                    currState->longDesc.lookupLevel,
1588                    currState->longDesc.lookupLevel + 1,
1589                    next_desc_addr,
1590                    currState->secureLookup ? "s" : "ns");
1591
1592            // Check for address size fault
1593            if (currState->aarch64 && checkAddrSizeFaultAArch64(
1594                    next_desc_addr, currState->physAddrRange)) {
1595                DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1596                        currState->longDesc.lookupLevel);
1597                if (currState->isFetch)
1598                    currState->fault = std::make_shared<PrefetchAbort>(
1599                        currState->vaddr_tainted,
1600                        ArmFault::AddressSizeLL
1601                        + currState->longDesc.lookupLevel,
1602                        isStage2,
1603                        ArmFault::LpaeTran);
1604                else
1605                    currState->fault = std::make_shared<DataAbort>(
1606                        currState->vaddr_tainted,
1607                        TlbEntry::DomainType::NoAccess, currState->isWrite,
1608                        ArmFault::AddressSizeLL
1609                        + currState->longDesc.lookupLevel,
1610                        isStage2,
1611                        ArmFault::LpaeTran);
1612                return;
1613            }
1614
1615            // Trickbox address check
1616            currState->fault = testWalk(
1617                next_desc_addr, sizeof(uint64_t), TlbEntry::DomainType::Client,
1618                toLookupLevel(currState->longDesc.lookupLevel +1));
1619
1620            if (currState->fault) {
1621                if (!currState->timing) {
1622                    currState->tc = NULL;
1623                    currState->req = NULL;
1624                }
1625                return;
1626            }
1627
1628            Request::Flags flag = Request::PT_WALK;
1629            if (currState->secureLookup)
1630                flag.set(Request::SECURE);
1631
1632            currState->longDesc.lookupLevel =
1633                (LookupLevel) (currState->longDesc.lookupLevel + 1);
1634            Event *event = NULL;
1635            switch (currState->longDesc.lookupLevel) {
1636              case L1:
1637                assert(currState->aarch64);
1638                event = &doL1LongDescEvent;
1639                break;
1640              case L2:
1641                event = &doL2LongDescEvent;
1642                break;
1643              case L3:
1644                event = &doL3LongDescEvent;
1645                break;
1646              default:
1647                panic("Wrong lookup level in table walk\n");
1648                break;
1649            }
1650
1651            bool delayed;
1652            delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1653                                      sizeof(uint64_t), flag, -1, event,
1654                                      &TableWalker::doLongDescriptor);
1655            if (delayed) {
1656                 currState->delayed = true;
1657            }
1658        }
1659        return;
1660      default:
1661        panic("A new type in a 2 bit field?\n");
1662    }
1663}
1664
1665void
1666TableWalker::doL2Descriptor()
1667{
1668    if (currState->fault != NoFault) {
1669        return;
1670    }
1671
1672    DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1673            currState->vaddr_tainted, currState->l2Desc.data);
1674    TlbEntry te;
1675
1676    if (currState->l2Desc.invalid()) {
1677        DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1678        if (!currState->timing) {
1679            currState->tc = NULL;
1680            currState->req = NULL;
1681        }
1682        if (currState->isFetch)
1683            currState->fault = std::make_shared<PrefetchAbort>(
1684                    currState->vaddr_tainted,
1685                    ArmFault::TranslationLL + L2,
1686                    isStage2,
1687                    ArmFault::VmsaTran);
1688        else
1689            currState->fault = std::make_shared<DataAbort>(
1690                currState->vaddr_tainted, currState->l1Desc.domain(),
1691                currState->isWrite, ArmFault::TranslationLL + L2,
1692                isStage2,
1693                ArmFault::VmsaTran);
1694        return;
1695    }
1696
1697    if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1698        /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1699          * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1700          */
1701         DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1702                 currState->sctlr.afe, currState->l2Desc.ap());
1703
1704        currState->fault = std::make_shared<DataAbort>(
1705            currState->vaddr_tainted,
1706            TlbEntry::DomainType::NoAccess, currState->isWrite,
1707            ArmFault::AccessFlagLL + L2, isStage2,
1708            ArmFault::VmsaTran);
1709    }
1710
1711    insertTableEntry(currState->l2Desc, false);
1712}
1713
1714void
1715TableWalker::doL1DescriptorWrapper()
1716{
1717    currState = stateQueues[L1].front();
1718    currState->delayed = false;
1719    // if there's a stage2 translation object we don't need it any more
1720    if (currState->stage2Tran) {
1721        delete currState->stage2Tran;
1722        currState->stage2Tran = NULL;
1723    }
1724
1725
1726    DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1727    DPRINTF(TLBVerbose, "L1 Desc object      data: %08x\n",currState->l1Desc.data);
1728
1729    DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1730    doL1Descriptor();
1731
1732    stateQueues[L1].pop_front();
1733    // Check if fault was generated
1734    if (currState->fault != NoFault) {
1735        currState->transState->finish(currState->fault, currState->req,
1736                                      currState->tc, currState->mode);
1737        statWalksShortTerminatedAtLevel[0]++;
1738
1739        pending = false;
1740        nextWalk(currState->tc);
1741
1742        currState->req = NULL;
1743        currState->tc = NULL;
1744        currState->delayed = false;
1745        delete currState;
1746    }
1747    else if (!currState->delayed) {
1748        // delay is not set so there is no L2 to do
1749        // Don't finish the translation if a stage 2 look up is underway
1750        if (!currState->doingStage2) {
1751            statWalkServiceTime.sample(curTick() - currState->startTime);
1752            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1753            currState->fault = tlb->translateTiming(currState->req, currState->tc,
1754                currState->transState, currState->mode);
1755            statWalksShortTerminatedAtLevel[0]++;
1756        }
1757
1758        pending = false;
1759        nextWalk(currState->tc);
1760
1761        currState->req = NULL;
1762        currState->tc = NULL;
1763        currState->delayed = false;
1764        delete currState;
1765    } else {
1766        // need to do L2 descriptor
1767        stateQueues[L2].push_back(currState);
1768    }
1769    currState = NULL;
1770}
1771
1772void
1773TableWalker::doL2DescriptorWrapper()
1774{
1775    currState = stateQueues[L2].front();
1776    assert(currState->delayed);
1777    // if there's a stage2 translation object we don't need it any more
1778    if (currState->stage2Tran) {
1779        delete currState->stage2Tran;
1780        currState->stage2Tran = NULL;
1781    }
1782
1783    DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1784            currState->vaddr_tainted);
1785    doL2Descriptor();
1786
1787    // Check if fault was generated
1788    if (currState->fault != NoFault) {
1789        currState->transState->finish(currState->fault, currState->req,
1790                                      currState->tc, currState->mode);
1791        statWalksShortTerminatedAtLevel[1]++;
1792    }
1793    else {
1794        // Don't finish the translation if a stage 2 look up is underway
1795        if (!currState->doingStage2) {
1796            statWalkServiceTime.sample(curTick() - currState->startTime);
1797            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1798            currState->fault = tlb->translateTiming(currState->req,
1799                currState->tc, currState->transState, currState->mode);
1800            statWalksShortTerminatedAtLevel[1]++;
1801        }
1802    }
1803
1804
1805    stateQueues[L2].pop_front();
1806    pending = false;
1807    nextWalk(currState->tc);
1808
1809    currState->req = NULL;
1810    currState->tc = NULL;
1811    currState->delayed = false;
1812
1813    delete currState;
1814    currState = NULL;
1815}
1816
1817void
1818TableWalker::doL0LongDescriptorWrapper()
1819{
1820    doLongDescriptorWrapper(L0);
1821}
1822
1823void
1824TableWalker::doL1LongDescriptorWrapper()
1825{
1826    doLongDescriptorWrapper(L1);
1827}
1828
1829void
1830TableWalker::doL2LongDescriptorWrapper()
1831{
1832    doLongDescriptorWrapper(L2);
1833}
1834
1835void
1836TableWalker::doL3LongDescriptorWrapper()
1837{
1838    doLongDescriptorWrapper(L3);
1839}
1840
1841void
1842TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1843{
1844    currState = stateQueues[curr_lookup_level].front();
1845    assert(curr_lookup_level == currState->longDesc.lookupLevel);
1846    currState->delayed = false;
1847
1848    // if there's a stage2 translation object we don't need it any more
1849    if (currState->stage2Tran) {
1850        delete currState->stage2Tran;
1851        currState->stage2Tran = NULL;
1852    }
1853
1854    DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1855            currState->vaddr_tainted);
1856    doLongDescriptor();
1857
1858    stateQueues[curr_lookup_level].pop_front();
1859
1860    if (currState->fault != NoFault) {
1861        // A fault was generated
1862        currState->transState->finish(currState->fault, currState->req,
1863                                      currState->tc, currState->mode);
1864
1865        pending = false;
1866        nextWalk(currState->tc);
1867
1868        currState->req = NULL;
1869        currState->tc = NULL;
1870        currState->delayed = false;
1871        delete currState;
1872    } else if (!currState->delayed) {
1873        // No additional lookups required
1874        // Don't finish the translation if a stage 2 look up is underway
1875        if (!currState->doingStage2) {
1876            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1877            statWalkServiceTime.sample(curTick() - currState->startTime);
1878            currState->fault = tlb->translateTiming(currState->req, currState->tc,
1879                                                    currState->transState,
1880                                                    currState->mode);
1881            statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1882        }
1883
1884        pending = false;
1885        nextWalk(currState->tc);
1886
1887        currState->req = NULL;
1888        currState->tc = NULL;
1889        currState->delayed = false;
1890        delete currState;
1891    } else {
1892        if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1893            panic("Max. number of lookups already reached in table walk\n");
1894        // Need to perform additional lookups
1895        stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1896    }
1897    currState = NULL;
1898}
1899
1900
1901void
1902TableWalker::nextWalk(ThreadContext *tc)
1903{
1904    if (pendingQueue.size())
1905        schedule(doProcessEvent, clockEdge(Cycles(1)));
1906    else
1907        completeDrain();
1908}
1909
1910bool
1911TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1912    Request::Flags flags, int queueIndex, Event *event,
1913    void (TableWalker::*doDescriptor)())
1914{
1915    bool isTiming = currState->timing;
1916
1917    // do the requests for the page table descriptors have to go through the
1918    // second stage MMU
1919    if (currState->stage2Req) {
1920        Fault fault;
1921        flags = flags | TLB::MustBeOne;
1922
1923        if (isTiming) {
1924            Stage2MMU::Stage2Translation *tran = new
1925                Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1926                                             currState->vaddr);
1927            currState->stage2Tran = tran;
1928            stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1929                                     flags);
1930            fault = tran->fault;
1931        } else {
1932            fault = stage2Mmu->readDataUntimed(currState->tc,
1933                currState->vaddr, descAddr, data, numBytes, flags,
1934                currState->functional);
1935        }
1936
1937        if (fault != NoFault) {
1938            currState->fault = fault;
1939        }
1940        if (isTiming) {
1941            if (queueIndex >= 0) {
1942                DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1943                        stateQueues[queueIndex].size());
1944                stateQueues[queueIndex].push_back(currState);
1945                currState = NULL;
1946            }
1947        } else {
1948            (this->*doDescriptor)();
1949        }
1950    } else {
1951        if (isTiming) {
1952            port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
1953                           currState->tc->getCpuPtr()->clockPeriod(),flags);
1954            if (queueIndex >= 0) {
1955                DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1956                        stateQueues[queueIndex].size());
1957                stateQueues[queueIndex].push_back(currState);
1958                currState = NULL;
1959            }
1960        } else if (!currState->functional) {
1961            port->dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
1962                           currState->tc->getCpuPtr()->clockPeriod(), flags);
1963            (this->*doDescriptor)();
1964        } else {
1965            RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
1966            req->taskId(ContextSwitchTaskId::DMA);
1967            PacketPtr  pkt = new Packet(req, MemCmd::ReadReq);
1968            pkt->dataStatic(data);
1969            port->sendFunctional(pkt);
1970            (this->*doDescriptor)();
1971            delete req;
1972            delete pkt;
1973        }
1974    }
1975    return (isTiming);
1976}
1977
1978void
1979TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
1980{
1981    TlbEntry te;
1982
1983    // Create and fill a new page table entry
1984    te.valid          = true;
1985    te.longDescFormat = longDescriptor;
1986    te.isHyp          = currState->isHyp;
1987    te.asid           = currState->asid;
1988    te.vmid           = currState->vmid;
1989    te.N              = descriptor.offsetBits();
1990    te.vpn            = currState->vaddr >> te.N;
1991    te.size           = (1<<te.N) - 1;
1992    te.pfn            = descriptor.pfn();
1993    te.domain         = descriptor.domain();
1994    te.lookupLevel    = descriptor.lookupLevel;
1995    te.ns             = !descriptor.secure(haveSecurity, currState) || isStage2;
1996    te.nstid          = !currState->isSecure;
1997    te.xn             = descriptor.xn();
1998    if (currState->aarch64)
1999        te.el         = currState->el;
2000    else
2001        te.el         = 1;
2002
2003    statPageSizes[pageSizeNtoStatBin(te.N)]++;
2004    statRequestOrigin[COMPLETED][currState->isFetch]++;
2005
2006    // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
2007    // as global
2008    te.global         = descriptor.global(currState) || isStage2;
2009    if (longDescriptor) {
2010        LongDescriptor lDescriptor =
2011            dynamic_cast<LongDescriptor &>(descriptor);
2012
2013        te.xn |= currState->xnTable;
2014        te.pxn = currState->pxnTable || lDescriptor.pxn();
2015        if (isStage2) {
2016            // this is actually the HAP field, but its stored in the same bit
2017            // possitions as the AP field in a stage 1 translation.
2018            te.hap = lDescriptor.ap();
2019        } else {
2020           te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2021               (currState->userTable && (descriptor.ap() & 0x1));
2022        }
2023        if (currState->aarch64)
2024            memAttrsAArch64(currState->tc, te, currState->longDesc.attrIndx(),
2025                            currState->longDesc.sh());
2026        else
2027            memAttrsLPAE(currState->tc, te, lDescriptor);
2028    } else {
2029        te.ap = descriptor.ap();
2030        memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2031                 descriptor.shareable());
2032    }
2033
2034    // Debug output
2035    DPRINTF(TLB, descriptor.dbgHeader().c_str());
2036    DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2037            te.N, te.pfn, te.size, te.global, te.valid);
2038    DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2039            "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2040            te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2041            te.nonCacheable, te.ns);
2042    DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2043            descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2044            descriptor.getRawData());
2045
2046    // Insert the entry into the TLB
2047    tlb->insert(currState->vaddr, te);
2048    if (!currState->timing) {
2049        currState->tc  = NULL;
2050        currState->req = NULL;
2051    }
2052}
2053
2054ArmISA::TableWalker *
2055ArmTableWalkerParams::create()
2056{
2057    return new ArmISA::TableWalker(this);
2058}
2059
2060LookupLevel
2061TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2062{
2063    switch (lookup_level_as_int) {
2064      case L1:
2065        return L1;
2066      case L2:
2067        return L2;
2068      case L3:
2069        return L3;
2070      default:
2071        panic("Invalid lookup level conversion");
2072    }
2073}
2074
2075/* this method keeps track of the table walker queue's residency, so
2076 * needs to be called whenever requests start and complete. */
2077void
2078TableWalker::pendingChange()
2079{
2080    unsigned n = pendingQueue.size();
2081    if ((currState != NULL) && (currState != pendingQueue.front())) {
2082        ++n;
2083    }
2084
2085    if (n != pendingReqs) {
2086        Tick now = curTick();
2087        statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2088        pendingReqs = n;
2089        pendingChangeTick = now;
2090    }
2091}
2092
2093Fault
2094TableWalker::testWalk(Addr pa, Addr size, TlbEntry::DomainType domain,
2095                      LookupLevel lookup_level)
2096{
2097    return tlb->testWalk(pa, size, currState->vaddr, currState->isSecure,
2098                         currState->mode, domain, lookup_level);
2099}
2100
2101
2102uint8_t
2103TableWalker::pageSizeNtoStatBin(uint8_t N)
2104{
2105    /* for statPageSizes */
2106    switch(N) {
2107        case 12: return 0; // 4K
2108        case 14: return 1; // 16K (using 16K granule in v8-64)
2109        case 16: return 2; // 64K
2110        case 20: return 3; // 1M
2111        case 21: return 4; // 2M-LPAE
2112        case 24: return 5; // 16M
2113        case 25: return 6; // 32M (using 16K granule in v8-64)
2114        case 29: return 7; // 512M (using 64K granule in v8-64)
2115        case 30: return 8; // 1G-LPAE
2116        default:
2117            panic("unknown page size");
2118            return 255;
2119    }
2120}
2121
2122void
2123TableWalker::regStats()
2124{
2125    statWalks
2126        .name(name() + ".walks")
2127        .desc("Table walker walks requested")
2128        ;
2129
2130    statWalksShortDescriptor
2131        .name(name() + ".walksShort")
2132        .desc("Table walker walks initiated with short descriptors")
2133        .flags(Stats::nozero)
2134        ;
2135
2136    statWalksLongDescriptor
2137        .name(name() + ".walksLong")
2138        .desc("Table walker walks initiated with long descriptors")
2139        .flags(Stats::nozero)
2140        ;
2141
2142    statWalksShortTerminatedAtLevel
2143        .init(2)
2144        .name(name() + ".walksShortTerminationLevel")
2145        .desc("Level at which table walker walks "
2146              "with short descriptors terminate")
2147        .flags(Stats::nozero)
2148        ;
2149    statWalksShortTerminatedAtLevel.subname(0, "Level1");
2150    statWalksShortTerminatedAtLevel.subname(1, "Level2");
2151
2152    statWalksLongTerminatedAtLevel
2153        .init(4)
2154        .name(name() + ".walksLongTerminationLevel")
2155        .desc("Level at which table walker walks "
2156              "with long descriptors terminate")
2157        .flags(Stats::nozero)
2158        ;
2159    statWalksLongTerminatedAtLevel.subname(0, "Level0");
2160    statWalksLongTerminatedAtLevel.subname(1, "Level1");
2161    statWalksLongTerminatedAtLevel.subname(2, "Level2");
2162    statWalksLongTerminatedAtLevel.subname(3, "Level3");
2163
2164    statSquashedBefore
2165        .name(name() + ".walksSquashedBefore")
2166        .desc("Table walks squashed before starting")
2167        .flags(Stats::nozero)
2168        ;
2169
2170    statSquashedAfter
2171        .name(name() + ".walksSquashedAfter")
2172        .desc("Table walks squashed after completion")
2173        .flags(Stats::nozero)
2174        ;
2175
2176    statWalkWaitTime
2177        .init(16)
2178        .name(name() + ".walkWaitTime")
2179        .desc("Table walker wait (enqueue to first request) latency")
2180        .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2181        ;
2182
2183    statWalkServiceTime
2184        .init(16)
2185        .name(name() + ".walkCompletionTime")
2186        .desc("Table walker service (enqueue to completion) latency")
2187        .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2188        ;
2189
2190    statPendingWalks
2191        .init(16)
2192        .name(name() + ".walksPending")
2193        .desc("Table walker pending requests distribution")
2194        .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2195        ;
2196
2197    statPageSizes // see DDI 0487A D4-1661
2198        .init(9)
2199        .name(name() + ".walkPageSizes")
2200        .desc("Table walker page sizes translated")
2201        .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2202        ;
2203    statPageSizes.subname(0, "4K");
2204    statPageSizes.subname(1, "16K");
2205    statPageSizes.subname(2, "64K");
2206    statPageSizes.subname(3, "1M");
2207    statPageSizes.subname(4, "2M");
2208    statPageSizes.subname(5, "16M");
2209    statPageSizes.subname(6, "32M");
2210    statPageSizes.subname(7, "512M");
2211    statPageSizes.subname(8, "1G");
2212
2213    statRequestOrigin
2214        .init(2,2) // Instruction/Data, requests/completed
2215        .name(name() + ".walkRequestOrigin")
2216        .desc("Table walker requests started/completed, data/inst")
2217        .flags(Stats::total)
2218        ;
2219    statRequestOrigin.subname(0,"Requested");
2220    statRequestOrigin.subname(1,"Completed");
2221    statRequestOrigin.ysubname(0,"Data");
2222    statRequestOrigin.ysubname(1,"Inst");
2223}
2224