table_walker.cc revision 10621:b7bc5b1084a4
1/*
2 * Copyright (c) 2010, 2012-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Ali Saidi
38 *          Giacomo Gabrielli
39 */
40
41#include <memory>
42
43#include "arch/arm/faults.hh"
44#include "arch/arm/stage2_mmu.hh"
45#include "arch/arm/system.hh"
46#include "arch/arm/table_walker.hh"
47#include "arch/arm/tlb.hh"
48#include "cpu/base.hh"
49#include "cpu/thread_context.hh"
50#include "debug/Checkpoint.hh"
51#include "debug/Drain.hh"
52#include "debug/TLB.hh"
53#include "debug/TLBVerbose.hh"
54#include "sim/system.hh"
55
56using namespace ArmISA;
57
58TableWalker::TableWalker(const Params *p)
59    : MemObject(p), port(this, p->sys), drainManager(NULL),
60      stage2Mmu(NULL), isStage2(p->is_stage2), tlb(NULL),
61      currState(NULL), pending(false), masterId(p->sys->getMasterId(name())),
62      numSquashable(p->num_squash_per_cycle),
63      pendingReqs(0),
64      pendingChangeTick(curTick()),
65      doL1DescEvent(this), doL2DescEvent(this),
66      doL0LongDescEvent(this), doL1LongDescEvent(this), doL2LongDescEvent(this),
67      doL3LongDescEvent(this),
68      doProcessEvent(this)
69{
70    sctlr = 0;
71
72    // Cache system-level properties
73    if (FullSystem) {
74        armSys = dynamic_cast<ArmSystem *>(p->sys);
75        assert(armSys);
76        haveSecurity = armSys->haveSecurity();
77        _haveLPAE = armSys->haveLPAE();
78        _haveVirtualization = armSys->haveVirtualization();
79        physAddrRange = armSys->physAddrRange();
80        _haveLargeAsid64 = armSys->haveLargeAsid64();
81    } else {
82        armSys = NULL;
83        haveSecurity = _haveLPAE = _haveVirtualization = false;
84        _haveLargeAsid64 = false;
85        physAddrRange = 32;
86    }
87
88}
89
90TableWalker::~TableWalker()
91{
92    ;
93}
94
95TableWalker::WalkerState::WalkerState() :
96    tc(nullptr), aarch64(false), el(EL0), physAddrRange(0), req(nullptr),
97    asid(0), vmid(0), isHyp(false), transState(nullptr),
98    vaddr(0), vaddr_tainted(0), isWrite(false), isFetch(false), isSecure(false),
99    secureLookup(false), rwTable(false), userTable(false), xnTable(false),
100    pxnTable(false), stage2Req(false), doingStage2(false),
101    stage2Tran(nullptr), timing(false), functional(false),
102    mode(BaseTLB::Read), tranType(TLB::NormalTran), l2Desc(l1Desc),
103    delayed(false), tableWalker(nullptr)
104{
105}
106
107void
108TableWalker::completeDrain()
109{
110    if (drainManager && stateQueues[L1].empty() && stateQueues[L2].empty() &&
111        pendingQueue.empty()) {
112        setDrainState(Drainable::Drained);
113        DPRINTF(Drain, "TableWalker done draining, processing drain event\n");
114        drainManager->signalDrainDone();
115        drainManager = NULL;
116    }
117}
118
119unsigned int
120TableWalker::drain(DrainManager *dm)
121{
122    unsigned int count = port.drain(dm);
123
124    bool state_queues_not_empty = false;
125
126    for (int i = 0; i < MAX_LOOKUP_LEVELS; ++i) {
127        if (!stateQueues[i].empty()) {
128            state_queues_not_empty = true;
129            break;
130        }
131    }
132
133    if (state_queues_not_empty || pendingQueue.size()) {
134        drainManager = dm;
135        setDrainState(Drainable::Draining);
136        DPRINTF(Drain, "TableWalker not drained\n");
137
138        // return port drain count plus the table walker itself needs to drain
139        return count + 1;
140    } else {
141        setDrainState(Drainable::Drained);
142        DPRINTF(Drain, "TableWalker free, no need to drain\n");
143
144        // table walker is drained, but its ports may still need to be drained
145        return count;
146    }
147}
148
149void
150TableWalker::drainResume()
151{
152    Drainable::drainResume();
153    if (params()->sys->isTimingMode() && currState) {
154        delete currState;
155        currState = NULL;
156        pendingChange();
157    }
158}
159
160BaseMasterPort&
161TableWalker::getMasterPort(const std::string &if_name, PortID idx)
162{
163    if (if_name == "port") {
164        return port;
165    }
166    return MemObject::getMasterPort(if_name, idx);
167}
168
169Fault
170TableWalker::walk(RequestPtr _req, ThreadContext *_tc, uint16_t _asid,
171                  uint8_t _vmid, bool _isHyp, TLB::Mode _mode,
172                  TLB::Translation *_trans, bool _timing, bool _functional,
173                  bool secure, TLB::ArmTranslationType tranType)
174{
175    assert(!(_functional && _timing));
176    ++statWalks;
177
178    WalkerState *savedCurrState = NULL;
179
180    if (!currState && !_functional) {
181        // For atomic mode, a new WalkerState instance should be only created
182        // once per TLB. For timing mode, a new instance is generated for every
183        // TLB miss.
184        DPRINTF(TLBVerbose, "creating new instance of WalkerState\n");
185
186        currState = new WalkerState();
187        currState->tableWalker = this;
188    } else if (_functional) {
189        // If we are mixing functional mode with timing (or even
190        // atomic), we need to to be careful and clean up after
191        // ourselves to not risk getting into an inconsistent state.
192        DPRINTF(TLBVerbose, "creating functional instance of WalkerState\n");
193        savedCurrState = currState;
194        currState = new WalkerState();
195        currState->tableWalker = this;
196    } else if (_timing) {
197        // This is a translation that was completed and then faulted again
198        // because some underlying parameters that affect the translation
199        // changed out from under us (e.g. asid). It will either be a
200        // misprediction, in which case nothing will happen or we'll use
201        // this fault to re-execute the faulting instruction which should clean
202        // up everything.
203        if (currState->vaddr_tainted == _req->getVaddr()) {
204            ++statSquashedBefore;
205            return std::make_shared<ReExec>();
206        }
207    }
208    pendingChange();
209
210    currState->startTime = curTick();
211    currState->tc = _tc;
212    currState->aarch64 = opModeIs64(currOpMode(_tc));
213    currState->el = currEL(_tc);
214    currState->transState = _trans;
215    currState->req = _req;
216    currState->fault = NoFault;
217    currState->asid = _asid;
218    currState->vmid = _vmid;
219    currState->isHyp = _isHyp;
220    currState->timing = _timing;
221    currState->functional = _functional;
222    currState->mode = _mode;
223    currState->tranType = tranType;
224    currState->isSecure = secure;
225    currState->physAddrRange = physAddrRange;
226
227    /** @todo These should be cached or grabbed from cached copies in
228     the TLB, all these miscreg reads are expensive */
229    currState->vaddr_tainted = currState->req->getVaddr();
230    if (currState->aarch64)
231        currState->vaddr = purifyTaggedAddr(currState->vaddr_tainted,
232                                            currState->tc, currState->el);
233    else
234        currState->vaddr = currState->vaddr_tainted;
235
236    if (currState->aarch64) {
237        switch (currState->el) {
238          case EL0:
239          case EL1:
240            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL1);
241            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL1);
242            break;
243          // @todo: uncomment this to enable Virtualization
244          // case EL2:
245          //   assert(haveVirtualization);
246          //   currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL2);
247          //   currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL2);
248          //   break;
249          case EL3:
250            assert(haveSecurity);
251            currState->sctlr = currState->tc->readMiscReg(MISCREG_SCTLR_EL3);
252            currState->tcr = currState->tc->readMiscReg(MISCREG_TCR_EL3);
253            break;
254          default:
255            panic("Invalid exception level");
256            break;
257        }
258    } else {
259        currState->sctlr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
260            MISCREG_SCTLR, currState->tc, !currState->isSecure));
261        currState->ttbcr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
262            MISCREG_TTBCR, currState->tc, !currState->isSecure));
263        currState->htcr  = currState->tc->readMiscReg(MISCREG_HTCR);
264        currState->hcr   = currState->tc->readMiscReg(MISCREG_HCR);
265        currState->vtcr  = currState->tc->readMiscReg(MISCREG_VTCR);
266    }
267    sctlr = currState->sctlr;
268
269    currState->isFetch = (currState->mode == TLB::Execute);
270    currState->isWrite = (currState->mode == TLB::Write);
271
272    statRequestOrigin[REQUESTED][currState->isFetch]++;
273
274    // We only do a second stage of translation if we're not secure, or in
275    // hyp mode, the second stage MMU is enabled, and this table walker
276    // instance is the first stage.
277    currState->doingStage2 = false;
278    // @todo: for now disable this in AArch64 (HCR is not set)
279    currState->stage2Req = !currState->aarch64 && currState->hcr.vm &&
280                           !isStage2 && !currState->isSecure && !currState->isHyp;
281
282    bool long_desc_format = currState->aarch64 ||
283                            (_haveLPAE && currState->ttbcr.eae) ||
284                            _isHyp || isStage2;
285
286    if (long_desc_format) {
287        // Helper variables used for hierarchical permissions
288        currState->secureLookup = currState->isSecure;
289        currState->rwTable = true;
290        currState->userTable = true;
291        currState->xnTable = false;
292        currState->pxnTable = false;
293
294        ++statWalksLongDescriptor;
295    } else {
296        ++statWalksShortDescriptor;
297    }
298
299    if (!currState->timing) {
300        Fault fault = NoFault;
301        if (currState->aarch64)
302            fault = processWalkAArch64();
303        else if (long_desc_format)
304            fault = processWalkLPAE();
305        else
306            fault = processWalk();
307
308        // If this was a functional non-timing access restore state to
309        // how we found it.
310        if (currState->functional) {
311            delete currState;
312            currState = savedCurrState;
313        }
314        return fault;
315    }
316
317    if (pending || pendingQueue.size()) {
318        pendingQueue.push_back(currState);
319        currState = NULL;
320        pendingChange();
321    } else {
322        pending = true;
323        pendingChange();
324        if (currState->aarch64)
325            return processWalkAArch64();
326        else if (long_desc_format)
327            return processWalkLPAE();
328        else
329            return processWalk();
330    }
331
332    return NoFault;
333}
334
335void
336TableWalker::processWalkWrapper()
337{
338    assert(!currState);
339    assert(pendingQueue.size());
340    pendingChange();
341    currState = pendingQueue.front();
342
343    ExceptionLevel target_el = EL0;
344    if (currState->aarch64)
345        target_el = currEL(currState->tc);
346    else
347        target_el = EL1;
348
349    // Check if a previous walk filled this request already
350    // @TODO Should this always be the TLB or should we look in the stage2 TLB?
351    TlbEntry* te = tlb->lookup(currState->vaddr, currState->asid,
352            currState->vmid, currState->isHyp, currState->isSecure, true, false,
353            target_el);
354
355    // Check if we still need to have a walk for this request. If the requesting
356    // instruction has been squashed, or a previous walk has filled the TLB with
357    // a match, we just want to get rid of the walk. The latter could happen
358    // when there are multiple outstanding misses to a single page and a
359    // previous request has been successfully translated.
360    if (!currState->transState->squashed() && !te) {
361        // We've got a valid request, lets process it
362        pending = true;
363        pendingQueue.pop_front();
364        // Keep currState in case one of the processWalk... calls NULLs it
365        WalkerState *curr_state_copy = currState;
366        Fault f;
367        if (currState->aarch64)
368            f = processWalkAArch64();
369        else if ((_haveLPAE && currState->ttbcr.eae) || currState->isHyp || isStage2)
370            f = processWalkLPAE();
371        else
372            f = processWalk();
373
374        if (f != NoFault) {
375            curr_state_copy->transState->finish(f, curr_state_copy->req,
376                    curr_state_copy->tc, curr_state_copy->mode);
377
378            delete curr_state_copy;
379        }
380        return;
381    }
382
383
384    // If the instruction that we were translating for has been
385    // squashed we shouldn't bother.
386    unsigned num_squashed = 0;
387    ThreadContext *tc = currState->tc;
388    while ((num_squashed < numSquashable) && currState &&
389           (currState->transState->squashed() || te)) {
390        pendingQueue.pop_front();
391        num_squashed++;
392        statSquashedBefore++;
393
394        DPRINTF(TLB, "Squashing table walk for address %#x\n",
395                      currState->vaddr_tainted);
396
397        if (currState->transState->squashed()) {
398            // finish the translation which will delete the translation object
399            currState->transState->finish(
400                std::make_shared<UnimpFault>("Squashed Inst"),
401                currState->req, currState->tc, currState->mode);
402        } else {
403            // translate the request now that we know it will work
404            statWalkServiceTime.sample(curTick() - currState->startTime);
405            tlb->translateTiming(currState->req, currState->tc,
406                        currState->transState, currState->mode);
407
408        }
409
410        // delete the current request
411        delete currState;
412
413        // peak at the next one
414        if (pendingQueue.size()) {
415            currState = pendingQueue.front();
416            te = tlb->lookup(currState->vaddr, currState->asid,
417                currState->vmid, currState->isHyp, currState->isSecure, true,
418                false, target_el);
419        } else {
420            // Terminate the loop, nothing more to do
421            currState = NULL;
422        }
423    }
424    pendingChange();
425
426    // if we still have pending translations, schedule more work
427    nextWalk(tc);
428    currState = NULL;
429}
430
431Fault
432TableWalker::processWalk()
433{
434    Addr ttbr = 0;
435
436    // If translation isn't enabled, we shouldn't be here
437    assert(currState->sctlr.m || isStage2);
438
439    DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x, bits:%#x\n",
440            currState->vaddr_tainted, currState->ttbcr, mbits(currState->vaddr, 31,
441                                                      32 - currState->ttbcr.n));
442
443    statWalkWaitTime.sample(curTick() - currState->startTime);
444
445    if (currState->ttbcr.n == 0 || !mbits(currState->vaddr, 31,
446                                          32 - currState->ttbcr.n)) {
447        DPRINTF(TLB, " - Selecting TTBR0\n");
448        // Check if table walk is allowed when Security Extensions are enabled
449        if (haveSecurity && currState->ttbcr.pd0) {
450            if (currState->isFetch)
451                return std::make_shared<PrefetchAbort>(
452                    currState->vaddr_tainted,
453                    ArmFault::TranslationLL + L1,
454                    isStage2,
455                    ArmFault::VmsaTran);
456            else
457                return std::make_shared<DataAbort>(
458                    currState->vaddr_tainted,
459                    TlbEntry::DomainType::NoAccess, currState->isWrite,
460                    ArmFault::TranslationLL + L1, isStage2,
461                    ArmFault::VmsaTran);
462        }
463        ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
464            MISCREG_TTBR0, currState->tc, !currState->isSecure));
465    } else {
466        DPRINTF(TLB, " - Selecting TTBR1\n");
467        // Check if table walk is allowed when Security Extensions are enabled
468        if (haveSecurity && currState->ttbcr.pd1) {
469            if (currState->isFetch)
470                return std::make_shared<PrefetchAbort>(
471                    currState->vaddr_tainted,
472                    ArmFault::TranslationLL + L1,
473                    isStage2,
474                    ArmFault::VmsaTran);
475            else
476                return std::make_shared<DataAbort>(
477                    currState->vaddr_tainted,
478                    TlbEntry::DomainType::NoAccess, currState->isWrite,
479                    ArmFault::TranslationLL + L1, isStage2,
480                    ArmFault::VmsaTran);
481        }
482        ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
483            MISCREG_TTBR1, currState->tc, !currState->isSecure));
484        currState->ttbcr.n = 0;
485    }
486
487    Addr l1desc_addr = mbits(ttbr, 31, 14 - currState->ttbcr.n) |
488        (bits(currState->vaddr, 31 - currState->ttbcr.n, 20) << 2);
489    DPRINTF(TLB, " - Descriptor at address %#x (%s)\n", l1desc_addr,
490            currState->isSecure ? "s" : "ns");
491
492    // Trickbox address check
493    Fault f;
494    f = tlb->walkTrickBoxCheck(l1desc_addr, currState->isSecure,
495            currState->vaddr, sizeof(uint32_t), currState->isFetch,
496            currState->isWrite, TlbEntry::DomainType::NoAccess, L1);
497    if (f) {
498        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
499        if (currState->timing) {
500            pending = false;
501            nextWalk(currState->tc);
502            currState = NULL;
503        } else {
504            currState->tc = NULL;
505            currState->req = NULL;
506        }
507        return f;
508    }
509
510    Request::Flags flag = 0;
511    if (currState->sctlr.c == 0) {
512        flag = Request::UNCACHEABLE;
513    }
514
515    bool delayed;
516    delayed = fetchDescriptor(l1desc_addr, (uint8_t*)&currState->l1Desc.data,
517                              sizeof(uint32_t), flag, L1, &doL1DescEvent,
518                              &TableWalker::doL1Descriptor);
519    if (!delayed) {
520       f = currState->fault;
521    }
522
523    return f;
524}
525
526Fault
527TableWalker::processWalkLPAE()
528{
529    Addr ttbr, ttbr0_max, ttbr1_min, desc_addr;
530    int tsz, n;
531    LookupLevel start_lookup_level = L1;
532
533    DPRINTF(TLB, "Beginning table walk for address %#x, TTBCR: %#x\n",
534            currState->vaddr_tainted, currState->ttbcr);
535
536    statWalkWaitTime.sample(curTick() - currState->startTime);
537
538    Request::Flags flag = 0;
539    if (currState->isSecure)
540        flag.set(Request::SECURE);
541
542    // work out which base address register to use, if in hyp mode we always
543    // use HTTBR
544    if (isStage2) {
545        DPRINTF(TLB, " - Selecting VTTBR (long-desc.)\n");
546        ttbr = currState->tc->readMiscReg(MISCREG_VTTBR);
547        tsz  = sext<4>(currState->vtcr.t0sz);
548        start_lookup_level = currState->vtcr.sl0 ? L1 : L2;
549    } else if (currState->isHyp) {
550        DPRINTF(TLB, " - Selecting HTTBR (long-desc.)\n");
551        ttbr = currState->tc->readMiscReg(MISCREG_HTTBR);
552        tsz  = currState->htcr.t0sz;
553    } else {
554        assert(_haveLPAE && currState->ttbcr.eae);
555
556        // Determine boundaries of TTBR0/1 regions
557        if (currState->ttbcr.t0sz)
558            ttbr0_max = (1ULL << (32 - currState->ttbcr.t0sz)) - 1;
559        else if (currState->ttbcr.t1sz)
560            ttbr0_max = (1ULL << 32) -
561                (1ULL << (32 - currState->ttbcr.t1sz)) - 1;
562        else
563            ttbr0_max = (1ULL << 32) - 1;
564        if (currState->ttbcr.t1sz)
565            ttbr1_min = (1ULL << 32) - (1ULL << (32 - currState->ttbcr.t1sz));
566        else
567            ttbr1_min = (1ULL << (32 - currState->ttbcr.t0sz));
568
569        // The following code snippet selects the appropriate translation table base
570        // address (TTBR0 or TTBR1) and the appropriate starting lookup level
571        // depending on the address range supported by the translation table (ARM
572        // ARM issue C B3.6.4)
573        if (currState->vaddr <= ttbr0_max) {
574            DPRINTF(TLB, " - Selecting TTBR0 (long-desc.)\n");
575            // Check if table walk is allowed
576            if (currState->ttbcr.epd0) {
577                if (currState->isFetch)
578                    return std::make_shared<PrefetchAbort>(
579                        currState->vaddr_tainted,
580                        ArmFault::TranslationLL + L1,
581                        isStage2,
582                        ArmFault::LpaeTran);
583                else
584                    return std::make_shared<DataAbort>(
585                        currState->vaddr_tainted,
586                        TlbEntry::DomainType::NoAccess,
587                        currState->isWrite,
588                        ArmFault::TranslationLL + L1,
589                        isStage2,
590                        ArmFault::LpaeTran);
591            }
592            ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
593                MISCREG_TTBR0, currState->tc, !currState->isSecure));
594            tsz = currState->ttbcr.t0sz;
595            if (ttbr0_max < (1ULL << 30))  // Upper limit < 1 GB
596                start_lookup_level = L2;
597        } else if (currState->vaddr >= ttbr1_min) {
598            DPRINTF(TLB, " - Selecting TTBR1 (long-desc.)\n");
599            // Check if table walk is allowed
600            if (currState->ttbcr.epd1) {
601                if (currState->isFetch)
602                    return std::make_shared<PrefetchAbort>(
603                        currState->vaddr_tainted,
604                        ArmFault::TranslationLL + L1,
605                        isStage2,
606                        ArmFault::LpaeTran);
607                else
608                    return std::make_shared<DataAbort>(
609                        currState->vaddr_tainted,
610                        TlbEntry::DomainType::NoAccess,
611                        currState->isWrite,
612                        ArmFault::TranslationLL + L1,
613                        isStage2,
614                        ArmFault::LpaeTran);
615            }
616            ttbr = currState->tc->readMiscReg(flattenMiscRegNsBanked(
617                MISCREG_TTBR1, currState->tc, !currState->isSecure));
618            tsz = currState->ttbcr.t1sz;
619            if (ttbr1_min >= (1ULL << 31) + (1ULL << 30))  // Lower limit >= 3 GB
620                start_lookup_level = L2;
621        } else {
622            // Out of boundaries -> translation fault
623            if (currState->isFetch)
624                return std::make_shared<PrefetchAbort>(
625                    currState->vaddr_tainted,
626                    ArmFault::TranslationLL + L1,
627                    isStage2,
628                    ArmFault::LpaeTran);
629            else
630                return std::make_shared<DataAbort>(
631                    currState->vaddr_tainted,
632                    TlbEntry::DomainType::NoAccess,
633                    currState->isWrite, ArmFault::TranslationLL + L1,
634                    isStage2, ArmFault::LpaeTran);
635        }
636
637    }
638
639    // Perform lookup (ARM ARM issue C B3.6.6)
640    if (start_lookup_level == L1) {
641        n = 5 - tsz;
642        desc_addr = mbits(ttbr, 39, n) |
643            (bits(currState->vaddr, n + 26, 30) << 3);
644        DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
645                desc_addr, currState->isSecure ? "s" : "ns");
646    } else {
647        // Skip first-level lookup
648        n = (tsz >= 2 ? 14 - tsz : 12);
649        desc_addr = mbits(ttbr, 39, n) |
650            (bits(currState->vaddr, n + 17, 21) << 3);
651        DPRINTF(TLB, " - Descriptor at address %#x (%s) (long-desc.)\n",
652                desc_addr, currState->isSecure ? "s" : "ns");
653    }
654
655    // Trickbox address check
656    Fault f = tlb->walkTrickBoxCheck(desc_addr, currState->isSecure,
657                        currState->vaddr, sizeof(uint64_t), currState->isFetch,
658                        currState->isWrite, TlbEntry::DomainType::NoAccess,
659                        start_lookup_level);
660    if (f) {
661        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
662        if (currState->timing) {
663            pending = false;
664            nextWalk(currState->tc);
665            currState = NULL;
666        } else {
667            currState->tc = NULL;
668            currState->req = NULL;
669        }
670        return f;
671    }
672
673    if (currState->sctlr.c == 0) {
674        flag = Request::UNCACHEABLE;
675    }
676
677    if (currState->isSecure)
678        flag.set(Request::SECURE);
679
680    currState->longDesc.lookupLevel = start_lookup_level;
681    currState->longDesc.aarch64 = false;
682    currState->longDesc.grainSize = Grain4KB;
683
684    Event *event = start_lookup_level == L1 ? (Event *) &doL1LongDescEvent
685                                            : (Event *) &doL2LongDescEvent;
686
687    bool delayed = fetchDescriptor(desc_addr, (uint8_t*)&currState->longDesc.data,
688                                   sizeof(uint64_t), flag, start_lookup_level,
689                                   event, &TableWalker::doLongDescriptor);
690    if (!delayed) {
691        f = currState->fault;
692    }
693
694    return f;
695}
696
697unsigned
698TableWalker::adjustTableSizeAArch64(unsigned tsz)
699{
700    if (tsz < 25)
701        return 25;
702    if (tsz > 48)
703        return 48;
704    return tsz;
705}
706
707bool
708TableWalker::checkAddrSizeFaultAArch64(Addr addr, int currPhysAddrRange)
709{
710    return (currPhysAddrRange != MaxPhysAddrRange &&
711            bits(addr, MaxPhysAddrRange - 1, currPhysAddrRange));
712}
713
714Fault
715TableWalker::processWalkAArch64()
716{
717    assert(currState->aarch64);
718
719    DPRINTF(TLB, "Beginning table walk for address %#llx, TCR: %#llx\n",
720            currState->vaddr_tainted, currState->tcr);
721
722    static const GrainSize GrainMapDefault[] =
723      { Grain4KB, Grain64KB, Grain16KB, ReservedGrain };
724    static const GrainSize GrainMap_EL1_tg1[] =
725      { ReservedGrain, Grain16KB, Grain4KB, Grain64KB };
726
727    statWalkWaitTime.sample(curTick() - currState->startTime);
728
729    // Determine TTBR, table size, granule size and phys. address range
730    Addr ttbr = 0;
731    int tsz = 0, ps = 0;
732    GrainSize tg = Grain4KB; // grain size computed from tg* field
733    bool fault = false;
734    switch (currState->el) {
735      case EL0:
736      case EL1:
737        switch (bits(currState->vaddr, 63,48)) {
738          case 0:
739            DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
740            ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL1);
741            tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
742            tg = GrainMapDefault[currState->tcr.tg0];
743            if (bits(currState->vaddr, 63, tsz) != 0x0 ||
744                currState->tcr.epd0)
745              fault = true;
746            break;
747          case 0xffff:
748            DPRINTF(TLB, " - Selecting TTBR1 (AArch64)\n");
749            ttbr = currState->tc->readMiscReg(MISCREG_TTBR1_EL1);
750            tsz = adjustTableSizeAArch64(64 - currState->tcr.t1sz);
751            tg = GrainMap_EL1_tg1[currState->tcr.tg1];
752            if (bits(currState->vaddr, 63, tsz) != mask(64-tsz) ||
753                currState->tcr.epd1)
754              fault = true;
755            break;
756          default:
757            // top two bytes must be all 0s or all 1s, else invalid addr
758            fault = true;
759        }
760        ps = currState->tcr.ips;
761        break;
762      case EL2:
763      case EL3:
764        switch(bits(currState->vaddr, 63,48)) {
765            case 0:
766                DPRINTF(TLB, " - Selecting TTBR0 (AArch64)\n");
767                if (currState->el == EL2)
768                    ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL2);
769                else
770                    ttbr = currState->tc->readMiscReg(MISCREG_TTBR0_EL3);
771                tsz = adjustTableSizeAArch64(64 - currState->tcr.t0sz);
772                tg = GrainMapDefault[currState->tcr.tg0];
773                break;
774            default:
775                // invalid addr if top two bytes are not all 0s
776                fault = true;
777        }
778        ps = currState->tcr.ips;
779        break;
780    }
781
782    if (fault) {
783        Fault f;
784        if (currState->isFetch)
785            f =  std::make_shared<PrefetchAbort>(
786                currState->vaddr_tainted,
787                ArmFault::TranslationLL + L0, isStage2,
788                ArmFault::LpaeTran);
789        else
790            f = std::make_shared<DataAbort>(
791                currState->vaddr_tainted,
792                TlbEntry::DomainType::NoAccess,
793                currState->isWrite,
794                ArmFault::TranslationLL + L0,
795                isStage2, ArmFault::LpaeTran);
796
797        if (currState->timing) {
798            pending = false;
799            nextWalk(currState->tc);
800            currState = NULL;
801        } else {
802            currState->tc = NULL;
803            currState->req = NULL;
804        }
805        return f;
806
807    }
808
809    if (tg == ReservedGrain) {
810        warn_once("Reserved granule size requested; gem5's IMPLEMENTATION "
811                  "DEFINED behavior takes this to mean 4KB granules\n");
812        tg = Grain4KB;
813    }
814
815    int stride = tg - 3;
816    LookupLevel start_lookup_level = MAX_LOOKUP_LEVELS;
817
818    // Determine starting lookup level
819    // See aarch64/translation/walk in Appendix G: ARMv8 Pseudocode Library
820    // in ARM DDI 0487A.  These table values correspond to the cascading tests
821    // to compute the lookup level and are of the form
822    // (grain_size + N*stride), for N = {1, 2, 3}.
823    // A value of 64 will never succeed and a value of 0 will always succeed.
824    {
825        struct GrainMap {
826            GrainSize grain_size;
827            unsigned lookup_level_cutoff[MAX_LOOKUP_LEVELS];
828        };
829        static const GrainMap GM[] = {
830            { Grain4KB,  { 39, 30,  0, 0 } },
831            { Grain16KB, { 47, 36, 25, 0 } },
832            { Grain64KB, { 64, 42, 29, 0 } }
833        };
834
835        const unsigned *lookup = NULL; // points to a lookup_level_cutoff
836
837        for (unsigned i = 0; i < 3; ++i) { // choose entry of GM[]
838            if (tg == GM[i].grain_size) {
839                lookup = GM[i].lookup_level_cutoff;
840                break;
841            }
842        }
843        assert(lookup);
844
845        for (int L = L0; L != MAX_LOOKUP_LEVELS; ++L) {
846            if (tsz > lookup[L]) {
847                start_lookup_level = (LookupLevel) L;
848                break;
849            }
850        }
851        panic_if(start_lookup_level == MAX_LOOKUP_LEVELS,
852                 "Table walker couldn't find lookup level\n");
853    }
854
855    // Determine table base address
856    int base_addr_lo = 3 + tsz - stride * (3 - start_lookup_level) - tg;
857    Addr base_addr = mbits(ttbr, 47, base_addr_lo);
858
859    // Determine physical address size and raise an Address Size Fault if
860    // necessary
861    int pa_range = decodePhysAddrRange64(ps);
862    // Clamp to lower limit
863    if (pa_range > physAddrRange)
864        currState->physAddrRange = physAddrRange;
865    else
866        currState->physAddrRange = pa_range;
867    if (checkAddrSizeFaultAArch64(base_addr, currState->physAddrRange)) {
868        DPRINTF(TLB, "Address size fault before any lookup\n");
869        Fault f;
870        if (currState->isFetch)
871            f = std::make_shared<PrefetchAbort>(
872                currState->vaddr_tainted,
873                ArmFault::AddressSizeLL + start_lookup_level,
874                isStage2,
875                ArmFault::LpaeTran);
876        else
877            f = std::make_shared<DataAbort>(
878                currState->vaddr_tainted,
879                TlbEntry::DomainType::NoAccess,
880                currState->isWrite,
881                ArmFault::AddressSizeLL + start_lookup_level,
882                isStage2,
883                ArmFault::LpaeTran);
884
885
886        if (currState->timing) {
887            pending = false;
888            nextWalk(currState->tc);
889            currState = NULL;
890        } else {
891            currState->tc = NULL;
892            currState->req = NULL;
893        }
894        return f;
895
896   }
897
898    // Determine descriptor address
899    Addr desc_addr = base_addr |
900        (bits(currState->vaddr, tsz - 1,
901              stride * (3 - start_lookup_level) + tg) << 3);
902
903    // Trickbox address check
904    Fault f = tlb->walkTrickBoxCheck(desc_addr, currState->isSecure,
905                        currState->vaddr, sizeof(uint64_t), currState->isFetch,
906                        currState->isWrite, TlbEntry::DomainType::NoAccess,
907                        start_lookup_level);
908    if (f) {
909        DPRINTF(TLB, "Trickbox check caused fault on %#x\n", currState->vaddr_tainted);
910        if (currState->timing) {
911            pending = false;
912            nextWalk(currState->tc);
913            currState = NULL;
914        } else {
915            currState->tc = NULL;
916            currState->req = NULL;
917        }
918        return f;
919    }
920
921    Request::Flags flag = 0;
922    if (currState->sctlr.c == 0) {
923        flag = Request::UNCACHEABLE;
924    }
925
926    currState->longDesc.lookupLevel = start_lookup_level;
927    currState->longDesc.aarch64 = true;
928    currState->longDesc.grainSize = tg;
929
930    if (currState->timing) {
931        Event *event;
932        switch (start_lookup_level) {
933          case L0:
934            event = (Event *) &doL0LongDescEvent;
935            break;
936          case L1:
937            event = (Event *) &doL1LongDescEvent;
938            break;
939          case L2:
940            event = (Event *) &doL2LongDescEvent;
941            break;
942          case L3:
943            event = (Event *) &doL3LongDescEvent;
944            break;
945          default:
946            panic("Invalid table lookup level");
947            break;
948        }
949        port.dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
950                       event, (uint8_t*) &currState->longDesc.data,
951                       currState->tc->getCpuPtr()->clockPeriod(), flag);
952        DPRINTF(TLBVerbose,
953                "Adding to walker fifo: queue size before adding: %d\n",
954                stateQueues[start_lookup_level].size());
955        stateQueues[start_lookup_level].push_back(currState);
956        currState = NULL;
957    } else if (!currState->functional) {
958        port.dmaAction(MemCmd::ReadReq, desc_addr, sizeof(uint64_t),
959                       NULL, (uint8_t*) &currState->longDesc.data,
960                       currState->tc->getCpuPtr()->clockPeriod(), flag);
961        doLongDescriptor();
962        f = currState->fault;
963    } else {
964        RequestPtr req = new Request(desc_addr, sizeof(uint64_t), flag,
965                                     masterId);
966        PacketPtr pkt = new Packet(req, MemCmd::ReadReq);
967        pkt->dataStatic((uint8_t*) &currState->longDesc.data);
968        port.sendFunctional(pkt);
969        doLongDescriptor();
970        delete req;
971        delete pkt;
972        f = currState->fault;
973    }
974
975    return f;
976}
977
978void
979TableWalker::memAttrs(ThreadContext *tc, TlbEntry &te, SCTLR sctlr,
980                      uint8_t texcb, bool s)
981{
982    // Note: tc and sctlr local variables are hiding tc and sctrl class
983    // variables
984    DPRINTF(TLBVerbose, "memAttrs texcb:%d s:%d\n", texcb, s);
985    te.shareable = false; // default value
986    te.nonCacheable = false;
987    te.outerShareable = false;
988    if (sctlr.tre == 0 || ((sctlr.tre == 1) && (sctlr.m == 0))) {
989        switch(texcb) {
990          case 0: // Stongly-ordered
991            te.nonCacheable = true;
992            te.mtype = TlbEntry::MemoryType::StronglyOrdered;
993            te.shareable = true;
994            te.innerAttrs = 1;
995            te.outerAttrs = 0;
996            break;
997          case 1: // Shareable Device
998            te.nonCacheable = true;
999            te.mtype = TlbEntry::MemoryType::Device;
1000            te.shareable = true;
1001            te.innerAttrs = 3;
1002            te.outerAttrs = 0;
1003            break;
1004          case 2: // Outer and Inner Write-Through, no Write-Allocate
1005            te.mtype = TlbEntry::MemoryType::Normal;
1006            te.shareable = s;
1007            te.innerAttrs = 6;
1008            te.outerAttrs = bits(texcb, 1, 0);
1009            break;
1010          case 3: // Outer and Inner Write-Back, no Write-Allocate
1011            te.mtype = TlbEntry::MemoryType::Normal;
1012            te.shareable = s;
1013            te.innerAttrs = 7;
1014            te.outerAttrs = bits(texcb, 1, 0);
1015            break;
1016          case 4: // Outer and Inner Non-cacheable
1017            te.nonCacheable = true;
1018            te.mtype = TlbEntry::MemoryType::Normal;
1019            te.shareable = s;
1020            te.innerAttrs = 0;
1021            te.outerAttrs = bits(texcb, 1, 0);
1022            break;
1023          case 5: // Reserved
1024            panic("Reserved texcb value!\n");
1025            break;
1026          case 6: // Implementation Defined
1027            panic("Implementation-defined texcb value!\n");
1028            break;
1029          case 7: // Outer and Inner Write-Back, Write-Allocate
1030            te.mtype = TlbEntry::MemoryType::Normal;
1031            te.shareable = s;
1032            te.innerAttrs = 5;
1033            te.outerAttrs = 1;
1034            break;
1035          case 8: // Non-shareable Device
1036            te.nonCacheable = true;
1037            te.mtype = TlbEntry::MemoryType::Device;
1038            te.shareable = false;
1039            te.innerAttrs = 3;
1040            te.outerAttrs = 0;
1041            break;
1042          case 9 ... 15:  // Reserved
1043            panic("Reserved texcb value!\n");
1044            break;
1045          case 16 ... 31: // Cacheable Memory
1046            te.mtype = TlbEntry::MemoryType::Normal;
1047            te.shareable = s;
1048            if (bits(texcb, 1,0) == 0 || bits(texcb, 3,2) == 0)
1049                te.nonCacheable = true;
1050            te.innerAttrs = bits(texcb, 1, 0);
1051            te.outerAttrs = bits(texcb, 3, 2);
1052            break;
1053          default:
1054            panic("More than 32 states for 5 bits?\n");
1055        }
1056    } else {
1057        assert(tc);
1058        PRRR prrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_PRRR,
1059                                    currState->tc, !currState->isSecure));
1060        NMRR nmrr = tc->readMiscReg(flattenMiscRegNsBanked(MISCREG_NMRR,
1061                                    currState->tc, !currState->isSecure));
1062        DPRINTF(TLBVerbose, "memAttrs PRRR:%08x NMRR:%08x\n", prrr, nmrr);
1063        uint8_t curr_tr = 0, curr_ir = 0, curr_or = 0;
1064        switch(bits(texcb, 2,0)) {
1065          case 0:
1066            curr_tr = prrr.tr0;
1067            curr_ir = nmrr.ir0;
1068            curr_or = nmrr.or0;
1069            te.outerShareable = (prrr.nos0 == 0);
1070            break;
1071          case 1:
1072            curr_tr = prrr.tr1;
1073            curr_ir = nmrr.ir1;
1074            curr_or = nmrr.or1;
1075            te.outerShareable = (prrr.nos1 == 0);
1076            break;
1077          case 2:
1078            curr_tr = prrr.tr2;
1079            curr_ir = nmrr.ir2;
1080            curr_or = nmrr.or2;
1081            te.outerShareable = (prrr.nos2 == 0);
1082            break;
1083          case 3:
1084            curr_tr = prrr.tr3;
1085            curr_ir = nmrr.ir3;
1086            curr_or = nmrr.or3;
1087            te.outerShareable = (prrr.nos3 == 0);
1088            break;
1089          case 4:
1090            curr_tr = prrr.tr4;
1091            curr_ir = nmrr.ir4;
1092            curr_or = nmrr.or4;
1093            te.outerShareable = (prrr.nos4 == 0);
1094            break;
1095          case 5:
1096            curr_tr = prrr.tr5;
1097            curr_ir = nmrr.ir5;
1098            curr_or = nmrr.or5;
1099            te.outerShareable = (prrr.nos5 == 0);
1100            break;
1101          case 6:
1102            panic("Imp defined type\n");
1103          case 7:
1104            curr_tr = prrr.tr7;
1105            curr_ir = nmrr.ir7;
1106            curr_or = nmrr.or7;
1107            te.outerShareable = (prrr.nos7 == 0);
1108            break;
1109        }
1110
1111        switch(curr_tr) {
1112          case 0:
1113            DPRINTF(TLBVerbose, "StronglyOrdered\n");
1114            te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1115            te.nonCacheable = true;
1116            te.innerAttrs = 1;
1117            te.outerAttrs = 0;
1118            te.shareable = true;
1119            break;
1120          case 1:
1121            DPRINTF(TLBVerbose, "Device ds1:%d ds0:%d s:%d\n",
1122                    prrr.ds1, prrr.ds0, s);
1123            te.mtype = TlbEntry::MemoryType::Device;
1124            te.nonCacheable = true;
1125            te.innerAttrs = 3;
1126            te.outerAttrs = 0;
1127            if (prrr.ds1 && s)
1128                te.shareable = true;
1129            if (prrr.ds0 && !s)
1130                te.shareable = true;
1131            break;
1132          case 2:
1133            DPRINTF(TLBVerbose, "Normal ns1:%d ns0:%d s:%d\n",
1134                    prrr.ns1, prrr.ns0, s);
1135            te.mtype = TlbEntry::MemoryType::Normal;
1136            if (prrr.ns1 && s)
1137                te.shareable = true;
1138            if (prrr.ns0 && !s)
1139                te.shareable = true;
1140            break;
1141          case 3:
1142            panic("Reserved type");
1143        }
1144
1145        if (te.mtype == TlbEntry::MemoryType::Normal){
1146            switch(curr_ir) {
1147              case 0:
1148                te.nonCacheable = true;
1149                te.innerAttrs = 0;
1150                break;
1151              case 1:
1152                te.innerAttrs = 5;
1153                break;
1154              case 2:
1155                te.innerAttrs = 6;
1156                break;
1157              case 3:
1158                te.innerAttrs = 7;
1159                break;
1160            }
1161
1162            switch(curr_or) {
1163              case 0:
1164                te.nonCacheable = true;
1165                te.outerAttrs = 0;
1166                break;
1167              case 1:
1168                te.outerAttrs = 1;
1169                break;
1170              case 2:
1171                te.outerAttrs = 2;
1172                break;
1173              case 3:
1174                te.outerAttrs = 3;
1175                break;
1176            }
1177        }
1178    }
1179    DPRINTF(TLBVerbose, "memAttrs: shareable: %d, innerAttrs: %d, "
1180            "outerAttrs: %d\n",
1181            te.shareable, te.innerAttrs, te.outerAttrs);
1182    te.setAttributes(false);
1183}
1184
1185void
1186TableWalker::memAttrsLPAE(ThreadContext *tc, TlbEntry &te,
1187    LongDescriptor &lDescriptor)
1188{
1189    assert(_haveLPAE);
1190
1191    uint8_t attr;
1192    uint8_t sh = lDescriptor.sh();
1193    // Different format and source of attributes if this is a stage 2
1194    // translation
1195    if (isStage2) {
1196        attr = lDescriptor.memAttr();
1197        uint8_t attr_3_2 = (attr >> 2) & 0x3;
1198        uint8_t attr_1_0 =  attr       & 0x3;
1199
1200        DPRINTF(TLBVerbose, "memAttrsLPAE MemAttr:%#x sh:%#x\n", attr, sh);
1201
1202        if (attr_3_2 == 0) {
1203            te.mtype        = attr_1_0 == 0 ? TlbEntry::MemoryType::StronglyOrdered
1204                                            : TlbEntry::MemoryType::Device;
1205            te.outerAttrs   = 0;
1206            te.innerAttrs   = attr_1_0 == 0 ? 1 : 3;
1207            te.nonCacheable = true;
1208        } else {
1209            te.mtype        = TlbEntry::MemoryType::Normal;
1210            te.outerAttrs   = attr_3_2 == 1 ? 0 :
1211                              attr_3_2 == 2 ? 2 : 1;
1212            te.innerAttrs   = attr_1_0 == 1 ? 0 :
1213                              attr_1_0 == 2 ? 6 : 5;
1214            te.nonCacheable = (attr_3_2 == 1) || (attr_1_0 == 1);
1215        }
1216    } else {
1217        uint8_t attrIndx = lDescriptor.attrIndx();
1218
1219        // LPAE always uses remapping of memory attributes, irrespective of the
1220        // value of SCTLR.TRE
1221        MiscRegIndex reg = attrIndx & 0x4 ? MISCREG_MAIR1 : MISCREG_MAIR0;
1222        int reg_as_int = flattenMiscRegNsBanked(reg, currState->tc,
1223                                                !currState->isSecure);
1224        uint32_t mair = currState->tc->readMiscReg(reg_as_int);
1225        attr = (mair >> (8 * (attrIndx % 4))) & 0xff;
1226        uint8_t attr_7_4 = bits(attr, 7, 4);
1227        uint8_t attr_3_0 = bits(attr, 3, 0);
1228        DPRINTF(TLBVerbose, "memAttrsLPAE AttrIndx:%#x sh:%#x, attr %#x\n", attrIndx, sh, attr);
1229
1230        // Note: the memory subsystem only cares about the 'cacheable' memory
1231        // attribute. The other attributes are only used to fill the PAR register
1232        // accordingly to provide the illusion of full support
1233        te.nonCacheable = false;
1234
1235        switch (attr_7_4) {
1236          case 0x0:
1237            // Strongly-ordered or Device memory
1238            if (attr_3_0 == 0x0)
1239                te.mtype = TlbEntry::MemoryType::StronglyOrdered;
1240            else if (attr_3_0 == 0x4)
1241                te.mtype = TlbEntry::MemoryType::Device;
1242            else
1243                panic("Unpredictable behavior\n");
1244            te.nonCacheable = true;
1245            te.outerAttrs   = 0;
1246            break;
1247          case 0x4:
1248            // Normal memory, Outer Non-cacheable
1249            te.mtype = TlbEntry::MemoryType::Normal;
1250            te.outerAttrs = 0;
1251            if (attr_3_0 == 0x4)
1252                // Inner Non-cacheable
1253                te.nonCacheable = true;
1254            else if (attr_3_0 < 0x8)
1255                panic("Unpredictable behavior\n");
1256            break;
1257          case 0x8:
1258          case 0x9:
1259          case 0xa:
1260          case 0xb:
1261          case 0xc:
1262          case 0xd:
1263          case 0xe:
1264          case 0xf:
1265            if (attr_7_4 & 0x4) {
1266                te.outerAttrs = (attr_7_4 & 1) ? 1 : 3;
1267            } else {
1268                te.outerAttrs = 0x2;
1269            }
1270            // Normal memory, Outer Cacheable
1271            te.mtype = TlbEntry::MemoryType::Normal;
1272            if (attr_3_0 != 0x4 && attr_3_0 < 0x8)
1273                panic("Unpredictable behavior\n");
1274            break;
1275          default:
1276            panic("Unpredictable behavior\n");
1277            break;
1278        }
1279
1280        switch (attr_3_0) {
1281          case 0x0:
1282            te.innerAttrs = 0x1;
1283            break;
1284          case 0x4:
1285            te.innerAttrs = attr_7_4 == 0 ? 0x3 : 0;
1286            break;
1287          case 0x8:
1288          case 0x9:
1289          case 0xA:
1290          case 0xB:
1291            te.innerAttrs = 6;
1292            break;
1293          case 0xC:
1294          case 0xD:
1295          case 0xE:
1296          case 0xF:
1297            te.innerAttrs = attr_3_0 & 1 ? 0x5 : 0x7;
1298            break;
1299          default:
1300            panic("Unpredictable behavior\n");
1301            break;
1302        }
1303    }
1304
1305    te.outerShareable = sh == 2;
1306    te.shareable       = (sh & 0x2) ? true : false;
1307    te.setAttributes(true);
1308    te.attributes |= (uint64_t) attr << 56;
1309}
1310
1311void
1312TableWalker::memAttrsAArch64(ThreadContext *tc, TlbEntry &te, uint8_t attrIndx,
1313                             uint8_t sh)
1314{
1315    DPRINTF(TLBVerbose, "memAttrsAArch64 AttrIndx:%#x sh:%#x\n", attrIndx, sh);
1316
1317    // Select MAIR
1318    uint64_t mair;
1319    switch (currState->el) {
1320      case EL0:
1321      case EL1:
1322        mair = tc->readMiscReg(MISCREG_MAIR_EL1);
1323        break;
1324      case EL2:
1325        mair = tc->readMiscReg(MISCREG_MAIR_EL2);
1326        break;
1327      case EL3:
1328        mair = tc->readMiscReg(MISCREG_MAIR_EL3);
1329        break;
1330      default:
1331        panic("Invalid exception level");
1332        break;
1333    }
1334
1335    // Select attributes
1336    uint8_t attr = bits(mair, 8 * attrIndx + 7, 8 * attrIndx);
1337    uint8_t attr_lo = bits(attr, 3, 0);
1338    uint8_t attr_hi = bits(attr, 7, 4);
1339
1340    // Memory type
1341    te.mtype = attr_hi == 0 ? TlbEntry::MemoryType::Device : TlbEntry::MemoryType::Normal;
1342
1343    // Cacheability
1344    te.nonCacheable = false;
1345    if (te.mtype == TlbEntry::MemoryType::Device ||  // Device memory
1346        attr_hi == 0x8 ||  // Normal memory, Outer Non-cacheable
1347        attr_lo == 0x8) {  // Normal memory, Inner Non-cacheable
1348        te.nonCacheable = true;
1349    }
1350
1351    te.shareable       = sh == 2;
1352    te.outerShareable = (sh & 0x2) ? true : false;
1353    // Attributes formatted according to the 64-bit PAR
1354    te.attributes = ((uint64_t) attr << 56) |
1355        (1 << 11) |     // LPAE bit
1356        (te.ns << 9) |  // NS bit
1357        (sh << 7);
1358}
1359
1360void
1361TableWalker::doL1Descriptor()
1362{
1363    if (currState->fault != NoFault) {
1364        return;
1365    }
1366
1367    DPRINTF(TLB, "L1 descriptor for %#x is %#x\n",
1368            currState->vaddr_tainted, currState->l1Desc.data);
1369    TlbEntry te;
1370
1371    switch (currState->l1Desc.type()) {
1372      case L1Descriptor::Ignore:
1373      case L1Descriptor::Reserved:
1374        if (!currState->timing) {
1375            currState->tc = NULL;
1376            currState->req = NULL;
1377        }
1378        DPRINTF(TLB, "L1 Descriptor Reserved/Ignore, causing fault\n");
1379        if (currState->isFetch)
1380            currState->fault =
1381                std::make_shared<PrefetchAbort>(
1382                    currState->vaddr_tainted,
1383                    ArmFault::TranslationLL + L1,
1384                    isStage2,
1385                    ArmFault::VmsaTran);
1386        else
1387            currState->fault =
1388                std::make_shared<DataAbort>(
1389                    currState->vaddr_tainted,
1390                    TlbEntry::DomainType::NoAccess,
1391                    currState->isWrite,
1392                    ArmFault::TranslationLL + L1, isStage2,
1393                    ArmFault::VmsaTran);
1394        return;
1395      case L1Descriptor::Section:
1396        if (currState->sctlr.afe && bits(currState->l1Desc.ap(), 0) == 0) {
1397            /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is
1398              * enabled if set, do l1.Desc.setAp0() instead of generating
1399              * AccessFlag0
1400              */
1401
1402            currState->fault = std::make_shared<DataAbort>(
1403                currState->vaddr_tainted,
1404                currState->l1Desc.domain(),
1405                currState->isWrite,
1406                ArmFault::AccessFlagLL + L1,
1407                isStage2,
1408                ArmFault::VmsaTran);
1409        }
1410        if (currState->l1Desc.supersection()) {
1411            panic("Haven't implemented supersections\n");
1412        }
1413        insertTableEntry(currState->l1Desc, false);
1414        return;
1415      case L1Descriptor::PageTable:
1416        {
1417            Addr l2desc_addr;
1418            l2desc_addr = currState->l1Desc.l2Addr() |
1419                (bits(currState->vaddr, 19, 12) << 2);
1420            DPRINTF(TLB, "L1 descriptor points to page table at: %#x (%s)\n",
1421                    l2desc_addr, currState->isSecure ? "s" : "ns");
1422
1423            // Trickbox address check
1424            currState->fault = tlb->walkTrickBoxCheck(
1425                l2desc_addr, currState->isSecure, currState->vaddr,
1426                sizeof(uint32_t), currState->isFetch, currState->isWrite,
1427                currState->l1Desc.domain(), L2);
1428
1429            if (currState->fault) {
1430                if (!currState->timing) {
1431                    currState->tc = NULL;
1432                    currState->req = NULL;
1433                }
1434                return;
1435            }
1436
1437            Request::Flags flag = 0;
1438            if (currState->isSecure)
1439                flag.set(Request::SECURE);
1440
1441            bool delayed;
1442            delayed = fetchDescriptor(l2desc_addr,
1443                                      (uint8_t*)&currState->l2Desc.data,
1444                                      sizeof(uint32_t), flag, -1, &doL2DescEvent,
1445                                      &TableWalker::doL2Descriptor);
1446            if (delayed) {
1447                currState->delayed = true;
1448            }
1449
1450            return;
1451        }
1452      default:
1453        panic("A new type in a 2 bit field?\n");
1454    }
1455}
1456
1457void
1458TableWalker::doLongDescriptor()
1459{
1460    if (currState->fault != NoFault) {
1461        return;
1462    }
1463
1464    DPRINTF(TLB, "L%d descriptor for %#llx is %#llx (%s)\n",
1465            currState->longDesc.lookupLevel, currState->vaddr_tainted,
1466            currState->longDesc.data,
1467            currState->aarch64 ? "AArch64" : "long-desc.");
1468
1469    if ((currState->longDesc.type() == LongDescriptor::Block) ||
1470        (currState->longDesc.type() == LongDescriptor::Page)) {
1471        DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, pxn: %d, "
1472                "xn: %d, ap: %d, af: %d, type: %d\n",
1473                currState->longDesc.lookupLevel,
1474                currState->longDesc.data,
1475                currState->longDesc.pxn(),
1476                currState->longDesc.xn(),
1477                currState->longDesc.ap(),
1478                currState->longDesc.af(),
1479                currState->longDesc.type());
1480    } else {
1481        DPRINTF(TLBVerbose, "Analyzing L%d descriptor: %#llx, type: %d\n",
1482                currState->longDesc.lookupLevel,
1483                currState->longDesc.data,
1484                currState->longDesc.type());
1485    }
1486
1487    TlbEntry te;
1488
1489    switch (currState->longDesc.type()) {
1490      case LongDescriptor::Invalid:
1491        if (!currState->timing) {
1492            currState->tc = NULL;
1493            currState->req = NULL;
1494        }
1495
1496        DPRINTF(TLB, "L%d descriptor Invalid, causing fault type %d\n",
1497                currState->longDesc.lookupLevel,
1498                ArmFault::TranslationLL + currState->longDesc.lookupLevel);
1499        if (currState->isFetch)
1500            currState->fault = std::make_shared<PrefetchAbort>(
1501                currState->vaddr_tainted,
1502                ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1503                isStage2,
1504                ArmFault::LpaeTran);
1505        else
1506            currState->fault = std::make_shared<DataAbort>(
1507                currState->vaddr_tainted,
1508                TlbEntry::DomainType::NoAccess,
1509                currState->isWrite,
1510                ArmFault::TranslationLL + currState->longDesc.lookupLevel,
1511                isStage2,
1512                ArmFault::LpaeTran);
1513        return;
1514      case LongDescriptor::Block:
1515      case LongDescriptor::Page:
1516        {
1517            bool fault = false;
1518            bool aff = false;
1519            // Check for address size fault
1520            if (checkAddrSizeFaultAArch64(
1521                    mbits(currState->longDesc.data, MaxPhysAddrRange - 1,
1522                          currState->longDesc.offsetBits()),
1523                    currState->physAddrRange)) {
1524                fault = true;
1525                DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1526                        currState->longDesc.lookupLevel);
1527            // Check for access fault
1528            } else if (currState->longDesc.af() == 0) {
1529                fault = true;
1530                DPRINTF(TLB, "L%d descriptor causing Access Fault\n",
1531                        currState->longDesc.lookupLevel);
1532                aff = true;
1533            }
1534            if (fault) {
1535                if (currState->isFetch)
1536                    currState->fault = std::make_shared<PrefetchAbort>(
1537                        currState->vaddr_tainted,
1538                        (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1539                        currState->longDesc.lookupLevel,
1540                        isStage2,
1541                        ArmFault::LpaeTran);
1542                else
1543                    currState->fault = std::make_shared<DataAbort>(
1544                        currState->vaddr_tainted,
1545                        TlbEntry::DomainType::NoAccess, currState->isWrite,
1546                        (aff ? ArmFault::AccessFlagLL : ArmFault::AddressSizeLL) +
1547                        currState->longDesc.lookupLevel,
1548                        isStage2,
1549                        ArmFault::LpaeTran);
1550            } else {
1551                insertTableEntry(currState->longDesc, true);
1552            }
1553        }
1554        return;
1555      case LongDescriptor::Table:
1556        {
1557            // Set hierarchical permission flags
1558            currState->secureLookup = currState->secureLookup &&
1559                currState->longDesc.secureTable();
1560            currState->rwTable = currState->rwTable &&
1561                currState->longDesc.rwTable();
1562            currState->userTable = currState->userTable &&
1563                currState->longDesc.userTable();
1564            currState->xnTable = currState->xnTable ||
1565                currState->longDesc.xnTable();
1566            currState->pxnTable = currState->pxnTable ||
1567                currState->longDesc.pxnTable();
1568
1569            // Set up next level lookup
1570            Addr next_desc_addr = currState->longDesc.nextDescAddr(
1571                currState->vaddr);
1572
1573            DPRINTF(TLB, "L%d descriptor points to L%d descriptor at: %#x (%s)\n",
1574                    currState->longDesc.lookupLevel,
1575                    currState->longDesc.lookupLevel + 1,
1576                    next_desc_addr,
1577                    currState->secureLookup ? "s" : "ns");
1578
1579            // Check for address size fault
1580            if (currState->aarch64 && checkAddrSizeFaultAArch64(
1581                    next_desc_addr, currState->physAddrRange)) {
1582                DPRINTF(TLB, "L%d descriptor causing Address Size Fault\n",
1583                        currState->longDesc.lookupLevel);
1584                if (currState->isFetch)
1585                    currState->fault = std::make_shared<PrefetchAbort>(
1586                        currState->vaddr_tainted,
1587                        ArmFault::AddressSizeLL
1588                        + currState->longDesc.lookupLevel,
1589                        isStage2,
1590                        ArmFault::LpaeTran);
1591                else
1592                    currState->fault = std::make_shared<DataAbort>(
1593                        currState->vaddr_tainted,
1594                        TlbEntry::DomainType::NoAccess, currState->isWrite,
1595                        ArmFault::AddressSizeLL
1596                        + currState->longDesc.lookupLevel,
1597                        isStage2,
1598                        ArmFault::LpaeTran);
1599                return;
1600            }
1601
1602            // Trickbox address check
1603            currState->fault = tlb->walkTrickBoxCheck(
1604                            next_desc_addr, currState->vaddr,
1605                            currState->vaddr, sizeof(uint64_t),
1606                            currState->isFetch, currState->isWrite,
1607                            TlbEntry::DomainType::Client,
1608                            toLookupLevel(currState->longDesc.lookupLevel +1));
1609
1610            if (currState->fault) {
1611                if (!currState->timing) {
1612                    currState->tc = NULL;
1613                    currState->req = NULL;
1614                }
1615                return;
1616            }
1617
1618            Request::Flags flag = 0;
1619            if (currState->secureLookup)
1620                flag.set(Request::SECURE);
1621
1622            currState->longDesc.lookupLevel =
1623                (LookupLevel) (currState->longDesc.lookupLevel + 1);
1624            Event *event = NULL;
1625            switch (currState->longDesc.lookupLevel) {
1626              case L1:
1627                assert(currState->aarch64);
1628                event = &doL1LongDescEvent;
1629                break;
1630              case L2:
1631                event = &doL2LongDescEvent;
1632                break;
1633              case L3:
1634                event = &doL3LongDescEvent;
1635                break;
1636              default:
1637                panic("Wrong lookup level in table walk\n");
1638                break;
1639            }
1640
1641            bool delayed;
1642            delayed = fetchDescriptor(next_desc_addr, (uint8_t*)&currState->longDesc.data,
1643                                      sizeof(uint64_t), flag, -1, event,
1644                                      &TableWalker::doLongDescriptor);
1645            if (delayed) {
1646                 currState->delayed = true;
1647            }
1648        }
1649        return;
1650      default:
1651        panic("A new type in a 2 bit field?\n");
1652    }
1653}
1654
1655void
1656TableWalker::doL2Descriptor()
1657{
1658    if (currState->fault != NoFault) {
1659        return;
1660    }
1661
1662    DPRINTF(TLB, "L2 descriptor for %#x is %#x\n",
1663            currState->vaddr_tainted, currState->l2Desc.data);
1664    TlbEntry te;
1665
1666    if (currState->l2Desc.invalid()) {
1667        DPRINTF(TLB, "L2 descriptor invalid, causing fault\n");
1668        if (!currState->timing) {
1669            currState->tc = NULL;
1670            currState->req = NULL;
1671        }
1672        if (currState->isFetch)
1673            currState->fault = std::make_shared<PrefetchAbort>(
1674                    currState->vaddr_tainted,
1675                    ArmFault::TranslationLL + L2,
1676                    isStage2,
1677                    ArmFault::VmsaTran);
1678        else
1679            currState->fault = std::make_shared<DataAbort>(
1680                currState->vaddr_tainted, currState->l1Desc.domain(),
1681                currState->isWrite, ArmFault::TranslationLL + L2,
1682                isStage2,
1683                ArmFault::VmsaTran);
1684        return;
1685    }
1686
1687    if (currState->sctlr.afe && bits(currState->l2Desc.ap(), 0) == 0) {
1688        /** @todo: check sctlr.ha (bit[17]) if Hardware Access Flag is enabled
1689          * if set, do l2.Desc.setAp0() instead of generating AccessFlag0
1690          */
1691         DPRINTF(TLB, "Generating access fault at L2, afe: %d, ap: %d\n",
1692                 currState->sctlr.afe, currState->l2Desc.ap());
1693
1694        currState->fault = std::make_shared<DataAbort>(
1695            currState->vaddr_tainted,
1696            TlbEntry::DomainType::NoAccess, currState->isWrite,
1697            ArmFault::AccessFlagLL + L2, isStage2,
1698            ArmFault::VmsaTran);
1699    }
1700
1701    insertTableEntry(currState->l2Desc, false);
1702}
1703
1704void
1705TableWalker::doL1DescriptorWrapper()
1706{
1707    currState = stateQueues[L1].front();
1708    currState->delayed = false;
1709    // if there's a stage2 translation object we don't need it any more
1710    if (currState->stage2Tran) {
1711        delete currState->stage2Tran;
1712        currState->stage2Tran = NULL;
1713    }
1714
1715
1716    DPRINTF(TLBVerbose, "L1 Desc object host addr: %p\n",&currState->l1Desc.data);
1717    DPRINTF(TLBVerbose, "L1 Desc object      data: %08x\n",currState->l1Desc.data);
1718
1719    DPRINTF(TLBVerbose, "calling doL1Descriptor for vaddr:%#x\n", currState->vaddr_tainted);
1720    doL1Descriptor();
1721
1722    stateQueues[L1].pop_front();
1723    // Check if fault was generated
1724    if (currState->fault != NoFault) {
1725        currState->transState->finish(currState->fault, currState->req,
1726                                      currState->tc, currState->mode);
1727        statWalksShortTerminatedAtLevel[0]++;
1728
1729        pending = false;
1730        nextWalk(currState->tc);
1731
1732        currState->req = NULL;
1733        currState->tc = NULL;
1734        currState->delayed = false;
1735        delete currState;
1736    }
1737    else if (!currState->delayed) {
1738        // delay is not set so there is no L2 to do
1739        // Don't finish the translation if a stage 2 look up is underway
1740        if (!currState->doingStage2) {
1741            statWalkServiceTime.sample(curTick() - currState->startTime);
1742            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1743            currState->fault = tlb->translateTiming(currState->req, currState->tc,
1744                currState->transState, currState->mode);
1745            statWalksShortTerminatedAtLevel[0]++;
1746        }
1747
1748        pending = false;
1749        nextWalk(currState->tc);
1750
1751        currState->req = NULL;
1752        currState->tc = NULL;
1753        currState->delayed = false;
1754        delete currState;
1755    } else {
1756        // need to do L2 descriptor
1757        stateQueues[L2].push_back(currState);
1758    }
1759    currState = NULL;
1760}
1761
1762void
1763TableWalker::doL2DescriptorWrapper()
1764{
1765    currState = stateQueues[L2].front();
1766    assert(currState->delayed);
1767    // if there's a stage2 translation object we don't need it any more
1768    if (currState->stage2Tran) {
1769        delete currState->stage2Tran;
1770        currState->stage2Tran = NULL;
1771    }
1772
1773    DPRINTF(TLBVerbose, "calling doL2Descriptor for vaddr:%#x\n",
1774            currState->vaddr_tainted);
1775    doL2Descriptor();
1776
1777    // Check if fault was generated
1778    if (currState->fault != NoFault) {
1779        currState->transState->finish(currState->fault, currState->req,
1780                                      currState->tc, currState->mode);
1781        statWalksShortTerminatedAtLevel[1]++;
1782    }
1783    else {
1784        // Don't finish the translation if a stage 2 look up is underway
1785        if (!currState->doingStage2) {
1786            statWalkServiceTime.sample(curTick() - currState->startTime);
1787            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1788            currState->fault = tlb->translateTiming(currState->req,
1789                currState->tc, currState->transState, currState->mode);
1790            statWalksShortTerminatedAtLevel[1]++;
1791        }
1792    }
1793
1794
1795    stateQueues[L2].pop_front();
1796    pending = false;
1797    nextWalk(currState->tc);
1798
1799    currState->req = NULL;
1800    currState->tc = NULL;
1801    currState->delayed = false;
1802
1803    delete currState;
1804    currState = NULL;
1805}
1806
1807void
1808TableWalker::doL0LongDescriptorWrapper()
1809{
1810    doLongDescriptorWrapper(L0);
1811}
1812
1813void
1814TableWalker::doL1LongDescriptorWrapper()
1815{
1816    doLongDescriptorWrapper(L1);
1817}
1818
1819void
1820TableWalker::doL2LongDescriptorWrapper()
1821{
1822    doLongDescriptorWrapper(L2);
1823}
1824
1825void
1826TableWalker::doL3LongDescriptorWrapper()
1827{
1828    doLongDescriptorWrapper(L3);
1829}
1830
1831void
1832TableWalker::doLongDescriptorWrapper(LookupLevel curr_lookup_level)
1833{
1834    currState = stateQueues[curr_lookup_level].front();
1835    assert(curr_lookup_level == currState->longDesc.lookupLevel);
1836    currState->delayed = false;
1837
1838    // if there's a stage2 translation object we don't need it any more
1839    if (currState->stage2Tran) {
1840        delete currState->stage2Tran;
1841        currState->stage2Tran = NULL;
1842    }
1843
1844    DPRINTF(TLBVerbose, "calling doLongDescriptor for vaddr:%#x\n",
1845            currState->vaddr_tainted);
1846    doLongDescriptor();
1847
1848    stateQueues[curr_lookup_level].pop_front();
1849
1850    if (currState->fault != NoFault) {
1851        // A fault was generated
1852        currState->transState->finish(currState->fault, currState->req,
1853                                      currState->tc, currState->mode);
1854
1855        pending = false;
1856        nextWalk(currState->tc);
1857
1858        currState->req = NULL;
1859        currState->tc = NULL;
1860        currState->delayed = false;
1861        delete currState;
1862    } else if (!currState->delayed) {
1863        // No additional lookups required
1864        // Don't finish the translation if a stage 2 look up is underway
1865        if (!currState->doingStage2) {
1866            DPRINTF(TLBVerbose, "calling translateTiming again\n");
1867            statWalkServiceTime.sample(curTick() - currState->startTime);
1868            currState->fault = tlb->translateTiming(currState->req, currState->tc,
1869                                                    currState->transState,
1870                                                    currState->mode);
1871            statWalksLongTerminatedAtLevel[(unsigned) curr_lookup_level]++;
1872        }
1873
1874        pending = false;
1875        nextWalk(currState->tc);
1876
1877        currState->req = NULL;
1878        currState->tc = NULL;
1879        currState->delayed = false;
1880        delete currState;
1881    } else {
1882        if (curr_lookup_level >= MAX_LOOKUP_LEVELS - 1)
1883            panic("Max. number of lookups already reached in table walk\n");
1884        // Need to perform additional lookups
1885        stateQueues[currState->longDesc.lookupLevel].push_back(currState);
1886    }
1887    currState = NULL;
1888}
1889
1890
1891void
1892TableWalker::nextWalk(ThreadContext *tc)
1893{
1894    if (pendingQueue.size())
1895        schedule(doProcessEvent, clockEdge(Cycles(1)));
1896    else
1897        completeDrain();
1898}
1899
1900bool
1901TableWalker::fetchDescriptor(Addr descAddr, uint8_t *data, int numBytes,
1902    Request::Flags flags, int queueIndex, Event *event,
1903    void (TableWalker::*doDescriptor)())
1904{
1905    bool isTiming = currState->timing;
1906
1907    // do the requests for the page table descriptors have to go through the
1908    // second stage MMU
1909    if (currState->stage2Req) {
1910        Fault fault;
1911        flags = flags | TLB::MustBeOne;
1912
1913        if (isTiming) {
1914            Stage2MMU::Stage2Translation *tran = new
1915                Stage2MMU::Stage2Translation(*stage2Mmu, data, event,
1916                                             currState->vaddr);
1917            currState->stage2Tran = tran;
1918            stage2Mmu->readDataTimed(currState->tc, descAddr, tran, numBytes,
1919                                     flags, masterId);
1920            fault = tran->fault;
1921        } else {
1922            fault = stage2Mmu->readDataUntimed(currState->tc,
1923                currState->vaddr, descAddr, data, numBytes, flags, masterId,
1924                currState->functional);
1925        }
1926
1927        if (fault != NoFault) {
1928            currState->fault = fault;
1929        }
1930        if (isTiming) {
1931            if (queueIndex >= 0) {
1932                DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1933                        stateQueues[queueIndex].size());
1934                stateQueues[queueIndex].push_back(currState);
1935                currState = NULL;
1936            }
1937        } else {
1938            (this->*doDescriptor)();
1939        }
1940    } else {
1941        if (isTiming) {
1942            port.dmaAction(MemCmd::ReadReq, descAddr, numBytes, event, data,
1943                           currState->tc->getCpuPtr()->clockPeriod(),flags);
1944            if (queueIndex >= 0) {
1945                DPRINTF(TLBVerbose, "Adding to walker fifo: queue size before adding: %d\n",
1946                        stateQueues[queueIndex].size());
1947                stateQueues[queueIndex].push_back(currState);
1948                currState = NULL;
1949            }
1950        } else if (!currState->functional) {
1951            port.dmaAction(MemCmd::ReadReq, descAddr, numBytes, NULL, data,
1952                           currState->tc->getCpuPtr()->clockPeriod(), flags);
1953            (this->*doDescriptor)();
1954        } else {
1955            RequestPtr req = new Request(descAddr, numBytes, flags, masterId);
1956            req->taskId(ContextSwitchTaskId::DMA);
1957            PacketPtr  pkt = new Packet(req, MemCmd::ReadReq);
1958            pkt->dataStatic(data);
1959            port.sendFunctional(pkt);
1960            (this->*doDescriptor)();
1961            delete req;
1962            delete pkt;
1963        }
1964    }
1965    return (isTiming);
1966}
1967
1968void
1969TableWalker::insertTableEntry(DescriptorBase &descriptor, bool longDescriptor)
1970{
1971    TlbEntry te;
1972
1973    // Create and fill a new page table entry
1974    te.valid          = true;
1975    te.longDescFormat = longDescriptor;
1976    te.isHyp          = currState->isHyp;
1977    te.asid           = currState->asid;
1978    te.vmid           = currState->vmid;
1979    te.N              = descriptor.offsetBits();
1980    te.vpn            = currState->vaddr >> te.N;
1981    te.size           = (1<<te.N) - 1;
1982    te.pfn            = descriptor.pfn();
1983    te.domain         = descriptor.domain();
1984    te.lookupLevel    = descriptor.lookupLevel;
1985    te.ns             = !descriptor.secure(haveSecurity, currState) || isStage2;
1986    te.nstid          = !currState->isSecure;
1987    te.xn             = descriptor.xn();
1988    if (currState->aarch64)
1989        te.el         = currState->el;
1990    else
1991        te.el         = 1;
1992
1993    statPageSizes[pageSizeNtoStatBin(te.N)]++;
1994    statRequestOrigin[COMPLETED][currState->isFetch]++;
1995
1996    // ASID has no meaning for stage 2 TLB entries, so mark all stage 2 entries
1997    // as global
1998    te.global         = descriptor.global(currState) || isStage2;
1999    if (longDescriptor) {
2000        LongDescriptor lDescriptor =
2001            dynamic_cast<LongDescriptor &>(descriptor);
2002
2003        te.xn |= currState->xnTable;
2004        te.pxn = currState->pxnTable || lDescriptor.pxn();
2005        if (isStage2) {
2006            // this is actually the HAP field, but its stored in the same bit
2007            // possitions as the AP field in a stage 1 translation.
2008            te.hap = lDescriptor.ap();
2009        } else {
2010           te.ap = ((!currState->rwTable || descriptor.ap() >> 1) << 1) |
2011               (currState->userTable && (descriptor.ap() & 0x1));
2012        }
2013        if (currState->aarch64)
2014            memAttrsAArch64(currState->tc, te, currState->longDesc.attrIndx(),
2015                            currState->longDesc.sh());
2016        else
2017            memAttrsLPAE(currState->tc, te, lDescriptor);
2018    } else {
2019        te.ap = descriptor.ap();
2020        memAttrs(currState->tc, te, currState->sctlr, descriptor.texcb(),
2021                 descriptor.shareable());
2022    }
2023
2024    // Debug output
2025    DPRINTF(TLB, descriptor.dbgHeader().c_str());
2026    DPRINTF(TLB, " - N:%d pfn:%#x size:%#x global:%d valid:%d\n",
2027            te.N, te.pfn, te.size, te.global, te.valid);
2028    DPRINTF(TLB, " - vpn:%#x xn:%d pxn:%d ap:%d domain:%d asid:%d "
2029            "vmid:%d hyp:%d nc:%d ns:%d\n", te.vpn, te.xn, te.pxn,
2030            te.ap, static_cast<uint8_t>(te.domain), te.asid, te.vmid, te.isHyp,
2031            te.nonCacheable, te.ns);
2032    DPRINTF(TLB, " - domain from L%d desc:%d data:%#x\n",
2033            descriptor.lookupLevel, static_cast<uint8_t>(descriptor.domain()),
2034            descriptor.getRawData());
2035
2036    // Insert the entry into the TLB
2037    tlb->insert(currState->vaddr, te);
2038    if (!currState->timing) {
2039        currState->tc  = NULL;
2040        currState->req = NULL;
2041    }
2042}
2043
2044ArmISA::TableWalker *
2045ArmTableWalkerParams::create()
2046{
2047    return new ArmISA::TableWalker(this);
2048}
2049
2050LookupLevel
2051TableWalker::toLookupLevel(uint8_t lookup_level_as_int)
2052{
2053    switch (lookup_level_as_int) {
2054      case L1:
2055        return L1;
2056      case L2:
2057        return L2;
2058      case L3:
2059        return L3;
2060      default:
2061        panic("Invalid lookup level conversion");
2062    }
2063}
2064
2065/* this method keeps track of the table walker queue's residency, so
2066 * needs to be called whenever requests start and complete. */
2067void
2068TableWalker::pendingChange()
2069{
2070    unsigned n = pendingQueue.size();
2071    if ((currState != NULL) && (currState != pendingQueue.front())) {
2072        ++n;
2073    }
2074
2075    if (n != pendingReqs) {
2076        Tick now = curTick();
2077        statPendingWalks.sample(pendingReqs, now - pendingChangeTick);
2078        pendingReqs = n;
2079        pendingChangeTick = now;
2080    }
2081}
2082
2083uint8_t
2084TableWalker::pageSizeNtoStatBin(uint8_t N)
2085{
2086    /* for statPageSizes */
2087    switch(N) {
2088        case 12: return 0; // 4K
2089        case 14: return 1; // 16K (using 16K granule in v8-64)
2090        case 16: return 2; // 64K
2091        case 20: return 3; // 1M
2092        case 21: return 4; // 2M-LPAE
2093        case 24: return 5; // 16M
2094        case 25: return 6; // 32M (using 16K granule in v8-64)
2095        case 29: return 7; // 512M (using 64K granule in v8-64)
2096        case 30: return 8; // 1G-LPAE
2097        default:
2098            panic("unknown page size");
2099            return 255;
2100    }
2101}
2102
2103void
2104TableWalker::regStats()
2105{
2106    statWalks
2107        .name(name() + ".walks")
2108        .desc("Table walker walks requested")
2109        ;
2110
2111    statWalksShortDescriptor
2112        .name(name() + ".walksShort")
2113        .desc("Table walker walks initiated with short descriptors")
2114        .flags(Stats::nozero)
2115        ;
2116
2117    statWalksLongDescriptor
2118        .name(name() + ".walksLong")
2119        .desc("Table walker walks initiated with long descriptors")
2120        .flags(Stats::nozero)
2121        ;
2122
2123    statWalksShortTerminatedAtLevel
2124        .init(2)
2125        .name(name() + ".walksShortTerminationLevel")
2126        .desc("Level at which table walker walks "
2127              "with short descriptors terminate")
2128        .flags(Stats::nozero)
2129        ;
2130    statWalksShortTerminatedAtLevel.subname(0, "Level1");
2131    statWalksShortTerminatedAtLevel.subname(1, "Level2");
2132
2133    statWalksLongTerminatedAtLevel
2134        .init(4)
2135        .name(name() + ".walksLongTerminationLevel")
2136        .desc("Level at which table walker walks "
2137              "with long descriptors terminate")
2138        .flags(Stats::nozero)
2139        ;
2140    statWalksLongTerminatedAtLevel.subname(0, "Level0");
2141    statWalksLongTerminatedAtLevel.subname(1, "Level1");
2142    statWalksLongTerminatedAtLevel.subname(2, "Level2");
2143    statWalksLongTerminatedAtLevel.subname(3, "Level3");
2144
2145    statSquashedBefore
2146        .name(name() + ".walksSquashedBefore")
2147        .desc("Table walks squashed before starting")
2148        .flags(Stats::nozero)
2149        ;
2150
2151    statSquashedAfter
2152        .name(name() + ".walksSquashedAfter")
2153        .desc("Table walks squashed after completion")
2154        .flags(Stats::nozero)
2155        ;
2156
2157    statWalkWaitTime
2158        .init(16)
2159        .name(name() + ".walkWaitTime")
2160        .desc("Table walker wait (enqueue to first request) latency")
2161        .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2162        ;
2163
2164    statWalkServiceTime
2165        .init(16)
2166        .name(name() + ".walkCompletionTime")
2167        .desc("Table walker service (enqueue to completion) latency")
2168        .flags(Stats::pdf | Stats::nozero | Stats::nonan)
2169        ;
2170
2171    statPendingWalks
2172        .init(16)
2173        .name(name() + ".walksPending")
2174        .desc("Table walker pending requests distribution")
2175        .flags(Stats::pdf | Stats::dist | Stats::nozero | Stats::nonan)
2176        ;
2177
2178    statPageSizes // see DDI 0487A D4-1661
2179        .init(9)
2180        .name(name() + ".walkPageSizes")
2181        .desc("Table walker page sizes translated")
2182        .flags(Stats::total | Stats::pdf | Stats::dist | Stats::nozero)
2183        ;
2184    statPageSizes.subname(0, "4K");
2185    statPageSizes.subname(1, "16K");
2186    statPageSizes.subname(2, "64K");
2187    statPageSizes.subname(3, "1M");
2188    statPageSizes.subname(4, "2M");
2189    statPageSizes.subname(5, "16M");
2190    statPageSizes.subname(6, "32M");
2191    statPageSizes.subname(7, "512M");
2192    statPageSizes.subname(8, "1G");
2193
2194    statRequestOrigin
2195        .init(2,2) // Instruction/Data, requests/completed
2196        .name(name() + ".walkRequestOrigin")
2197        .desc("Table walker requests started/completed, data/inst")
2198        .flags(Stats::total)
2199        ;
2200    statRequestOrigin.subname(0,"Requested");
2201    statRequestOrigin.subname(1,"Completed");
2202    statRequestOrigin.ysubname(0,"Data");
2203    statRequestOrigin.ysubname(1,"Inst");
2204}
2205