test_virtual_functions.cpp revision 11986:c12e4625ab56
1/*
2    tests/test_virtual_functions.cpp -- overriding virtual functions from Python
3
4    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
5
6    All rights reserved. Use of this source code is governed by a
7    BSD-style license that can be found in the LICENSE file.
8*/
9
10#include "pybind11_tests.h"
11#include "constructor_stats.h"
12#include <pybind11/functional.h>
13
14/* This is an example class that we'll want to be able to extend from Python */
15class ExampleVirt  {
16public:
17    ExampleVirt(int state) : state(state) { print_created(this, state); }
18    ExampleVirt(const ExampleVirt &e) : state(e.state) { print_copy_created(this); }
19    ExampleVirt(ExampleVirt &&e) : state(e.state) { print_move_created(this); e.state = 0; }
20    ~ExampleVirt() { print_destroyed(this); }
21
22    virtual int run(int value) {
23        py::print("Original implementation of "
24                  "ExampleVirt::run(state={}, value={}, str1={}, str2={})"_s.format(state, value, get_string1(), *get_string2()));
25        return state + value;
26    }
27
28    virtual bool run_bool() = 0;
29    virtual void pure_virtual() = 0;
30
31    // Returning a reference/pointer to a type converted from python (numbers, strings, etc.) is a
32    // bit trickier, because the actual int& or std::string& or whatever only exists temporarily, so
33    // we have to handle it specially in the trampoline class (see below).
34    virtual const std::string &get_string1() { return str1; }
35    virtual const std::string *get_string2() { return &str2; }
36
37private:
38    int state;
39    const std::string str1{"default1"}, str2{"default2"};
40};
41
42/* This is a wrapper class that must be generated */
43class PyExampleVirt : public ExampleVirt {
44public:
45    using ExampleVirt::ExampleVirt; /* Inherit constructors */
46
47    int run(int value) override {
48        /* Generate wrapping code that enables native function overloading */
49        PYBIND11_OVERLOAD(
50            int,         /* Return type */
51            ExampleVirt, /* Parent class */
52            run,         /* Name of function */
53            value        /* Argument(s) */
54        );
55    }
56
57    bool run_bool() override {
58        PYBIND11_OVERLOAD_PURE(
59            bool,         /* Return type */
60            ExampleVirt,  /* Parent class */
61            run_bool,     /* Name of function */
62                          /* This function has no arguments. The trailing comma
63                             in the previous line is needed for some compilers */
64        );
65    }
66
67    void pure_virtual() override {
68        PYBIND11_OVERLOAD_PURE(
69            void,         /* Return type */
70            ExampleVirt,  /* Parent class */
71            pure_virtual, /* Name of function */
72                          /* This function has no arguments. The trailing comma
73                             in the previous line is needed for some compilers */
74        );
75    }
76
77    // We can return reference types for compatibility with C++ virtual interfaces that do so, but
78    // note they have some significant limitations (see the documentation).
79    const std::string &get_string1() override {
80        PYBIND11_OVERLOAD(
81            const std::string &, /* Return type */
82            ExampleVirt,         /* Parent class */
83            get_string1,         /* Name of function */
84                                 /* (no arguments) */
85        );
86    }
87
88    const std::string *get_string2() override {
89        PYBIND11_OVERLOAD(
90            const std::string *, /* Return type */
91            ExampleVirt,         /* Parent class */
92            get_string2,         /* Name of function */
93                                 /* (no arguments) */
94        );
95    }
96
97};
98
99class NonCopyable {
100public:
101    NonCopyable(int a, int b) : value{new int(a*b)} { print_created(this, a, b); }
102    NonCopyable(NonCopyable &&o) { value = std::move(o.value); print_move_created(this); }
103    NonCopyable(const NonCopyable &) = delete;
104    NonCopyable() = delete;
105    void operator=(const NonCopyable &) = delete;
106    void operator=(NonCopyable &&) = delete;
107    std::string get_value() const {
108        if (value) return std::to_string(*value); else return "(null)";
109    }
110    ~NonCopyable() { print_destroyed(this); }
111
112private:
113    std::unique_ptr<int> value;
114};
115
116// This is like the above, but is both copy and movable.  In effect this means it should get moved
117// when it is not referenced elsewhere, but copied if it is still referenced.
118class Movable {
119public:
120    Movable(int a, int b) : value{a+b} { print_created(this, a, b); }
121    Movable(const Movable &m) { value = m.value; print_copy_created(this); }
122    Movable(Movable &&m) { value = std::move(m.value); print_move_created(this); }
123    std::string get_value() const { return std::to_string(value); }
124    ~Movable() { print_destroyed(this); }
125private:
126    int value;
127};
128
129class NCVirt {
130public:
131    virtual NonCopyable get_noncopyable(int a, int b) { return NonCopyable(a, b); }
132    virtual Movable get_movable(int a, int b) = 0;
133
134    std::string print_nc(int a, int b) { return get_noncopyable(a, b).get_value(); }
135    std::string print_movable(int a, int b) { return get_movable(a, b).get_value(); }
136};
137class NCVirtTrampoline : public NCVirt {
138#if !defined(__INTEL_COMPILER)
139    NonCopyable get_noncopyable(int a, int b) override {
140        PYBIND11_OVERLOAD(NonCopyable, NCVirt, get_noncopyable, a, b);
141    }
142#endif
143    Movable get_movable(int a, int b) override {
144        PYBIND11_OVERLOAD_PURE(Movable, NCVirt, get_movable, a, b);
145    }
146};
147
148int runExampleVirt(ExampleVirt *ex, int value) {
149    return ex->run(value);
150}
151
152bool runExampleVirtBool(ExampleVirt* ex) {
153    return ex->run_bool();
154}
155
156void runExampleVirtVirtual(ExampleVirt *ex) {
157    ex->pure_virtual();
158}
159
160
161// Inheriting virtual methods.  We do two versions here: the repeat-everything version and the
162// templated trampoline versions mentioned in docs/advanced.rst.
163//
164// These base classes are exactly the same, but we technically need distinct
165// classes for this example code because we need to be able to bind them
166// properly (pybind11, sensibly, doesn't allow us to bind the same C++ class to
167// multiple python classes).
168class A_Repeat {
169#define A_METHODS \
170public: \
171    virtual int unlucky_number() = 0; \
172    virtual std::string say_something(unsigned times) { \
173        std::string s = ""; \
174        for (unsigned i = 0; i < times; ++i) \
175            s += "hi"; \
176        return s; \
177    } \
178    std::string say_everything() { \
179        return say_something(1) + " " + std::to_string(unlucky_number()); \
180    }
181A_METHODS
182};
183class B_Repeat : public A_Repeat {
184#define B_METHODS \
185public: \
186    int unlucky_number() override { return 13; } \
187    std::string say_something(unsigned times) override { \
188        return "B says hi " + std::to_string(times) + " times"; \
189    } \
190    virtual double lucky_number() { return 7.0; }
191B_METHODS
192};
193class C_Repeat : public B_Repeat {
194#define C_METHODS \
195public: \
196    int unlucky_number() override { return 4444; } \
197    double lucky_number() override { return 888; }
198C_METHODS
199};
200class D_Repeat : public C_Repeat {
201#define D_METHODS // Nothing overridden.
202D_METHODS
203};
204
205// Base classes for templated inheritance trampolines.  Identical to the repeat-everything version:
206class A_Tpl { A_METHODS };
207class B_Tpl : public A_Tpl { B_METHODS };
208class C_Tpl : public B_Tpl { C_METHODS };
209class D_Tpl : public C_Tpl { D_METHODS };
210
211
212// Inheritance approach 1: each trampoline gets every virtual method (11 in total)
213class PyA_Repeat : public A_Repeat {
214public:
215    using A_Repeat::A_Repeat;
216    int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, A_Repeat, unlucky_number, ); }
217    std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, A_Repeat, say_something, times); }
218};
219class PyB_Repeat : public B_Repeat {
220public:
221    using B_Repeat::B_Repeat;
222    int unlucky_number() override { PYBIND11_OVERLOAD(int, B_Repeat, unlucky_number, ); }
223    std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, B_Repeat, say_something, times); }
224    double lucky_number() override { PYBIND11_OVERLOAD(double, B_Repeat, lucky_number, ); }
225};
226class PyC_Repeat : public C_Repeat {
227public:
228    using C_Repeat::C_Repeat;
229    int unlucky_number() override { PYBIND11_OVERLOAD(int, C_Repeat, unlucky_number, ); }
230    std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, C_Repeat, say_something, times); }
231    double lucky_number() override { PYBIND11_OVERLOAD(double, C_Repeat, lucky_number, ); }
232};
233class PyD_Repeat : public D_Repeat {
234public:
235    using D_Repeat::D_Repeat;
236    int unlucky_number() override { PYBIND11_OVERLOAD(int, D_Repeat, unlucky_number, ); }
237    std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, D_Repeat, say_something, times); }
238    double lucky_number() override { PYBIND11_OVERLOAD(double, D_Repeat, lucky_number, ); }
239};
240
241// Inheritance approach 2: templated trampoline classes.
242//
243// Advantages:
244// - we have only 2 (template) class and 4 method declarations (one per virtual method, plus one for
245//   any override of a pure virtual method), versus 4 classes and 6 methods (MI) or 4 classes and 11
246//   methods (repeat).
247// - Compared to MI, we also don't have to change the non-trampoline inheritance to virtual, and can
248//   properly inherit constructors.
249//
250// Disadvantage:
251// - the compiler must still generate and compile 14 different methods (more, even, than the 11
252//   required for the repeat approach) instead of the 6 required for MI.  (If there was no pure
253//   method (or no pure method override), the number would drop down to the same 11 as the repeat
254//   approach).
255template <class Base = A_Tpl>
256class PyA_Tpl : public Base {
257public:
258    using Base::Base; // Inherit constructors
259    int unlucky_number() override { PYBIND11_OVERLOAD_PURE(int, Base, unlucky_number, ); }
260    std::string say_something(unsigned times) override { PYBIND11_OVERLOAD(std::string, Base, say_something, times); }
261};
262template <class Base = B_Tpl>
263class PyB_Tpl : public PyA_Tpl<Base> {
264public:
265    using PyA_Tpl<Base>::PyA_Tpl; // Inherit constructors (via PyA_Tpl's inherited constructors)
266    int unlucky_number() override { PYBIND11_OVERLOAD(int, Base, unlucky_number, ); }
267    double lucky_number() override { PYBIND11_OVERLOAD(double, Base, lucky_number, ); }
268};
269// Since C_Tpl and D_Tpl don't declare any new virtual methods, we don't actually need these (we can
270// use PyB_Tpl<C_Tpl> and PyB_Tpl<D_Tpl> for the trampoline classes instead):
271/*
272template <class Base = C_Tpl> class PyC_Tpl : public PyB_Tpl<Base> {
273public:
274    using PyB_Tpl<Base>::PyB_Tpl;
275};
276template <class Base = D_Tpl> class PyD_Tpl : public PyC_Tpl<Base> {
277public:
278    using PyC_Tpl<Base>::PyC_Tpl;
279};
280*/
281
282
283void initialize_inherited_virtuals(py::module &m) {
284    // Method 1: repeat
285    py::class_<A_Repeat, PyA_Repeat>(m, "A_Repeat")
286        .def(py::init<>())
287        .def("unlucky_number", &A_Repeat::unlucky_number)
288        .def("say_something", &A_Repeat::say_something)
289        .def("say_everything", &A_Repeat::say_everything);
290    py::class_<B_Repeat, A_Repeat, PyB_Repeat>(m, "B_Repeat")
291        .def(py::init<>())
292        .def("lucky_number", &B_Repeat::lucky_number);
293    py::class_<C_Repeat, B_Repeat, PyC_Repeat>(m, "C_Repeat")
294        .def(py::init<>());
295    py::class_<D_Repeat, C_Repeat, PyD_Repeat>(m, "D_Repeat")
296        .def(py::init<>());
297
298    // Method 2: Templated trampolines
299    py::class_<A_Tpl, PyA_Tpl<>>(m, "A_Tpl")
300        .def(py::init<>())
301        .def("unlucky_number", &A_Tpl::unlucky_number)
302        .def("say_something", &A_Tpl::say_something)
303        .def("say_everything", &A_Tpl::say_everything);
304    py::class_<B_Tpl, A_Tpl, PyB_Tpl<>>(m, "B_Tpl")
305        .def(py::init<>())
306        .def("lucky_number", &B_Tpl::lucky_number);
307    py::class_<C_Tpl, B_Tpl, PyB_Tpl<C_Tpl>>(m, "C_Tpl")
308        .def(py::init<>());
309    py::class_<D_Tpl, C_Tpl, PyB_Tpl<D_Tpl>>(m, "D_Tpl")
310        .def(py::init<>());
311
312};
313
314
315test_initializer virtual_functions([](py::module &m) {
316    /* Important: indicate the trampoline class PyExampleVirt using the third
317       argument to py::class_. The second argument with the unique pointer
318       is simply the default holder type used by pybind11. */
319    py::class_<ExampleVirt, PyExampleVirt>(m, "ExampleVirt")
320        .def(py::init<int>())
321        /* Reference original class in function definitions */
322        .def("run", &ExampleVirt::run)
323        .def("run_bool", &ExampleVirt::run_bool)
324        .def("pure_virtual", &ExampleVirt::pure_virtual);
325
326    py::class_<NonCopyable>(m, "NonCopyable")
327        .def(py::init<int, int>());
328
329    py::class_<Movable>(m, "Movable")
330        .def(py::init<int, int>());
331
332#if !defined(__INTEL_COMPILER)
333    py::class_<NCVirt, NCVirtTrampoline>(m, "NCVirt")
334        .def(py::init<>())
335        .def("get_noncopyable", &NCVirt::get_noncopyable)
336        .def("get_movable", &NCVirt::get_movable)
337        .def("print_nc", &NCVirt::print_nc)
338        .def("print_movable", &NCVirt::print_movable);
339#endif
340
341    m.def("runExampleVirt", &runExampleVirt);
342    m.def("runExampleVirtBool", &runExampleVirtBool);
343    m.def("runExampleVirtVirtual", &runExampleVirtVirtual);
344
345    m.def("cstats_debug", &ConstructorStats::get<ExampleVirt>);
346    initialize_inherited_virtuals(m);
347});
348