test_numpy_vectorize.py revision 12391
1import pytest 2from pybind11_tests import numpy_vectorize as m 3 4pytestmark = pytest.requires_numpy 5 6with pytest.suppress(ImportError): 7 import numpy as np 8 9 10def test_vectorize(capture): 11 assert np.isclose(m.vectorized_func3(np.array(3 + 7j)), [6 + 14j]) 12 13 for f in [m.vectorized_func, m.vectorized_func2]: 14 with capture: 15 assert np.isclose(f(1, 2, 3), 6) 16 assert capture == "my_func(x:int=1, y:float=2, z:float=3)" 17 with capture: 18 assert np.isclose(f(np.array(1), np.array(2), 3), 6) 19 assert capture == "my_func(x:int=1, y:float=2, z:float=3)" 20 with capture: 21 assert np.allclose(f(np.array([1, 3]), np.array([2, 4]), 3), [6, 36]) 22 assert capture == """ 23 my_func(x:int=1, y:float=2, z:float=3) 24 my_func(x:int=3, y:float=4, z:float=3) 25 """ 26 with capture: 27 a = np.array([[1, 2], [3, 4]], order='F') 28 b = np.array([[10, 20], [30, 40]], order='F') 29 c = 3 30 result = f(a, b, c) 31 assert np.allclose(result, a * b * c) 32 assert result.flags.f_contiguous 33 # All inputs are F order and full or singletons, so we the result is in col-major order: 34 assert capture == """ 35 my_func(x:int=1, y:float=10, z:float=3) 36 my_func(x:int=3, y:float=30, z:float=3) 37 my_func(x:int=2, y:float=20, z:float=3) 38 my_func(x:int=4, y:float=40, z:float=3) 39 """ 40 with capture: 41 a, b, c = np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3 42 assert np.allclose(f(a, b, c), a * b * c) 43 assert capture == """ 44 my_func(x:int=1, y:float=2, z:float=3) 45 my_func(x:int=3, y:float=4, z:float=3) 46 my_func(x:int=5, y:float=6, z:float=3) 47 my_func(x:int=7, y:float=8, z:float=3) 48 my_func(x:int=9, y:float=10, z:float=3) 49 my_func(x:int=11, y:float=12, z:float=3) 50 """ 51 with capture: 52 a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2 53 assert np.allclose(f(a, b, c), a * b * c) 54 assert capture == """ 55 my_func(x:int=1, y:float=2, z:float=2) 56 my_func(x:int=2, y:float=3, z:float=2) 57 my_func(x:int=3, y:float=4, z:float=2) 58 my_func(x:int=4, y:float=2, z:float=2) 59 my_func(x:int=5, y:float=3, z:float=2) 60 my_func(x:int=6, y:float=4, z:float=2) 61 """ 62 with capture: 63 a, b, c = np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2 64 assert np.allclose(f(a, b, c), a * b * c) 65 assert capture == """ 66 my_func(x:int=1, y:float=2, z:float=2) 67 my_func(x:int=2, y:float=2, z:float=2) 68 my_func(x:int=3, y:float=2, z:float=2) 69 my_func(x:int=4, y:float=3, z:float=2) 70 my_func(x:int=5, y:float=3, z:float=2) 71 my_func(x:int=6, y:float=3, z:float=2) 72 """ 73 with capture: 74 a, b, c = np.array([[1, 2, 3], [4, 5, 6]], order='F'), np.array([[2], [3]]), 2 75 assert np.allclose(f(a, b, c), a * b * c) 76 assert capture == """ 77 my_func(x:int=1, y:float=2, z:float=2) 78 my_func(x:int=2, y:float=2, z:float=2) 79 my_func(x:int=3, y:float=2, z:float=2) 80 my_func(x:int=4, y:float=3, z:float=2) 81 my_func(x:int=5, y:float=3, z:float=2) 82 my_func(x:int=6, y:float=3, z:float=2) 83 """ 84 with capture: 85 a, b, c = np.array([[1, 2, 3], [4, 5, 6]])[::, ::2], np.array([[2], [3]]), 2 86 assert np.allclose(f(a, b, c), a * b * c) 87 assert capture == """ 88 my_func(x:int=1, y:float=2, z:float=2) 89 my_func(x:int=3, y:float=2, z:float=2) 90 my_func(x:int=4, y:float=3, z:float=2) 91 my_func(x:int=6, y:float=3, z:float=2) 92 """ 93 with capture: 94 a, b, c = np.array([[1, 2, 3], [4, 5, 6]], order='F')[::, ::2], np.array([[2], [3]]), 2 95 assert np.allclose(f(a, b, c), a * b * c) 96 assert capture == """ 97 my_func(x:int=1, y:float=2, z:float=2) 98 my_func(x:int=3, y:float=2, z:float=2) 99 my_func(x:int=4, y:float=3, z:float=2) 100 my_func(x:int=6, y:float=3, z:float=2) 101 """ 102 103 104def test_type_selection(): 105 assert m.selective_func(np.array([1], dtype=np.int32)) == "Int branch taken." 106 assert m.selective_func(np.array([1.0], dtype=np.float32)) == "Float branch taken." 107 assert m.selective_func(np.array([1.0j], dtype=np.complex64)) == "Complex float branch taken." 108 109 110def test_docs(doc): 111 assert doc(m.vectorized_func) == """ 112 vectorized_func(arg0: numpy.ndarray[int32], arg1: numpy.ndarray[float32], arg2: numpy.ndarray[float64]) -> object 113 """ # noqa: E501 line too long 114 115 116def test_trivial_broadcasting(): 117 trivial, vectorized_is_trivial = m.trivial, m.vectorized_is_trivial 118 119 assert vectorized_is_trivial(1, 2, 3) == trivial.c_trivial 120 assert vectorized_is_trivial(np.array(1), np.array(2), 3) == trivial.c_trivial 121 assert vectorized_is_trivial(np.array([1, 3]), np.array([2, 4]), 3) == trivial.c_trivial 122 assert trivial.c_trivial == vectorized_is_trivial( 123 np.array([[1, 3, 5], [7, 9, 11]]), np.array([[2, 4, 6], [8, 10, 12]]), 3) 124 assert vectorized_is_trivial( 125 np.array([[1, 2, 3], [4, 5, 6]]), np.array([2, 3, 4]), 2) == trivial.non_trivial 126 assert vectorized_is_trivial( 127 np.array([[1, 2, 3], [4, 5, 6]]), np.array([[2], [3]]), 2) == trivial.non_trivial 128 z1 = np.array([[1, 2, 3, 4], [5, 6, 7, 8]], dtype='int32') 129 z2 = np.array(z1, dtype='float32') 130 z3 = np.array(z1, dtype='float64') 131 assert vectorized_is_trivial(z1, z2, z3) == trivial.c_trivial 132 assert vectorized_is_trivial(1, z2, z3) == trivial.c_trivial 133 assert vectorized_is_trivial(z1, 1, z3) == trivial.c_trivial 134 assert vectorized_is_trivial(z1, z2, 1) == trivial.c_trivial 135 assert vectorized_is_trivial(z1[::2, ::2], 1, 1) == trivial.non_trivial 136 assert vectorized_is_trivial(1, 1, z1[::2, ::2]) == trivial.c_trivial 137 assert vectorized_is_trivial(1, 1, z3[::2, ::2]) == trivial.non_trivial 138 assert vectorized_is_trivial(z1, 1, z3[1::4, 1::4]) == trivial.c_trivial 139 140 y1 = np.array(z1, order='F') 141 y2 = np.array(y1) 142 y3 = np.array(y1) 143 assert vectorized_is_trivial(y1, y2, y3) == trivial.f_trivial 144 assert vectorized_is_trivial(y1, 1, 1) == trivial.f_trivial 145 assert vectorized_is_trivial(1, y2, 1) == trivial.f_trivial 146 assert vectorized_is_trivial(1, 1, y3) == trivial.f_trivial 147 assert vectorized_is_trivial(y1, z2, 1) == trivial.non_trivial 148 assert vectorized_is_trivial(z1[1::4, 1::4], y2, 1) == trivial.f_trivial 149 assert vectorized_is_trivial(y1[1::4, 1::4], z2, 1) == trivial.c_trivial 150 151 assert m.vectorized_func(z1, z2, z3).flags.c_contiguous 152 assert m.vectorized_func(y1, y2, y3).flags.f_contiguous 153 assert m.vectorized_func(z1, 1, 1).flags.c_contiguous 154 assert m.vectorized_func(1, y2, 1).flags.f_contiguous 155 assert m.vectorized_func(z1[1::4, 1::4], y2, 1).flags.f_contiguous 156 assert m.vectorized_func(y1[1::4, 1::4], z2, 1).flags.c_contiguous 157 158 159def test_passthrough_arguments(doc): 160 assert doc(m.vec_passthrough) == ( 161 "vec_passthrough(" + ", ".join([ 162 "arg0: float", 163 "arg1: numpy.ndarray[float64]", 164 "arg2: numpy.ndarray[float64]", 165 "arg3: numpy.ndarray[int32]", 166 "arg4: int", 167 "arg5: m.numpy_vectorize.NonPODClass", 168 "arg6: numpy.ndarray[float64]"]) + ") -> object") 169 170 b = np.array([[10, 20, 30]], dtype='float64') 171 c = np.array([100, 200]) # NOT a vectorized argument 172 d = np.array([[1000], [2000], [3000]], dtype='int') 173 g = np.array([[1000000, 2000000, 3000000]], dtype='int') # requires casting 174 assert np.all( 175 m.vec_passthrough(1, b, c, d, 10000, m.NonPODClass(100000), g) == 176 np.array([[1111111, 2111121, 3111131], 177 [1112111, 2112121, 3112131], 178 [1113111, 2113121, 3113131]])) 179 180 181def test_method_vectorization(): 182 o = m.VectorizeTestClass(3) 183 x = np.array([1, 2], dtype='int') 184 y = np.array([[10], [20]], dtype='float32') 185 assert np.all(o.method(x, y) == [[14, 15], [24, 25]]) 186 187 188def test_array_collapse(): 189 assert not isinstance(m.vectorized_func(1, 2, 3), np.ndarray) 190 assert not isinstance(m.vectorized_func(np.array(1), 2, 3), np.ndarray) 191 z = m.vectorized_func([1], 2, 3) 192 assert isinstance(z, np.ndarray) 193 assert z.shape == (1, ) 194 z = m.vectorized_func(1, [[[2]]], 3) 195 assert isinstance(z, np.ndarray) 196 assert z.shape == (1, 1, 1) 197