numpy.h revision 14299:2fbea9df56d2
1/*
2    pybind11/numpy.h: Basic NumPy support, vectorize() wrapper
3
4    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
5
6    All rights reserved. Use of this source code is governed by a
7    BSD-style license that can be found in the LICENSE file.
8*/
9
10#pragma once
11
12#include "pybind11.h"
13#include "complex.h"
14#include <numeric>
15#include <algorithm>
16#include <array>
17#include <cstdint>
18#include <cstdlib>
19#include <cstring>
20#include <sstream>
21#include <string>
22#include <functional>
23#include <utility>
24#include <vector>
25#include <typeindex>
26
27#if defined(_MSC_VER)
28#  pragma warning(push)
29#  pragma warning(disable: 4127) // warning C4127: Conditional expression is constant
30#endif
31
32/* This will be true on all flat address space platforms and allows us to reduce the
33   whole npy_intp / ssize_t / Py_intptr_t business down to just ssize_t for all size
34   and dimension types (e.g. shape, strides, indexing), instead of inflicting this
35   upon the library user. */
36static_assert(sizeof(ssize_t) == sizeof(Py_intptr_t), "ssize_t != Py_intptr_t");
37
38NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
39
40class array; // Forward declaration
41
42NAMESPACE_BEGIN(detail)
43template <typename type, typename SFINAE = void> struct npy_format_descriptor;
44
45struct PyArrayDescr_Proxy {
46    PyObject_HEAD
47    PyObject *typeobj;
48    char kind;
49    char type;
50    char byteorder;
51    char flags;
52    int type_num;
53    int elsize;
54    int alignment;
55    char *subarray;
56    PyObject *fields;
57    PyObject *names;
58};
59
60struct PyArray_Proxy {
61    PyObject_HEAD
62    char *data;
63    int nd;
64    ssize_t *dimensions;
65    ssize_t *strides;
66    PyObject *base;
67    PyObject *descr;
68    int flags;
69};
70
71struct PyVoidScalarObject_Proxy {
72    PyObject_VAR_HEAD
73    char *obval;
74    PyArrayDescr_Proxy *descr;
75    int flags;
76    PyObject *base;
77};
78
79struct numpy_type_info {
80    PyObject* dtype_ptr;
81    std::string format_str;
82};
83
84struct numpy_internals {
85    std::unordered_map<std::type_index, numpy_type_info> registered_dtypes;
86
87    numpy_type_info *get_type_info(const std::type_info& tinfo, bool throw_if_missing = true) {
88        auto it = registered_dtypes.find(std::type_index(tinfo));
89        if (it != registered_dtypes.end())
90            return &(it->second);
91        if (throw_if_missing)
92            pybind11_fail(std::string("NumPy type info missing for ") + tinfo.name());
93        return nullptr;
94    }
95
96    template<typename T> numpy_type_info *get_type_info(bool throw_if_missing = true) {
97        return get_type_info(typeid(typename std::remove_cv<T>::type), throw_if_missing);
98    }
99};
100
101inline PYBIND11_NOINLINE void load_numpy_internals(numpy_internals* &ptr) {
102    ptr = &get_or_create_shared_data<numpy_internals>("_numpy_internals");
103}
104
105inline numpy_internals& get_numpy_internals() {
106    static numpy_internals* ptr = nullptr;
107    if (!ptr)
108        load_numpy_internals(ptr);
109    return *ptr;
110}
111
112template <typename T> struct same_size {
113    template <typename U> using as = bool_constant<sizeof(T) == sizeof(U)>;
114};
115
116// Lookup a type according to its size, and return a value corresponding to the NumPy typenum.
117template <typename Concrete, typename... Check, typename... Int>
118constexpr int platform_lookup(Int... codes) {
119    using code_index = std::integral_constant<int, constexpr_first<same_size<Concrete>::template as, Check...>()>;
120    static_assert(code_index::value != sizeof...(Check), "Unable to match type on this platform");
121    return std::get<code_index::value>(std::make_tuple(codes...));
122}
123
124struct npy_api {
125    enum constants {
126        NPY_ARRAY_C_CONTIGUOUS_ = 0x0001,
127        NPY_ARRAY_F_CONTIGUOUS_ = 0x0002,
128        NPY_ARRAY_OWNDATA_ = 0x0004,
129        NPY_ARRAY_FORCECAST_ = 0x0010,
130        NPY_ARRAY_ENSUREARRAY_ = 0x0040,
131        NPY_ARRAY_ALIGNED_ = 0x0100,
132        NPY_ARRAY_WRITEABLE_ = 0x0400,
133        NPY_BOOL_ = 0,
134        NPY_BYTE_, NPY_UBYTE_,
135        NPY_SHORT_, NPY_USHORT_,
136        NPY_INT_, NPY_UINT_,
137        NPY_LONG_, NPY_ULONG_,
138        NPY_LONGLONG_, NPY_ULONGLONG_,
139        NPY_FLOAT_, NPY_DOUBLE_, NPY_LONGDOUBLE_,
140        NPY_CFLOAT_, NPY_CDOUBLE_, NPY_CLONGDOUBLE_,
141        NPY_OBJECT_ = 17,
142        NPY_STRING_, NPY_UNICODE_, NPY_VOID_,
143        // Platform-dependent normalization
144        NPY_INT8_ = NPY_BYTE_,
145        NPY_UINT8_ = NPY_UBYTE_,
146        NPY_INT16_ = NPY_SHORT_,
147        NPY_UINT16_ = NPY_USHORT_,
148        // `npy_common.h` defines the integer aliases. In order, it checks:
149        // NPY_BITSOF_LONG, NPY_BITSOF_LONGLONG, NPY_BITSOF_INT, NPY_BITSOF_SHORT, NPY_BITSOF_CHAR
150        // and assigns the alias to the first matching size, so we should check in this order.
151        NPY_INT32_ = platform_lookup<std::int32_t, long, int, short>(
152            NPY_LONG_, NPY_INT_, NPY_SHORT_),
153        NPY_UINT32_ = platform_lookup<std::uint32_t, unsigned long, unsigned int, unsigned short>(
154            NPY_ULONG_, NPY_UINT_, NPY_USHORT_),
155        NPY_INT64_ = platform_lookup<std::int64_t, long, long long, int>(
156            NPY_LONG_, NPY_LONGLONG_, NPY_INT_),
157        NPY_UINT64_ = platform_lookup<std::uint64_t, unsigned long, unsigned long long, unsigned int>(
158            NPY_ULONG_, NPY_ULONGLONG_, NPY_UINT_),
159    };
160
161    typedef struct {
162        Py_intptr_t *ptr;
163        int len;
164    } PyArray_Dims;
165
166    static npy_api& get() {
167        static npy_api api = lookup();
168        return api;
169    }
170
171    bool PyArray_Check_(PyObject *obj) const {
172        return (bool) PyObject_TypeCheck(obj, PyArray_Type_);
173    }
174    bool PyArrayDescr_Check_(PyObject *obj) const {
175        return (bool) PyObject_TypeCheck(obj, PyArrayDescr_Type_);
176    }
177
178    unsigned int (*PyArray_GetNDArrayCFeatureVersion_)();
179    PyObject *(*PyArray_DescrFromType_)(int);
180    PyObject *(*PyArray_NewFromDescr_)
181        (PyTypeObject *, PyObject *, int, Py_intptr_t *,
182         Py_intptr_t *, void *, int, PyObject *);
183    PyObject *(*PyArray_DescrNewFromType_)(int);
184    int (*PyArray_CopyInto_)(PyObject *, PyObject *);
185    PyObject *(*PyArray_NewCopy_)(PyObject *, int);
186    PyTypeObject *PyArray_Type_;
187    PyTypeObject *PyVoidArrType_Type_;
188    PyTypeObject *PyArrayDescr_Type_;
189    PyObject *(*PyArray_DescrFromScalar_)(PyObject *);
190    PyObject *(*PyArray_FromAny_) (PyObject *, PyObject *, int, int, int, PyObject *);
191    int (*PyArray_DescrConverter_) (PyObject *, PyObject **);
192    bool (*PyArray_EquivTypes_) (PyObject *, PyObject *);
193    int (*PyArray_GetArrayParamsFromObject_)(PyObject *, PyObject *, char, PyObject **, int *,
194                                             Py_ssize_t *, PyObject **, PyObject *);
195    PyObject *(*PyArray_Squeeze_)(PyObject *);
196    int (*PyArray_SetBaseObject_)(PyObject *, PyObject *);
197    PyObject* (*PyArray_Resize_)(PyObject*, PyArray_Dims*, int, int);
198private:
199    enum functions {
200        API_PyArray_GetNDArrayCFeatureVersion = 211,
201        API_PyArray_Type = 2,
202        API_PyArrayDescr_Type = 3,
203        API_PyVoidArrType_Type = 39,
204        API_PyArray_DescrFromType = 45,
205        API_PyArray_DescrFromScalar = 57,
206        API_PyArray_FromAny = 69,
207        API_PyArray_Resize = 80,
208        API_PyArray_CopyInto = 82,
209        API_PyArray_NewCopy = 85,
210        API_PyArray_NewFromDescr = 94,
211        API_PyArray_DescrNewFromType = 9,
212        API_PyArray_DescrConverter = 174,
213        API_PyArray_EquivTypes = 182,
214        API_PyArray_GetArrayParamsFromObject = 278,
215        API_PyArray_Squeeze = 136,
216        API_PyArray_SetBaseObject = 282
217    };
218
219    static npy_api lookup() {
220        module m = module::import("numpy.core.multiarray");
221        auto c = m.attr("_ARRAY_API");
222#if PY_MAJOR_VERSION >= 3
223        void **api_ptr = (void **) PyCapsule_GetPointer(c.ptr(), NULL);
224#else
225        void **api_ptr = (void **) PyCObject_AsVoidPtr(c.ptr());
226#endif
227        npy_api api;
228#define DECL_NPY_API(Func) api.Func##_ = (decltype(api.Func##_)) api_ptr[API_##Func];
229        DECL_NPY_API(PyArray_GetNDArrayCFeatureVersion);
230        if (api.PyArray_GetNDArrayCFeatureVersion_() < 0x7)
231            pybind11_fail("pybind11 numpy support requires numpy >= 1.7.0");
232        DECL_NPY_API(PyArray_Type);
233        DECL_NPY_API(PyVoidArrType_Type);
234        DECL_NPY_API(PyArrayDescr_Type);
235        DECL_NPY_API(PyArray_DescrFromType);
236        DECL_NPY_API(PyArray_DescrFromScalar);
237        DECL_NPY_API(PyArray_FromAny);
238        DECL_NPY_API(PyArray_Resize);
239        DECL_NPY_API(PyArray_CopyInto);
240        DECL_NPY_API(PyArray_NewCopy);
241        DECL_NPY_API(PyArray_NewFromDescr);
242        DECL_NPY_API(PyArray_DescrNewFromType);
243        DECL_NPY_API(PyArray_DescrConverter);
244        DECL_NPY_API(PyArray_EquivTypes);
245        DECL_NPY_API(PyArray_GetArrayParamsFromObject);
246        DECL_NPY_API(PyArray_Squeeze);
247        DECL_NPY_API(PyArray_SetBaseObject);
248#undef DECL_NPY_API
249        return api;
250    }
251};
252
253inline PyArray_Proxy* array_proxy(void* ptr) {
254    return reinterpret_cast<PyArray_Proxy*>(ptr);
255}
256
257inline const PyArray_Proxy* array_proxy(const void* ptr) {
258    return reinterpret_cast<const PyArray_Proxy*>(ptr);
259}
260
261inline PyArrayDescr_Proxy* array_descriptor_proxy(PyObject* ptr) {
262   return reinterpret_cast<PyArrayDescr_Proxy*>(ptr);
263}
264
265inline const PyArrayDescr_Proxy* array_descriptor_proxy(const PyObject* ptr) {
266   return reinterpret_cast<const PyArrayDescr_Proxy*>(ptr);
267}
268
269inline bool check_flags(const void* ptr, int flag) {
270    return (flag == (array_proxy(ptr)->flags & flag));
271}
272
273template <typename T> struct is_std_array : std::false_type { };
274template <typename T, size_t N> struct is_std_array<std::array<T, N>> : std::true_type { };
275template <typename T> struct is_complex : std::false_type { };
276template <typename T> struct is_complex<std::complex<T>> : std::true_type { };
277
278template <typename T> struct array_info_scalar {
279    typedef T type;
280    static constexpr bool is_array = false;
281    static constexpr bool is_empty = false;
282    static constexpr auto extents = _("");
283    static void append_extents(list& /* shape */) { }
284};
285// Computes underlying type and a comma-separated list of extents for array
286// types (any mix of std::array and built-in arrays). An array of char is
287// treated as scalar because it gets special handling.
288template <typename T> struct array_info : array_info_scalar<T> { };
289template <typename T, size_t N> struct array_info<std::array<T, N>> {
290    using type = typename array_info<T>::type;
291    static constexpr bool is_array = true;
292    static constexpr bool is_empty = (N == 0) || array_info<T>::is_empty;
293    static constexpr size_t extent = N;
294
295    // appends the extents to shape
296    static void append_extents(list& shape) {
297        shape.append(N);
298        array_info<T>::append_extents(shape);
299    }
300
301    static constexpr auto extents = _<array_info<T>::is_array>(
302        concat(_<N>(), array_info<T>::extents), _<N>()
303    );
304};
305// For numpy we have special handling for arrays of characters, so we don't include
306// the size in the array extents.
307template <size_t N> struct array_info<char[N]> : array_info_scalar<char[N]> { };
308template <size_t N> struct array_info<std::array<char, N>> : array_info_scalar<std::array<char, N>> { };
309template <typename T, size_t N> struct array_info<T[N]> : array_info<std::array<T, N>> { };
310template <typename T> using remove_all_extents_t = typename array_info<T>::type;
311
312template <typename T> using is_pod_struct = all_of<
313    std::is_standard_layout<T>,     // since we're accessing directly in memory we need a standard layout type
314#if !defined(__GNUG__) || defined(_LIBCPP_VERSION) || defined(_GLIBCXX_USE_CXX11_ABI)
315    // _GLIBCXX_USE_CXX11_ABI indicates that we're using libstdc++ from GCC 5 or newer, independent
316    // of the actual compiler (Clang can also use libstdc++, but it always defines __GNUC__ == 4).
317    std::is_trivially_copyable<T>,
318#else
319    // GCC 4 doesn't implement is_trivially_copyable, so approximate it
320    std::is_trivially_destructible<T>,
321    satisfies_any_of<T, std::has_trivial_copy_constructor, std::has_trivial_copy_assign>,
322#endif
323    satisfies_none_of<T, std::is_reference, std::is_array, is_std_array, std::is_arithmetic, is_complex, std::is_enum>
324>;
325
326template <ssize_t Dim = 0, typename Strides> ssize_t byte_offset_unsafe(const Strides &) { return 0; }
327template <ssize_t Dim = 0, typename Strides, typename... Ix>
328ssize_t byte_offset_unsafe(const Strides &strides, ssize_t i, Ix... index) {
329    return i * strides[Dim] + byte_offset_unsafe<Dim + 1>(strides, index...);
330}
331
332/**
333 * Proxy class providing unsafe, unchecked const access to array data.  This is constructed through
334 * the `unchecked<T, N>()` method of `array` or the `unchecked<N>()` method of `array_t<T>`.  `Dims`
335 * will be -1 for dimensions determined at runtime.
336 */
337template <typename T, ssize_t Dims>
338class unchecked_reference {
339protected:
340    static constexpr bool Dynamic = Dims < 0;
341    const unsigned char *data_;
342    // Storing the shape & strides in local variables (i.e. these arrays) allows the compiler to
343    // make large performance gains on big, nested loops, but requires compile-time dimensions
344    conditional_t<Dynamic, const ssize_t *, std::array<ssize_t, (size_t) Dims>>
345            shape_, strides_;
346    const ssize_t dims_;
347
348    friend class pybind11::array;
349    // Constructor for compile-time dimensions:
350    template <bool Dyn = Dynamic>
351    unchecked_reference(const void *data, const ssize_t *shape, const ssize_t *strides, enable_if_t<!Dyn, ssize_t>)
352    : data_{reinterpret_cast<const unsigned char *>(data)}, dims_{Dims} {
353        for (size_t i = 0; i < (size_t) dims_; i++) {
354            shape_[i] = shape[i];
355            strides_[i] = strides[i];
356        }
357    }
358    // Constructor for runtime dimensions:
359    template <bool Dyn = Dynamic>
360    unchecked_reference(const void *data, const ssize_t *shape, const ssize_t *strides, enable_if_t<Dyn, ssize_t> dims)
361    : data_{reinterpret_cast<const unsigned char *>(data)}, shape_{shape}, strides_{strides}, dims_{dims} {}
362
363public:
364    /**
365     * Unchecked const reference access to data at the given indices.  For a compile-time known
366     * number of dimensions, this requires the correct number of arguments; for run-time
367     * dimensionality, this is not checked (and so is up to the caller to use safely).
368     */
369    template <typename... Ix> const T &operator()(Ix... index) const {
370        static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
371                "Invalid number of indices for unchecked array reference");
372        return *reinterpret_cast<const T *>(data_ + byte_offset_unsafe(strides_, ssize_t(index)...));
373    }
374    /**
375     * Unchecked const reference access to data; this operator only participates if the reference
376     * is to a 1-dimensional array.  When present, this is exactly equivalent to `obj(index)`.
377     */
378    template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
379    const T &operator[](ssize_t index) const { return operator()(index); }
380
381    /// Pointer access to the data at the given indices.
382    template <typename... Ix> const T *data(Ix... ix) const { return &operator()(ssize_t(ix)...); }
383
384    /// Returns the item size, i.e. sizeof(T)
385    constexpr static ssize_t itemsize() { return sizeof(T); }
386
387    /// Returns the shape (i.e. size) of dimension `dim`
388    ssize_t shape(ssize_t dim) const { return shape_[(size_t) dim]; }
389
390    /// Returns the number of dimensions of the array
391    ssize_t ndim() const { return dims_; }
392
393    /// Returns the total number of elements in the referenced array, i.e. the product of the shapes
394    template <bool Dyn = Dynamic>
395    enable_if_t<!Dyn, ssize_t> size() const {
396        return std::accumulate(shape_.begin(), shape_.end(), (ssize_t) 1, std::multiplies<ssize_t>());
397    }
398    template <bool Dyn = Dynamic>
399    enable_if_t<Dyn, ssize_t> size() const {
400        return std::accumulate(shape_, shape_ + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
401    }
402
403    /// Returns the total number of bytes used by the referenced data.  Note that the actual span in
404    /// memory may be larger if the referenced array has non-contiguous strides (e.g. for a slice).
405    ssize_t nbytes() const {
406        return size() * itemsize();
407    }
408};
409
410template <typename T, ssize_t Dims>
411class unchecked_mutable_reference : public unchecked_reference<T, Dims> {
412    friend class pybind11::array;
413    using ConstBase = unchecked_reference<T, Dims>;
414    using ConstBase::ConstBase;
415    using ConstBase::Dynamic;
416public:
417    /// Mutable, unchecked access to data at the given indices.
418    template <typename... Ix> T& operator()(Ix... index) {
419        static_assert(ssize_t{sizeof...(Ix)} == Dims || Dynamic,
420                "Invalid number of indices for unchecked array reference");
421        return const_cast<T &>(ConstBase::operator()(index...));
422    }
423    /**
424     * Mutable, unchecked access data at the given index; this operator only participates if the
425     * reference is to a 1-dimensional array (or has runtime dimensions).  When present, this is
426     * exactly equivalent to `obj(index)`.
427     */
428    template <ssize_t D = Dims, typename = enable_if_t<D == 1 || Dynamic>>
429    T &operator[](ssize_t index) { return operator()(index); }
430
431    /// Mutable pointer access to the data at the given indices.
432    template <typename... Ix> T *mutable_data(Ix... ix) { return &operator()(ssize_t(ix)...); }
433};
434
435template <typename T, ssize_t Dim>
436struct type_caster<unchecked_reference<T, Dim>> {
437    static_assert(Dim == 0 && Dim > 0 /* always fail */, "unchecked array proxy object is not castable");
438};
439template <typename T, ssize_t Dim>
440struct type_caster<unchecked_mutable_reference<T, Dim>> : type_caster<unchecked_reference<T, Dim>> {};
441
442NAMESPACE_END(detail)
443
444class dtype : public object {
445public:
446    PYBIND11_OBJECT_DEFAULT(dtype, object, detail::npy_api::get().PyArrayDescr_Check_);
447
448    explicit dtype(const buffer_info &info) {
449        dtype descr(_dtype_from_pep3118()(PYBIND11_STR_TYPE(info.format)));
450        // If info.itemsize == 0, use the value calculated from the format string
451        m_ptr = descr.strip_padding(info.itemsize ? info.itemsize : descr.itemsize()).release().ptr();
452    }
453
454    explicit dtype(const std::string &format) {
455        m_ptr = from_args(pybind11::str(format)).release().ptr();
456    }
457
458    dtype(const char *format) : dtype(std::string(format)) { }
459
460    dtype(list names, list formats, list offsets, ssize_t itemsize) {
461        dict args;
462        args["names"] = names;
463        args["formats"] = formats;
464        args["offsets"] = offsets;
465        args["itemsize"] = pybind11::int_(itemsize);
466        m_ptr = from_args(args).release().ptr();
467    }
468
469    /// This is essentially the same as calling numpy.dtype(args) in Python.
470    static dtype from_args(object args) {
471        PyObject *ptr = nullptr;
472        if (!detail::npy_api::get().PyArray_DescrConverter_(args.ptr(), &ptr) || !ptr)
473            throw error_already_set();
474        return reinterpret_steal<dtype>(ptr);
475    }
476
477    /// Return dtype associated with a C++ type.
478    template <typename T> static dtype of() {
479        return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::dtype();
480    }
481
482    /// Size of the data type in bytes.
483    ssize_t itemsize() const {
484        return detail::array_descriptor_proxy(m_ptr)->elsize;
485    }
486
487    /// Returns true for structured data types.
488    bool has_fields() const {
489        return detail::array_descriptor_proxy(m_ptr)->names != nullptr;
490    }
491
492    /// Single-character type code.
493    char kind() const {
494        return detail::array_descriptor_proxy(m_ptr)->kind;
495    }
496
497private:
498    static object _dtype_from_pep3118() {
499        static PyObject *obj = module::import("numpy.core._internal")
500            .attr("_dtype_from_pep3118").cast<object>().release().ptr();
501        return reinterpret_borrow<object>(obj);
502    }
503
504    dtype strip_padding(ssize_t itemsize) {
505        // Recursively strip all void fields with empty names that are generated for
506        // padding fields (as of NumPy v1.11).
507        if (!has_fields())
508            return *this;
509
510        struct field_descr { PYBIND11_STR_TYPE name; object format; pybind11::int_ offset; };
511        std::vector<field_descr> field_descriptors;
512
513        for (auto field : attr("fields").attr("items")()) {
514            auto spec = field.cast<tuple>();
515            auto name = spec[0].cast<pybind11::str>();
516            auto format = spec[1].cast<tuple>()[0].cast<dtype>();
517            auto offset = spec[1].cast<tuple>()[1].cast<pybind11::int_>();
518            if (!len(name) && format.kind() == 'V')
519                continue;
520            field_descriptors.push_back({(PYBIND11_STR_TYPE) name, format.strip_padding(format.itemsize()), offset});
521        }
522
523        std::sort(field_descriptors.begin(), field_descriptors.end(),
524                  [](const field_descr& a, const field_descr& b) {
525                      return a.offset.cast<int>() < b.offset.cast<int>();
526                  });
527
528        list names, formats, offsets;
529        for (auto& descr : field_descriptors) {
530            names.append(descr.name);
531            formats.append(descr.format);
532            offsets.append(descr.offset);
533        }
534        return dtype(names, formats, offsets, itemsize);
535    }
536};
537
538class array : public buffer {
539public:
540    PYBIND11_OBJECT_CVT(array, buffer, detail::npy_api::get().PyArray_Check_, raw_array)
541
542    enum {
543        c_style = detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_,
544        f_style = detail::npy_api::NPY_ARRAY_F_CONTIGUOUS_,
545        forcecast = detail::npy_api::NPY_ARRAY_FORCECAST_
546    };
547
548    array() : array({{0}}, static_cast<const double *>(nullptr)) {}
549
550    using ShapeContainer = detail::any_container<ssize_t>;
551    using StridesContainer = detail::any_container<ssize_t>;
552
553    // Constructs an array taking shape/strides from arbitrary container types
554    array(const pybind11::dtype &dt, ShapeContainer shape, StridesContainer strides,
555          const void *ptr = nullptr, handle base = handle()) {
556
557        if (strides->empty())
558            *strides = c_strides(*shape, dt.itemsize());
559
560        auto ndim = shape->size();
561        if (ndim != strides->size())
562            pybind11_fail("NumPy: shape ndim doesn't match strides ndim");
563        auto descr = dt;
564
565        int flags = 0;
566        if (base && ptr) {
567            if (isinstance<array>(base))
568                /* Copy flags from base (except ownership bit) */
569                flags = reinterpret_borrow<array>(base).flags() & ~detail::npy_api::NPY_ARRAY_OWNDATA_;
570            else
571                /* Writable by default, easy to downgrade later on if needed */
572                flags = detail::npy_api::NPY_ARRAY_WRITEABLE_;
573        }
574
575        auto &api = detail::npy_api::get();
576        auto tmp = reinterpret_steal<object>(api.PyArray_NewFromDescr_(
577            api.PyArray_Type_, descr.release().ptr(), (int) ndim, shape->data(), strides->data(),
578            const_cast<void *>(ptr), flags, nullptr));
579        if (!tmp)
580            throw error_already_set();
581        if (ptr) {
582            if (base) {
583                api.PyArray_SetBaseObject_(tmp.ptr(), base.inc_ref().ptr());
584            } else {
585                tmp = reinterpret_steal<object>(api.PyArray_NewCopy_(tmp.ptr(), -1 /* any order */));
586            }
587        }
588        m_ptr = tmp.release().ptr();
589    }
590
591    array(const pybind11::dtype &dt, ShapeContainer shape, const void *ptr = nullptr, handle base = handle())
592        : array(dt, std::move(shape), {}, ptr, base) { }
593
594    template <typename T, typename = detail::enable_if_t<std::is_integral<T>::value && !std::is_same<bool, T>::value>>
595    array(const pybind11::dtype &dt, T count, const void *ptr = nullptr, handle base = handle())
596        : array(dt, {{count}}, ptr, base) { }
597
598    template <typename T>
599    array(ShapeContainer shape, StridesContainer strides, const T *ptr, handle base = handle())
600        : array(pybind11::dtype::of<T>(), std::move(shape), std::move(strides), ptr, base) { }
601
602    template <typename T>
603    array(ShapeContainer shape, const T *ptr, handle base = handle())
604        : array(std::move(shape), {}, ptr, base) { }
605
606    template <typename T>
607    explicit array(ssize_t count, const T *ptr, handle base = handle()) : array({count}, {}, ptr, base) { }
608
609    explicit array(const buffer_info &info)
610    : array(pybind11::dtype(info), info.shape, info.strides, info.ptr) { }
611
612    /// Array descriptor (dtype)
613    pybind11::dtype dtype() const {
614        return reinterpret_borrow<pybind11::dtype>(detail::array_proxy(m_ptr)->descr);
615    }
616
617    /// Total number of elements
618    ssize_t size() const {
619        return std::accumulate(shape(), shape() + ndim(), (ssize_t) 1, std::multiplies<ssize_t>());
620    }
621
622    /// Byte size of a single element
623    ssize_t itemsize() const {
624        return detail::array_descriptor_proxy(detail::array_proxy(m_ptr)->descr)->elsize;
625    }
626
627    /// Total number of bytes
628    ssize_t nbytes() const {
629        return size() * itemsize();
630    }
631
632    /// Number of dimensions
633    ssize_t ndim() const {
634        return detail::array_proxy(m_ptr)->nd;
635    }
636
637    /// Base object
638    object base() const {
639        return reinterpret_borrow<object>(detail::array_proxy(m_ptr)->base);
640    }
641
642    /// Dimensions of the array
643    const ssize_t* shape() const {
644        return detail::array_proxy(m_ptr)->dimensions;
645    }
646
647    /// Dimension along a given axis
648    ssize_t shape(ssize_t dim) const {
649        if (dim >= ndim())
650            fail_dim_check(dim, "invalid axis");
651        return shape()[dim];
652    }
653
654    /// Strides of the array
655    const ssize_t* strides() const {
656        return detail::array_proxy(m_ptr)->strides;
657    }
658
659    /// Stride along a given axis
660    ssize_t strides(ssize_t dim) const {
661        if (dim >= ndim())
662            fail_dim_check(dim, "invalid axis");
663        return strides()[dim];
664    }
665
666    /// Return the NumPy array flags
667    int flags() const {
668        return detail::array_proxy(m_ptr)->flags;
669    }
670
671    /// If set, the array is writeable (otherwise the buffer is read-only)
672    bool writeable() const {
673        return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_WRITEABLE_);
674    }
675
676    /// If set, the array owns the data (will be freed when the array is deleted)
677    bool owndata() const {
678        return detail::check_flags(m_ptr, detail::npy_api::NPY_ARRAY_OWNDATA_);
679    }
680
681    /// Pointer to the contained data. If index is not provided, points to the
682    /// beginning of the buffer. May throw if the index would lead to out of bounds access.
683    template<typename... Ix> const void* data(Ix... index) const {
684        return static_cast<const void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
685    }
686
687    /// Mutable pointer to the contained data. If index is not provided, points to the
688    /// beginning of the buffer. May throw if the index would lead to out of bounds access.
689    /// May throw if the array is not writeable.
690    template<typename... Ix> void* mutable_data(Ix... index) {
691        check_writeable();
692        return static_cast<void *>(detail::array_proxy(m_ptr)->data + offset_at(index...));
693    }
694
695    /// Byte offset from beginning of the array to a given index (full or partial).
696    /// May throw if the index would lead to out of bounds access.
697    template<typename... Ix> ssize_t offset_at(Ix... index) const {
698        if ((ssize_t) sizeof...(index) > ndim())
699            fail_dim_check(sizeof...(index), "too many indices for an array");
700        return byte_offset(ssize_t(index)...);
701    }
702
703    ssize_t offset_at() const { return 0; }
704
705    /// Item count from beginning of the array to a given index (full or partial).
706    /// May throw if the index would lead to out of bounds access.
707    template<typename... Ix> ssize_t index_at(Ix... index) const {
708        return offset_at(index...) / itemsize();
709    }
710
711    /**
712     * Returns a proxy object that provides access to the array's data without bounds or
713     * dimensionality checking.  Will throw if the array is missing the `writeable` flag.  Use with
714     * care: the array must not be destroyed or reshaped for the duration of the returned object,
715     * and the caller must take care not to access invalid dimensions or dimension indices.
716     */
717    template <typename T, ssize_t Dims = -1> detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
718        if (Dims >= 0 && ndim() != Dims)
719            throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) +
720                    "; expected " + std::to_string(Dims));
721        return detail::unchecked_mutable_reference<T, Dims>(mutable_data(), shape(), strides(), ndim());
722    }
723
724    /**
725     * Returns a proxy object that provides const access to the array's data without bounds or
726     * dimensionality checking.  Unlike `mutable_unchecked()`, this does not require that the
727     * underlying array have the `writable` flag.  Use with care: the array must not be destroyed or
728     * reshaped for the duration of the returned object, and the caller must take care not to access
729     * invalid dimensions or dimension indices.
730     */
731    template <typename T, ssize_t Dims = -1> detail::unchecked_reference<T, Dims> unchecked() const & {
732        if (Dims >= 0 && ndim() != Dims)
733            throw std::domain_error("array has incorrect number of dimensions: " + std::to_string(ndim()) +
734                    "; expected " + std::to_string(Dims));
735        return detail::unchecked_reference<T, Dims>(data(), shape(), strides(), ndim());
736    }
737
738    /// Return a new view with all of the dimensions of length 1 removed
739    array squeeze() {
740        auto& api = detail::npy_api::get();
741        return reinterpret_steal<array>(api.PyArray_Squeeze_(m_ptr));
742    }
743
744    /// Resize array to given shape
745    /// If refcheck is true and more that one reference exist to this array
746    /// then resize will succeed only if it makes a reshape, i.e. original size doesn't change
747    void resize(ShapeContainer new_shape, bool refcheck = true) {
748        detail::npy_api::PyArray_Dims d = {
749            new_shape->data(), int(new_shape->size())
750        };
751        // try to resize, set ordering param to -1 cause it's not used anyway
752        object new_array = reinterpret_steal<object>(
753            detail::npy_api::get().PyArray_Resize_(m_ptr, &d, int(refcheck), -1)
754        );
755        if (!new_array) throw error_already_set();
756        if (isinstance<array>(new_array)) { *this = std::move(new_array); }
757    }
758
759    /// Ensure that the argument is a NumPy array
760    /// In case of an error, nullptr is returned and the Python error is cleared.
761    static array ensure(handle h, int ExtraFlags = 0) {
762        auto result = reinterpret_steal<array>(raw_array(h.ptr(), ExtraFlags));
763        if (!result)
764            PyErr_Clear();
765        return result;
766    }
767
768protected:
769    template<typename, typename> friend struct detail::npy_format_descriptor;
770
771    void fail_dim_check(ssize_t dim, const std::string& msg) const {
772        throw index_error(msg + ": " + std::to_string(dim) +
773                          " (ndim = " + std::to_string(ndim()) + ")");
774    }
775
776    template<typename... Ix> ssize_t byte_offset(Ix... index) const {
777        check_dimensions(index...);
778        return detail::byte_offset_unsafe(strides(), ssize_t(index)...);
779    }
780
781    void check_writeable() const {
782        if (!writeable())
783            throw std::domain_error("array is not writeable");
784    }
785
786    // Default, C-style strides
787    static std::vector<ssize_t> c_strides(const std::vector<ssize_t> &shape, ssize_t itemsize) {
788        auto ndim = shape.size();
789        std::vector<ssize_t> strides(ndim, itemsize);
790        if (ndim > 0)
791            for (size_t i = ndim - 1; i > 0; --i)
792                strides[i - 1] = strides[i] * shape[i];
793        return strides;
794    }
795
796    // F-style strides; default when constructing an array_t with `ExtraFlags & f_style`
797    static std::vector<ssize_t> f_strides(const std::vector<ssize_t> &shape, ssize_t itemsize) {
798        auto ndim = shape.size();
799        std::vector<ssize_t> strides(ndim, itemsize);
800        for (size_t i = 1; i < ndim; ++i)
801            strides[i] = strides[i - 1] * shape[i - 1];
802        return strides;
803    }
804
805    template<typename... Ix> void check_dimensions(Ix... index) const {
806        check_dimensions_impl(ssize_t(0), shape(), ssize_t(index)...);
807    }
808
809    void check_dimensions_impl(ssize_t, const ssize_t*) const { }
810
811    template<typename... Ix> void check_dimensions_impl(ssize_t axis, const ssize_t* shape, ssize_t i, Ix... index) const {
812        if (i >= *shape) {
813            throw index_error(std::string("index ") + std::to_string(i) +
814                              " is out of bounds for axis " + std::to_string(axis) +
815                              " with size " + std::to_string(*shape));
816        }
817        check_dimensions_impl(axis + 1, shape + 1, index...);
818    }
819
820    /// Create array from any object -- always returns a new reference
821    static PyObject *raw_array(PyObject *ptr, int ExtraFlags = 0) {
822        if (ptr == nullptr) {
823            PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array from a nullptr");
824            return nullptr;
825        }
826        return detail::npy_api::get().PyArray_FromAny_(
827            ptr, nullptr, 0, 0, detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr);
828    }
829};
830
831template <typename T, int ExtraFlags = array::forcecast> class array_t : public array {
832private:
833    struct private_ctor {};
834    // Delegating constructor needed when both moving and accessing in the same constructor
835    array_t(private_ctor, ShapeContainer &&shape, StridesContainer &&strides, const T *ptr, handle base)
836        : array(std::move(shape), std::move(strides), ptr, base) {}
837public:
838    static_assert(!detail::array_info<T>::is_array, "Array types cannot be used with array_t");
839
840    using value_type = T;
841
842    array_t() : array(0, static_cast<const T *>(nullptr)) {}
843    array_t(handle h, borrowed_t) : array(h, borrowed_t{}) { }
844    array_t(handle h, stolen_t) : array(h, stolen_t{}) { }
845
846    PYBIND11_DEPRECATED("Use array_t<T>::ensure() instead")
847    array_t(handle h, bool is_borrowed) : array(raw_array_t(h.ptr()), stolen_t{}) {
848        if (!m_ptr) PyErr_Clear();
849        if (!is_borrowed) Py_XDECREF(h.ptr());
850    }
851
852    array_t(const object &o) : array(raw_array_t(o.ptr()), stolen_t{}) {
853        if (!m_ptr) throw error_already_set();
854    }
855
856    explicit array_t(const buffer_info& info) : array(info) { }
857
858    array_t(ShapeContainer shape, StridesContainer strides, const T *ptr = nullptr, handle base = handle())
859        : array(std::move(shape), std::move(strides), ptr, base) { }
860
861    explicit array_t(ShapeContainer shape, const T *ptr = nullptr, handle base = handle())
862        : array_t(private_ctor{}, std::move(shape),
863                ExtraFlags & f_style ? f_strides(*shape, itemsize()) : c_strides(*shape, itemsize()),
864                ptr, base) { }
865
866    explicit array_t(size_t count, const T *ptr = nullptr, handle base = handle())
867        : array({count}, {}, ptr, base) { }
868
869    constexpr ssize_t itemsize() const {
870        return sizeof(T);
871    }
872
873    template<typename... Ix> ssize_t index_at(Ix... index) const {
874        return offset_at(index...) / itemsize();
875    }
876
877    template<typename... Ix> const T* data(Ix... index) const {
878        return static_cast<const T*>(array::data(index...));
879    }
880
881    template<typename... Ix> T* mutable_data(Ix... index) {
882        return static_cast<T*>(array::mutable_data(index...));
883    }
884
885    // Reference to element at a given index
886    template<typename... Ix> const T& at(Ix... index) const {
887        if ((ssize_t) sizeof...(index) != ndim())
888            fail_dim_check(sizeof...(index), "index dimension mismatch");
889        return *(static_cast<const T*>(array::data()) + byte_offset(ssize_t(index)...) / itemsize());
890    }
891
892    // Mutable reference to element at a given index
893    template<typename... Ix> T& mutable_at(Ix... index) {
894        if ((ssize_t) sizeof...(index) != ndim())
895            fail_dim_check(sizeof...(index), "index dimension mismatch");
896        return *(static_cast<T*>(array::mutable_data()) + byte_offset(ssize_t(index)...) / itemsize());
897    }
898
899    /**
900     * Returns a proxy object that provides access to the array's data without bounds or
901     * dimensionality checking.  Will throw if the array is missing the `writeable` flag.  Use with
902     * care: the array must not be destroyed or reshaped for the duration of the returned object,
903     * and the caller must take care not to access invalid dimensions or dimension indices.
904     */
905    template <ssize_t Dims = -1> detail::unchecked_mutable_reference<T, Dims> mutable_unchecked() & {
906        return array::mutable_unchecked<T, Dims>();
907    }
908
909    /**
910     * Returns a proxy object that provides const access to the array's data without bounds or
911     * dimensionality checking.  Unlike `unchecked()`, this does not require that the underlying
912     * array have the `writable` flag.  Use with care: the array must not be destroyed or reshaped
913     * for the duration of the returned object, and the caller must take care not to access invalid
914     * dimensions or dimension indices.
915     */
916    template <ssize_t Dims = -1> detail::unchecked_reference<T, Dims> unchecked() const & {
917        return array::unchecked<T, Dims>();
918    }
919
920    /// Ensure that the argument is a NumPy array of the correct dtype (and if not, try to convert
921    /// it).  In case of an error, nullptr is returned and the Python error is cleared.
922    static array_t ensure(handle h) {
923        auto result = reinterpret_steal<array_t>(raw_array_t(h.ptr()));
924        if (!result)
925            PyErr_Clear();
926        return result;
927    }
928
929    static bool check_(handle h) {
930        const auto &api = detail::npy_api::get();
931        return api.PyArray_Check_(h.ptr())
932               && api.PyArray_EquivTypes_(detail::array_proxy(h.ptr())->descr, dtype::of<T>().ptr());
933    }
934
935protected:
936    /// Create array from any object -- always returns a new reference
937    static PyObject *raw_array_t(PyObject *ptr) {
938        if (ptr == nullptr) {
939            PyErr_SetString(PyExc_ValueError, "cannot create a pybind11::array_t from a nullptr");
940            return nullptr;
941        }
942        return detail::npy_api::get().PyArray_FromAny_(
943            ptr, dtype::of<T>().release().ptr(), 0, 0,
944            detail::npy_api::NPY_ARRAY_ENSUREARRAY_ | ExtraFlags, nullptr);
945    }
946};
947
948template <typename T>
949struct format_descriptor<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
950    static std::string format() {
951        return detail::npy_format_descriptor<typename std::remove_cv<T>::type>::format();
952    }
953};
954
955template <size_t N> struct format_descriptor<char[N]> {
956    static std::string format() { return std::to_string(N) + "s"; }
957};
958template <size_t N> struct format_descriptor<std::array<char, N>> {
959    static std::string format() { return std::to_string(N) + "s"; }
960};
961
962template <typename T>
963struct format_descriptor<T, detail::enable_if_t<std::is_enum<T>::value>> {
964    static std::string format() {
965        return format_descriptor<
966            typename std::remove_cv<typename std::underlying_type<T>::type>::type>::format();
967    }
968};
969
970template <typename T>
971struct format_descriptor<T, detail::enable_if_t<detail::array_info<T>::is_array>> {
972    static std::string format() {
973        using namespace detail;
974        static constexpr auto extents = _("(") + array_info<T>::extents + _(")");
975        return extents.text + format_descriptor<remove_all_extents_t<T>>::format();
976    }
977};
978
979NAMESPACE_BEGIN(detail)
980template <typename T, int ExtraFlags>
981struct pyobject_caster<array_t<T, ExtraFlags>> {
982    using type = array_t<T, ExtraFlags>;
983
984    bool load(handle src, bool convert) {
985        if (!convert && !type::check_(src))
986            return false;
987        value = type::ensure(src);
988        return static_cast<bool>(value);
989    }
990
991    static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
992        return src.inc_ref();
993    }
994    PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
995};
996
997template <typename T>
998struct compare_buffer_info<T, detail::enable_if_t<detail::is_pod_struct<T>::value>> {
999    static bool compare(const buffer_info& b) {
1000        return npy_api::get().PyArray_EquivTypes_(dtype::of<T>().ptr(), dtype(b).ptr());
1001    }
1002};
1003
1004template <typename T, typename = void>
1005struct npy_format_descriptor_name;
1006
1007template <typename T>
1008struct npy_format_descriptor_name<T, enable_if_t<std::is_integral<T>::value>> {
1009    static constexpr auto name = _<std::is_same<T, bool>::value>(
1010        _("bool"), _<std::is_signed<T>::value>("int", "uint") + _<sizeof(T)*8>()
1011    );
1012};
1013
1014template <typename T>
1015struct npy_format_descriptor_name<T, enable_if_t<std::is_floating_point<T>::value>> {
1016    static constexpr auto name = _<std::is_same<T, float>::value || std::is_same<T, double>::value>(
1017        _("float") + _<sizeof(T)*8>(), _("longdouble")
1018    );
1019};
1020
1021template <typename T>
1022struct npy_format_descriptor_name<T, enable_if_t<is_complex<T>::value>> {
1023    static constexpr auto name = _<std::is_same<typename T::value_type, float>::value
1024                                   || std::is_same<typename T::value_type, double>::value>(
1025        _("complex") + _<sizeof(typename T::value_type)*16>(), _("longcomplex")
1026    );
1027};
1028
1029template <typename T>
1030struct npy_format_descriptor<T, enable_if_t<satisfies_any_of<T, std::is_arithmetic, is_complex>::value>>
1031    : npy_format_descriptor_name<T> {
1032private:
1033    // NB: the order here must match the one in common.h
1034    constexpr static const int values[15] = {
1035        npy_api::NPY_BOOL_,
1036        npy_api::NPY_BYTE_,   npy_api::NPY_UBYTE_,   npy_api::NPY_INT16_,    npy_api::NPY_UINT16_,
1037        npy_api::NPY_INT32_,  npy_api::NPY_UINT32_,  npy_api::NPY_INT64_,    npy_api::NPY_UINT64_,
1038        npy_api::NPY_FLOAT_,  npy_api::NPY_DOUBLE_,  npy_api::NPY_LONGDOUBLE_,
1039        npy_api::NPY_CFLOAT_, npy_api::NPY_CDOUBLE_, npy_api::NPY_CLONGDOUBLE_
1040    };
1041
1042public:
1043    static constexpr int value = values[detail::is_fmt_numeric<T>::index];
1044
1045    static pybind11::dtype dtype() {
1046        if (auto ptr = npy_api::get().PyArray_DescrFromType_(value))
1047            return reinterpret_steal<pybind11::dtype>(ptr);
1048        pybind11_fail("Unsupported buffer format!");
1049    }
1050};
1051
1052#define PYBIND11_DECL_CHAR_FMT \
1053    static constexpr auto name = _("S") + _<N>(); \
1054    static pybind11::dtype dtype() { return pybind11::dtype(std::string("S") + std::to_string(N)); }
1055template <size_t N> struct npy_format_descriptor<char[N]> { PYBIND11_DECL_CHAR_FMT };
1056template <size_t N> struct npy_format_descriptor<std::array<char, N>> { PYBIND11_DECL_CHAR_FMT };
1057#undef PYBIND11_DECL_CHAR_FMT
1058
1059template<typename T> struct npy_format_descriptor<T, enable_if_t<array_info<T>::is_array>> {
1060private:
1061    using base_descr = npy_format_descriptor<typename array_info<T>::type>;
1062public:
1063    static_assert(!array_info<T>::is_empty, "Zero-sized arrays are not supported");
1064
1065    static constexpr auto name = _("(") + array_info<T>::extents + _(")") + base_descr::name;
1066    static pybind11::dtype dtype() {
1067        list shape;
1068        array_info<T>::append_extents(shape);
1069        return pybind11::dtype::from_args(pybind11::make_tuple(base_descr::dtype(), shape));
1070    }
1071};
1072
1073template<typename T> struct npy_format_descriptor<T, enable_if_t<std::is_enum<T>::value>> {
1074private:
1075    using base_descr = npy_format_descriptor<typename std::underlying_type<T>::type>;
1076public:
1077    static constexpr auto name = base_descr::name;
1078    static pybind11::dtype dtype() { return base_descr::dtype(); }
1079};
1080
1081struct field_descriptor {
1082    const char *name;
1083    ssize_t offset;
1084    ssize_t size;
1085    std::string format;
1086    dtype descr;
1087};
1088
1089inline PYBIND11_NOINLINE void register_structured_dtype(
1090    any_container<field_descriptor> fields,
1091    const std::type_info& tinfo, ssize_t itemsize,
1092    bool (*direct_converter)(PyObject *, void *&)) {
1093
1094    auto& numpy_internals = get_numpy_internals();
1095    if (numpy_internals.get_type_info(tinfo, false))
1096        pybind11_fail("NumPy: dtype is already registered");
1097
1098    // Use ordered fields because order matters as of NumPy 1.14:
1099    // https://docs.scipy.org/doc/numpy/release.html#multiple-field-indexing-assignment-of-structured-arrays
1100    std::vector<field_descriptor> ordered_fields(std::move(fields));
1101    std::sort(ordered_fields.begin(), ordered_fields.end(),
1102        [](const field_descriptor &a, const field_descriptor &b) { return a.offset < b.offset; });
1103
1104    list names, formats, offsets;
1105    for (auto& field : ordered_fields) {
1106        if (!field.descr)
1107            pybind11_fail(std::string("NumPy: unsupported field dtype: `") +
1108                            field.name + "` @ " + tinfo.name());
1109        names.append(PYBIND11_STR_TYPE(field.name));
1110        formats.append(field.descr);
1111        offsets.append(pybind11::int_(field.offset));
1112    }
1113    auto dtype_ptr = pybind11::dtype(names, formats, offsets, itemsize).release().ptr();
1114
1115    // There is an existing bug in NumPy (as of v1.11): trailing bytes are
1116    // not encoded explicitly into the format string. This will supposedly
1117    // get fixed in v1.12; for further details, see these:
1118    // - https://github.com/numpy/numpy/issues/7797
1119    // - https://github.com/numpy/numpy/pull/7798
1120    // Because of this, we won't use numpy's logic to generate buffer format
1121    // strings and will just do it ourselves.
1122    ssize_t offset = 0;
1123    std::ostringstream oss;
1124    // mark the structure as unaligned with '^', because numpy and C++ don't
1125    // always agree about alignment (particularly for complex), and we're
1126    // explicitly listing all our padding. This depends on none of the fields
1127    // overriding the endianness. Putting the ^ in front of individual fields
1128    // isn't guaranteed to work due to https://github.com/numpy/numpy/issues/9049
1129    oss << "^T{";
1130    for (auto& field : ordered_fields) {
1131        if (field.offset > offset)
1132            oss << (field.offset - offset) << 'x';
1133        oss << field.format << ':' << field.name << ':';
1134        offset = field.offset + field.size;
1135    }
1136    if (itemsize > offset)
1137        oss << (itemsize - offset) << 'x';
1138    oss << '}';
1139    auto format_str = oss.str();
1140
1141    // Sanity check: verify that NumPy properly parses our buffer format string
1142    auto& api = npy_api::get();
1143    auto arr =  array(buffer_info(nullptr, itemsize, format_str, 1));
1144    if (!api.PyArray_EquivTypes_(dtype_ptr, arr.dtype().ptr()))
1145        pybind11_fail("NumPy: invalid buffer descriptor!");
1146
1147    auto tindex = std::type_index(tinfo);
1148    numpy_internals.registered_dtypes[tindex] = { dtype_ptr, format_str };
1149    get_internals().direct_conversions[tindex].push_back(direct_converter);
1150}
1151
1152template <typename T, typename SFINAE> struct npy_format_descriptor {
1153    static_assert(is_pod_struct<T>::value, "Attempt to use a non-POD or unimplemented POD type as a numpy dtype");
1154
1155    static constexpr auto name = make_caster<T>::name;
1156
1157    static pybind11::dtype dtype() {
1158        return reinterpret_borrow<pybind11::dtype>(dtype_ptr());
1159    }
1160
1161    static std::string format() {
1162        static auto format_str = get_numpy_internals().get_type_info<T>(true)->format_str;
1163        return format_str;
1164    }
1165
1166    static void register_dtype(any_container<field_descriptor> fields) {
1167        register_structured_dtype(std::move(fields), typeid(typename std::remove_cv<T>::type),
1168                                  sizeof(T), &direct_converter);
1169    }
1170
1171private:
1172    static PyObject* dtype_ptr() {
1173        static PyObject* ptr = get_numpy_internals().get_type_info<T>(true)->dtype_ptr;
1174        return ptr;
1175    }
1176
1177    static bool direct_converter(PyObject *obj, void*& value) {
1178        auto& api = npy_api::get();
1179        if (!PyObject_TypeCheck(obj, api.PyVoidArrType_Type_))
1180            return false;
1181        if (auto descr = reinterpret_steal<object>(api.PyArray_DescrFromScalar_(obj))) {
1182            if (api.PyArray_EquivTypes_(dtype_ptr(), descr.ptr())) {
1183                value = ((PyVoidScalarObject_Proxy *) obj)->obval;
1184                return true;
1185            }
1186        }
1187        return false;
1188    }
1189};
1190
1191#ifdef __CLION_IDE__ // replace heavy macro with dummy code for the IDE (doesn't affect code)
1192# define PYBIND11_NUMPY_DTYPE(Type, ...) ((void)0)
1193# define PYBIND11_NUMPY_DTYPE_EX(Type, ...) ((void)0)
1194#else
1195
1196#define PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, Name)                                          \
1197    ::pybind11::detail::field_descriptor {                                                    \
1198        Name, offsetof(T, Field), sizeof(decltype(std::declval<T>().Field)),                  \
1199        ::pybind11::format_descriptor<decltype(std::declval<T>().Field)>::format(),           \
1200        ::pybind11::detail::npy_format_descriptor<decltype(std::declval<T>().Field)>::dtype() \
1201    }
1202
1203// Extract name, offset and format descriptor for a struct field
1204#define PYBIND11_FIELD_DESCRIPTOR(T, Field) PYBIND11_FIELD_DESCRIPTOR_EX(T, Field, #Field)
1205
1206// The main idea of this macro is borrowed from https://github.com/swansontec/map-macro
1207// (C) William Swanson, Paul Fultz
1208#define PYBIND11_EVAL0(...) __VA_ARGS__
1209#define PYBIND11_EVAL1(...) PYBIND11_EVAL0 (PYBIND11_EVAL0 (PYBIND11_EVAL0 (__VA_ARGS__)))
1210#define PYBIND11_EVAL2(...) PYBIND11_EVAL1 (PYBIND11_EVAL1 (PYBIND11_EVAL1 (__VA_ARGS__)))
1211#define PYBIND11_EVAL3(...) PYBIND11_EVAL2 (PYBIND11_EVAL2 (PYBIND11_EVAL2 (__VA_ARGS__)))
1212#define PYBIND11_EVAL4(...) PYBIND11_EVAL3 (PYBIND11_EVAL3 (PYBIND11_EVAL3 (__VA_ARGS__)))
1213#define PYBIND11_EVAL(...)  PYBIND11_EVAL4 (PYBIND11_EVAL4 (PYBIND11_EVAL4 (__VA_ARGS__)))
1214#define PYBIND11_MAP_END(...)
1215#define PYBIND11_MAP_OUT
1216#define PYBIND11_MAP_COMMA ,
1217#define PYBIND11_MAP_GET_END() 0, PYBIND11_MAP_END
1218#define PYBIND11_MAP_NEXT0(test, next, ...) next PYBIND11_MAP_OUT
1219#define PYBIND11_MAP_NEXT1(test, next) PYBIND11_MAP_NEXT0 (test, next, 0)
1220#define PYBIND11_MAP_NEXT(test, next)  PYBIND11_MAP_NEXT1 (PYBIND11_MAP_GET_END test, next)
1221#ifdef _MSC_VER // MSVC is not as eager to expand macros, hence this workaround
1222#define PYBIND11_MAP_LIST_NEXT1(test, next) \
1223    PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0))
1224#else
1225#define PYBIND11_MAP_LIST_NEXT1(test, next) \
1226    PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)
1227#endif
1228#define PYBIND11_MAP_LIST_NEXT(test, next) \
1229    PYBIND11_MAP_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next)
1230#define PYBIND11_MAP_LIST0(f, t, x, peek, ...) \
1231    f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST1) (f, t, peek, __VA_ARGS__)
1232#define PYBIND11_MAP_LIST1(f, t, x, peek, ...) \
1233    f(t, x) PYBIND11_MAP_LIST_NEXT (peek, PYBIND11_MAP_LIST0) (f, t, peek, __VA_ARGS__)
1234// PYBIND11_MAP_LIST(f, t, a1, a2, ...) expands to f(t, a1), f(t, a2), ...
1235#define PYBIND11_MAP_LIST(f, t, ...) \
1236    PYBIND11_EVAL (PYBIND11_MAP_LIST1 (f, t, __VA_ARGS__, (), 0))
1237
1238#define PYBIND11_NUMPY_DTYPE(Type, ...) \
1239    ::pybind11::detail::npy_format_descriptor<Type>::register_dtype \
1240        (::std::vector<::pybind11::detail::field_descriptor> \
1241         {PYBIND11_MAP_LIST (PYBIND11_FIELD_DESCRIPTOR, Type, __VA_ARGS__)})
1242
1243#ifdef _MSC_VER
1244#define PYBIND11_MAP2_LIST_NEXT1(test, next) \
1245    PYBIND11_EVAL0 (PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0))
1246#else
1247#define PYBIND11_MAP2_LIST_NEXT1(test, next) \
1248    PYBIND11_MAP_NEXT0 (test, PYBIND11_MAP_COMMA next, 0)
1249#endif
1250#define PYBIND11_MAP2_LIST_NEXT(test, next) \
1251    PYBIND11_MAP2_LIST_NEXT1 (PYBIND11_MAP_GET_END test, next)
1252#define PYBIND11_MAP2_LIST0(f, t, x1, x2, peek, ...) \
1253    f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST1) (f, t, peek, __VA_ARGS__)
1254#define PYBIND11_MAP2_LIST1(f, t, x1, x2, peek, ...) \
1255    f(t, x1, x2) PYBIND11_MAP2_LIST_NEXT (peek, PYBIND11_MAP2_LIST0) (f, t, peek, __VA_ARGS__)
1256// PYBIND11_MAP2_LIST(f, t, a1, a2, ...) expands to f(t, a1, a2), f(t, a3, a4), ...
1257#define PYBIND11_MAP2_LIST(f, t, ...) \
1258    PYBIND11_EVAL (PYBIND11_MAP2_LIST1 (f, t, __VA_ARGS__, (), 0))
1259
1260#define PYBIND11_NUMPY_DTYPE_EX(Type, ...) \
1261    ::pybind11::detail::npy_format_descriptor<Type>::register_dtype \
1262        (::std::vector<::pybind11::detail::field_descriptor> \
1263         {PYBIND11_MAP2_LIST (PYBIND11_FIELD_DESCRIPTOR_EX, Type, __VA_ARGS__)})
1264
1265#endif // __CLION_IDE__
1266
1267template  <class T>
1268using array_iterator = typename std::add_pointer<T>::type;
1269
1270template <class T>
1271array_iterator<T> array_begin(const buffer_info& buffer) {
1272    return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr));
1273}
1274
1275template <class T>
1276array_iterator<T> array_end(const buffer_info& buffer) {
1277    return array_iterator<T>(reinterpret_cast<T*>(buffer.ptr) + buffer.size);
1278}
1279
1280class common_iterator {
1281public:
1282    using container_type = std::vector<ssize_t>;
1283    using value_type = container_type::value_type;
1284    using size_type = container_type::size_type;
1285
1286    common_iterator() : p_ptr(0), m_strides() {}
1287
1288    common_iterator(void* ptr, const container_type& strides, const container_type& shape)
1289        : p_ptr(reinterpret_cast<char*>(ptr)), m_strides(strides.size()) {
1290        m_strides.back() = static_cast<value_type>(strides.back());
1291        for (size_type i = m_strides.size() - 1; i != 0; --i) {
1292            size_type j = i - 1;
1293            value_type s = static_cast<value_type>(shape[i]);
1294            m_strides[j] = strides[j] + m_strides[i] - strides[i] * s;
1295        }
1296    }
1297
1298    void increment(size_type dim) {
1299        p_ptr += m_strides[dim];
1300    }
1301
1302    void* data() const {
1303        return p_ptr;
1304    }
1305
1306private:
1307    char* p_ptr;
1308    container_type m_strides;
1309};
1310
1311template <size_t N> class multi_array_iterator {
1312public:
1313    using container_type = std::vector<ssize_t>;
1314
1315    multi_array_iterator(const std::array<buffer_info, N> &buffers,
1316                         const container_type &shape)
1317        : m_shape(shape.size()), m_index(shape.size(), 0),
1318          m_common_iterator() {
1319
1320        // Manual copy to avoid conversion warning if using std::copy
1321        for (size_t i = 0; i < shape.size(); ++i)
1322            m_shape[i] = shape[i];
1323
1324        container_type strides(shape.size());
1325        for (size_t i = 0; i < N; ++i)
1326            init_common_iterator(buffers[i], shape, m_common_iterator[i], strides);
1327    }
1328
1329    multi_array_iterator& operator++() {
1330        for (size_t j = m_index.size(); j != 0; --j) {
1331            size_t i = j - 1;
1332            if (++m_index[i] != m_shape[i]) {
1333                increment_common_iterator(i);
1334                break;
1335            } else {
1336                m_index[i] = 0;
1337            }
1338        }
1339        return *this;
1340    }
1341
1342    template <size_t K, class T = void> T* data() const {
1343        return reinterpret_cast<T*>(m_common_iterator[K].data());
1344    }
1345
1346private:
1347
1348    using common_iter = common_iterator;
1349
1350    void init_common_iterator(const buffer_info &buffer,
1351                              const container_type &shape,
1352                              common_iter &iterator,
1353                              container_type &strides) {
1354        auto buffer_shape_iter = buffer.shape.rbegin();
1355        auto buffer_strides_iter = buffer.strides.rbegin();
1356        auto shape_iter = shape.rbegin();
1357        auto strides_iter = strides.rbegin();
1358
1359        while (buffer_shape_iter != buffer.shape.rend()) {
1360            if (*shape_iter == *buffer_shape_iter)
1361                *strides_iter = *buffer_strides_iter;
1362            else
1363                *strides_iter = 0;
1364
1365            ++buffer_shape_iter;
1366            ++buffer_strides_iter;
1367            ++shape_iter;
1368            ++strides_iter;
1369        }
1370
1371        std::fill(strides_iter, strides.rend(), 0);
1372        iterator = common_iter(buffer.ptr, strides, shape);
1373    }
1374
1375    void increment_common_iterator(size_t dim) {
1376        for (auto &iter : m_common_iterator)
1377            iter.increment(dim);
1378    }
1379
1380    container_type m_shape;
1381    container_type m_index;
1382    std::array<common_iter, N> m_common_iterator;
1383};
1384
1385enum class broadcast_trivial { non_trivial, c_trivial, f_trivial };
1386
1387// Populates the shape and number of dimensions for the set of buffers.  Returns a broadcast_trivial
1388// enum value indicating whether the broadcast is "trivial"--that is, has each buffer being either a
1389// singleton or a full-size, C-contiguous (`c_trivial`) or Fortran-contiguous (`f_trivial`) storage
1390// buffer; returns `non_trivial` otherwise.
1391template <size_t N>
1392broadcast_trivial broadcast(const std::array<buffer_info, N> &buffers, ssize_t &ndim, std::vector<ssize_t> &shape) {
1393    ndim = std::accumulate(buffers.begin(), buffers.end(), ssize_t(0), [](ssize_t res, const buffer_info &buf) {
1394        return std::max(res, buf.ndim);
1395    });
1396
1397    shape.clear();
1398    shape.resize((size_t) ndim, 1);
1399
1400    // Figure out the output size, and make sure all input arrays conform (i.e. are either size 1 or
1401    // the full size).
1402    for (size_t i = 0; i < N; ++i) {
1403        auto res_iter = shape.rbegin();
1404        auto end = buffers[i].shape.rend();
1405        for (auto shape_iter = buffers[i].shape.rbegin(); shape_iter != end; ++shape_iter, ++res_iter) {
1406            const auto &dim_size_in = *shape_iter;
1407            auto &dim_size_out = *res_iter;
1408
1409            // Each input dimension can either be 1 or `n`, but `n` values must match across buffers
1410            if (dim_size_out == 1)
1411                dim_size_out = dim_size_in;
1412            else if (dim_size_in != 1 && dim_size_in != dim_size_out)
1413                pybind11_fail("pybind11::vectorize: incompatible size/dimension of inputs!");
1414        }
1415    }
1416
1417    bool trivial_broadcast_c = true;
1418    bool trivial_broadcast_f = true;
1419    for (size_t i = 0; i < N && (trivial_broadcast_c || trivial_broadcast_f); ++i) {
1420        if (buffers[i].size == 1)
1421            continue;
1422
1423        // Require the same number of dimensions:
1424        if (buffers[i].ndim != ndim)
1425            return broadcast_trivial::non_trivial;
1426
1427        // Require all dimensions be full-size:
1428        if (!std::equal(buffers[i].shape.cbegin(), buffers[i].shape.cend(), shape.cbegin()))
1429            return broadcast_trivial::non_trivial;
1430
1431        // Check for C contiguity (but only if previous inputs were also C contiguous)
1432        if (trivial_broadcast_c) {
1433            ssize_t expect_stride = buffers[i].itemsize;
1434            auto end = buffers[i].shape.crend();
1435            for (auto shape_iter = buffers[i].shape.crbegin(), stride_iter = buffers[i].strides.crbegin();
1436                    trivial_broadcast_c && shape_iter != end; ++shape_iter, ++stride_iter) {
1437                if (expect_stride == *stride_iter)
1438                    expect_stride *= *shape_iter;
1439                else
1440                    trivial_broadcast_c = false;
1441            }
1442        }
1443
1444        // Check for Fortran contiguity (if previous inputs were also F contiguous)
1445        if (trivial_broadcast_f) {
1446            ssize_t expect_stride = buffers[i].itemsize;
1447            auto end = buffers[i].shape.cend();
1448            for (auto shape_iter = buffers[i].shape.cbegin(), stride_iter = buffers[i].strides.cbegin();
1449                    trivial_broadcast_f && shape_iter != end; ++shape_iter, ++stride_iter) {
1450                if (expect_stride == *stride_iter)
1451                    expect_stride *= *shape_iter;
1452                else
1453                    trivial_broadcast_f = false;
1454            }
1455        }
1456    }
1457
1458    return
1459        trivial_broadcast_c ? broadcast_trivial::c_trivial :
1460        trivial_broadcast_f ? broadcast_trivial::f_trivial :
1461        broadcast_trivial::non_trivial;
1462}
1463
1464template <typename T>
1465struct vectorize_arg {
1466    static_assert(!std::is_rvalue_reference<T>::value, "Functions with rvalue reference arguments cannot be vectorized");
1467    // The wrapped function gets called with this type:
1468    using call_type = remove_reference_t<T>;
1469    // Is this a vectorized argument?
1470    static constexpr bool vectorize =
1471        satisfies_any_of<call_type, std::is_arithmetic, is_complex, std::is_pod>::value &&
1472        satisfies_none_of<call_type, std::is_pointer, std::is_array, is_std_array, std::is_enum>::value &&
1473        (!std::is_reference<T>::value ||
1474         (std::is_lvalue_reference<T>::value && std::is_const<call_type>::value));
1475    // Accept this type: an array for vectorized types, otherwise the type as-is:
1476    using type = conditional_t<vectorize, array_t<remove_cv_t<call_type>, array::forcecast>, T>;
1477};
1478
1479template <typename Func, typename Return, typename... Args>
1480struct vectorize_helper {
1481private:
1482    static constexpr size_t N = sizeof...(Args);
1483    static constexpr size_t NVectorized = constexpr_sum(vectorize_arg<Args>::vectorize...);
1484    static_assert(NVectorized >= 1,
1485            "pybind11::vectorize(...) requires a function with at least one vectorizable argument");
1486
1487public:
1488    template <typename T>
1489    explicit vectorize_helper(T &&f) : f(std::forward<T>(f)) { }
1490
1491    object operator()(typename vectorize_arg<Args>::type... args) {
1492        return run(args...,
1493                   make_index_sequence<N>(),
1494                   select_indices<vectorize_arg<Args>::vectorize...>(),
1495                   make_index_sequence<NVectorized>());
1496    }
1497
1498private:
1499    remove_reference_t<Func> f;
1500
1501    // Internal compiler error in MSVC 19.16.27025.1 (Visual Studio 2017 15.9.4), when compiling with "/permissive-" flag
1502    // when arg_call_types is manually inlined.
1503    using arg_call_types = std::tuple<typename vectorize_arg<Args>::call_type...>;
1504    template <size_t Index> using param_n_t = typename std::tuple_element<Index, arg_call_types>::type;
1505
1506    // Runs a vectorized function given arguments tuple and three index sequences:
1507    //     - Index is the full set of 0 ... (N-1) argument indices;
1508    //     - VIndex is the subset of argument indices with vectorized parameters, letting us access
1509    //       vectorized arguments (anything not in this sequence is passed through)
1510    //     - BIndex is a incremental sequence (beginning at 0) of the same size as VIndex, so that
1511    //       we can store vectorized buffer_infos in an array (argument VIndex has its buffer at
1512    //       index BIndex in the array).
1513    template <size_t... Index, size_t... VIndex, size_t... BIndex> object run(
1514            typename vectorize_arg<Args>::type &...args,
1515            index_sequence<Index...> i_seq, index_sequence<VIndex...> vi_seq, index_sequence<BIndex...> bi_seq) {
1516
1517        // Pointers to values the function was called with; the vectorized ones set here will start
1518        // out as array_t<T> pointers, but they will be changed them to T pointers before we make
1519        // call the wrapped function.  Non-vectorized pointers are left as-is.
1520        std::array<void *, N> params{{ &args... }};
1521
1522        // The array of `buffer_info`s of vectorized arguments:
1523        std::array<buffer_info, NVectorized> buffers{{ reinterpret_cast<array *>(params[VIndex])->request()... }};
1524
1525        /* Determine dimensions parameters of output array */
1526        ssize_t nd = 0;
1527        std::vector<ssize_t> shape(0);
1528        auto trivial = broadcast(buffers, nd, shape);
1529        size_t ndim = (size_t) nd;
1530
1531        size_t size = std::accumulate(shape.begin(), shape.end(), (size_t) 1, std::multiplies<size_t>());
1532
1533        // If all arguments are 0-dimension arrays (i.e. single values) return a plain value (i.e.
1534        // not wrapped in an array).
1535        if (size == 1 && ndim == 0) {
1536            PYBIND11_EXPAND_SIDE_EFFECTS(params[VIndex] = buffers[BIndex].ptr);
1537            return cast(f(*reinterpret_cast<param_n_t<Index> *>(params[Index])...));
1538        }
1539
1540        array_t<Return> result;
1541        if (trivial == broadcast_trivial::f_trivial) result = array_t<Return, array::f_style>(shape);
1542        else result = array_t<Return>(shape);
1543
1544        if (size == 0) return std::move(result);
1545
1546        /* Call the function */
1547        if (trivial == broadcast_trivial::non_trivial)
1548            apply_broadcast(buffers, params, result, i_seq, vi_seq, bi_seq);
1549        else
1550            apply_trivial(buffers, params, result.mutable_data(), size, i_seq, vi_seq, bi_seq);
1551
1552        return std::move(result);
1553    }
1554
1555    template <size_t... Index, size_t... VIndex, size_t... BIndex>
1556    void apply_trivial(std::array<buffer_info, NVectorized> &buffers,
1557                       std::array<void *, N> &params,
1558                       Return *out,
1559                       size_t size,
1560                       index_sequence<Index...>, index_sequence<VIndex...>, index_sequence<BIndex...>) {
1561
1562        // Initialize an array of mutable byte references and sizes with references set to the
1563        // appropriate pointer in `params`; as we iterate, we'll increment each pointer by its size
1564        // (except for singletons, which get an increment of 0).
1565        std::array<std::pair<unsigned char *&, const size_t>, NVectorized> vecparams{{
1566            std::pair<unsigned char *&, const size_t>(
1567                    reinterpret_cast<unsigned char *&>(params[VIndex] = buffers[BIndex].ptr),
1568                    buffers[BIndex].size == 1 ? 0 : sizeof(param_n_t<VIndex>)
1569            )...
1570        }};
1571
1572        for (size_t i = 0; i < size; ++i) {
1573            out[i] = f(*reinterpret_cast<param_n_t<Index> *>(params[Index])...);
1574            for (auto &x : vecparams) x.first += x.second;
1575        }
1576    }
1577
1578    template <size_t... Index, size_t... VIndex, size_t... BIndex>
1579    void apply_broadcast(std::array<buffer_info, NVectorized> &buffers,
1580                         std::array<void *, N> &params,
1581                         array_t<Return> &output_array,
1582                         index_sequence<Index...>, index_sequence<VIndex...>, index_sequence<BIndex...>) {
1583
1584        buffer_info output = output_array.request();
1585        multi_array_iterator<NVectorized> input_iter(buffers, output.shape);
1586
1587        for (array_iterator<Return> iter = array_begin<Return>(output), end = array_end<Return>(output);
1588             iter != end;
1589             ++iter, ++input_iter) {
1590            PYBIND11_EXPAND_SIDE_EFFECTS((
1591                params[VIndex] = input_iter.template data<BIndex>()
1592            ));
1593            *iter = f(*reinterpret_cast<param_n_t<Index> *>(std::get<Index>(params))...);
1594        }
1595    }
1596};
1597
1598template <typename Func, typename Return, typename... Args>
1599vectorize_helper<Func, Return, Args...>
1600vectorize_extractor(const Func &f, Return (*) (Args ...)) {
1601    return detail::vectorize_helper<Func, Return, Args...>(f);
1602}
1603
1604template <typename T, int Flags> struct handle_type_name<array_t<T, Flags>> {
1605    static constexpr auto name = _("numpy.ndarray[") + npy_format_descriptor<T>::name + _("]");
1606};
1607
1608NAMESPACE_END(detail)
1609
1610// Vanilla pointer vectorizer:
1611template <typename Return, typename... Args>
1612detail::vectorize_helper<Return (*)(Args...), Return, Args...>
1613vectorize(Return (*f) (Args ...)) {
1614    return detail::vectorize_helper<Return (*)(Args...), Return, Args...>(f);
1615}
1616
1617// lambda vectorizer:
1618template <typename Func, detail::enable_if_t<detail::is_lambda<Func>::value, int> = 0>
1619auto vectorize(Func &&f) -> decltype(
1620        detail::vectorize_extractor(std::forward<Func>(f), (detail::function_signature_t<Func> *) nullptr)) {
1621    return detail::vectorize_extractor(std::forward<Func>(f), (detail::function_signature_t<Func> *) nullptr);
1622}
1623
1624// Vectorize a class method (non-const):
1625template <typename Return, typename Class, typename... Args,
1626          typename Helper = detail::vectorize_helper<decltype(std::mem_fn(std::declval<Return (Class::*)(Args...)>())), Return, Class *, Args...>>
1627Helper vectorize(Return (Class::*f)(Args...)) {
1628    return Helper(std::mem_fn(f));
1629}
1630
1631// Vectorize a class method (const):
1632template <typename Return, typename Class, typename... Args,
1633          typename Helper = detail::vectorize_helper<decltype(std::mem_fn(std::declval<Return (Class::*)(Args...) const>())), Return, const Class *, Args...>>
1634Helper vectorize(Return (Class::*f)(Args...) const) {
1635    return Helper(std::mem_fn(f));
1636}
1637
1638NAMESPACE_END(PYBIND11_NAMESPACE)
1639
1640#if defined(_MSC_VER)
1641#pragma warning(pop)
1642#endif
1643