cast.h revision 14299:2fbea9df56d2
1/*
2    pybind11/cast.h: Partial template specializations to cast between
3    C++ and Python types
4
5    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
6
7    All rights reserved. Use of this source code is governed by a
8    BSD-style license that can be found in the LICENSE file.
9*/
10
11#pragma once
12
13#include "pytypes.h"
14#include "detail/typeid.h"
15#include "detail/descr.h"
16#include "detail/internals.h"
17#include <array>
18#include <limits>
19#include <tuple>
20#include <type_traits>
21
22#if defined(PYBIND11_CPP17)
23#  if defined(__has_include)
24#    if __has_include(<string_view>)
25#      define PYBIND11_HAS_STRING_VIEW
26#    endif
27#  elif defined(_MSC_VER)
28#    define PYBIND11_HAS_STRING_VIEW
29#  endif
30#endif
31#ifdef PYBIND11_HAS_STRING_VIEW
32#include <string_view>
33#endif
34
35NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
36NAMESPACE_BEGIN(detail)
37
38/// A life support system for temporary objects created by `type_caster::load()`.
39/// Adding a patient will keep it alive up until the enclosing function returns.
40class loader_life_support {
41public:
42    /// A new patient frame is created when a function is entered
43    loader_life_support() {
44        get_internals().loader_patient_stack.push_back(nullptr);
45    }
46
47    /// ... and destroyed after it returns
48    ~loader_life_support() {
49        auto &stack = get_internals().loader_patient_stack;
50        if (stack.empty())
51            pybind11_fail("loader_life_support: internal error");
52
53        auto ptr = stack.back();
54        stack.pop_back();
55        Py_CLEAR(ptr);
56
57        // A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
58        if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2)
59            stack.shrink_to_fit();
60    }
61
62    /// This can only be used inside a pybind11-bound function, either by `argument_loader`
63    /// at argument preparation time or by `py::cast()` at execution time.
64    PYBIND11_NOINLINE static void add_patient(handle h) {
65        auto &stack = get_internals().loader_patient_stack;
66        if (stack.empty())
67            throw cast_error("When called outside a bound function, py::cast() cannot "
68                             "do Python -> C++ conversions which require the creation "
69                             "of temporary values");
70
71        auto &list_ptr = stack.back();
72        if (list_ptr == nullptr) {
73            list_ptr = PyList_New(1);
74            if (!list_ptr)
75                pybind11_fail("loader_life_support: error allocating list");
76            PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
77        } else {
78            auto result = PyList_Append(list_ptr, h.ptr());
79            if (result == -1)
80                pybind11_fail("loader_life_support: error adding patient");
81        }
82    }
83};
84
85// Gets the cache entry for the given type, creating it if necessary.  The return value is the pair
86// returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
87// just created.
88inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);
89
90// Populates a just-created cache entry.
91PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
92    std::vector<PyTypeObject *> check;
93    for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
94        check.push_back((PyTypeObject *) parent.ptr());
95
96    auto const &type_dict = get_internals().registered_types_py;
97    for (size_t i = 0; i < check.size(); i++) {
98        auto type = check[i];
99        // Ignore Python2 old-style class super type:
100        if (!PyType_Check((PyObject *) type)) continue;
101
102        // Check `type` in the current set of registered python types:
103        auto it = type_dict.find(type);
104        if (it != type_dict.end()) {
105            // We found a cache entry for it, so it's either pybind-registered or has pre-computed
106            // pybind bases, but we have to make sure we haven't already seen the type(s) before: we
107            // want to follow Python/virtual C++ rules that there should only be one instance of a
108            // common base.
109            for (auto *tinfo : it->second) {
110                // NB: Could use a second set here, rather than doing a linear search, but since
111                // having a large number of immediate pybind11-registered types seems fairly
112                // unlikely, that probably isn't worthwhile.
113                bool found = false;
114                for (auto *known : bases) {
115                    if (known == tinfo) { found = true; break; }
116                }
117                if (!found) bases.push_back(tinfo);
118            }
119        }
120        else if (type->tp_bases) {
121            // It's some python type, so keep follow its bases classes to look for one or more
122            // registered types
123            if (i + 1 == check.size()) {
124                // When we're at the end, we can pop off the current element to avoid growing
125                // `check` when adding just one base (which is typical--i.e. when there is no
126                // multiple inheritance)
127                check.pop_back();
128                i--;
129            }
130            for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
131                check.push_back((PyTypeObject *) parent.ptr());
132        }
133    }
134}
135
136/**
137 * Extracts vector of type_info pointers of pybind-registered roots of the given Python type.  Will
138 * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
139 * derived class that uses single inheritance.  Will contain as many types as required for a Python
140 * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
141 * pybind-registered classes.  Will be empty if neither the type nor any base classes are
142 * pybind-registered.
143 *
144 * The value is cached for the lifetime of the Python type.
145 */
146inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
147    auto ins = all_type_info_get_cache(type);
148    if (ins.second)
149        // New cache entry: populate it
150        all_type_info_populate(type, ins.first->second);
151
152    return ins.first->second;
153}
154
155/**
156 * Gets a single pybind11 type info for a python type.  Returns nullptr if neither the type nor any
157 * ancestors are pybind11-registered.  Throws an exception if there are multiple bases--use
158 * `all_type_info` instead if you want to support multiple bases.
159 */
160PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
161    auto &bases = all_type_info(type);
162    if (bases.size() == 0)
163        return nullptr;
164    if (bases.size() > 1)
165        pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
166    return bases.front();
167}
168
169inline detail::type_info *get_local_type_info(const std::type_index &tp) {
170    auto &locals = registered_local_types_cpp();
171    auto it = locals.find(tp);
172    if (it != locals.end())
173        return it->second;
174    return nullptr;
175}
176
177inline detail::type_info *get_global_type_info(const std::type_index &tp) {
178    auto &types = get_internals().registered_types_cpp;
179    auto it = types.find(tp);
180    if (it != types.end())
181        return it->second;
182    return nullptr;
183}
184
185/// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr.
186PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp,
187                                                          bool throw_if_missing = false) {
188    if (auto ltype = get_local_type_info(tp))
189        return ltype;
190    if (auto gtype = get_global_type_info(tp))
191        return gtype;
192
193    if (throw_if_missing) {
194        std::string tname = tp.name();
195        detail::clean_type_id(tname);
196        pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
197    }
198    return nullptr;
199}
200
201PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
202    detail::type_info *type_info = get_type_info(tp, throw_if_missing);
203    return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
204}
205
206struct value_and_holder {
207    instance *inst = nullptr;
208    size_t index = 0u;
209    const detail::type_info *type = nullptr;
210    void **vh = nullptr;
211
212    // Main constructor for a found value/holder:
213    value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
214        inst{i}, index{index}, type{type},
215        vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
216    {}
217
218    // Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
219    value_and_holder() {}
220
221    // Used for past-the-end iterator
222    value_and_holder(size_t index) : index{index} {}
223
224    template <typename V = void> V *&value_ptr() const {
225        return reinterpret_cast<V *&>(vh[0]);
226    }
227    // True if this `value_and_holder` has a non-null value pointer
228    explicit operator bool() const { return value_ptr(); }
229
230    template <typename H> H &holder() const {
231        return reinterpret_cast<H &>(vh[1]);
232    }
233    bool holder_constructed() const {
234        return inst->simple_layout
235            ? inst->simple_holder_constructed
236            : inst->nonsimple.status[index] & instance::status_holder_constructed;
237    }
238    void set_holder_constructed(bool v = true) {
239        if (inst->simple_layout)
240            inst->simple_holder_constructed = v;
241        else if (v)
242            inst->nonsimple.status[index] |= instance::status_holder_constructed;
243        else
244            inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed;
245    }
246    bool instance_registered() const {
247        return inst->simple_layout
248            ? inst->simple_instance_registered
249            : inst->nonsimple.status[index] & instance::status_instance_registered;
250    }
251    void set_instance_registered(bool v = true) {
252        if (inst->simple_layout)
253            inst->simple_instance_registered = v;
254        else if (v)
255            inst->nonsimple.status[index] |= instance::status_instance_registered;
256        else
257            inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered;
258    }
259};
260
261// Container for accessing and iterating over an instance's values/holders
262struct values_and_holders {
263private:
264    instance *inst;
265    using type_vec = std::vector<detail::type_info *>;
266    const type_vec &tinfo;
267
268public:
269    values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
270
271    struct iterator {
272    private:
273        instance *inst = nullptr;
274        const type_vec *types = nullptr;
275        value_and_holder curr;
276        friend struct values_and_holders;
277        iterator(instance *inst, const type_vec *tinfo)
278            : inst{inst}, types{tinfo},
279            curr(inst /* instance */,
280                 types->empty() ? nullptr : (*types)[0] /* type info */,
281                 0, /* vpos: (non-simple types only): the first vptr comes first */
282                 0 /* index */)
283        {}
284        // Past-the-end iterator:
285        iterator(size_t end) : curr(end) {}
286    public:
287        bool operator==(const iterator &other) { return curr.index == other.curr.index; }
288        bool operator!=(const iterator &other) { return curr.index != other.curr.index; }
289        iterator &operator++() {
290            if (!inst->simple_layout)
291                curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
292            ++curr.index;
293            curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
294            return *this;
295        }
296        value_and_holder &operator*() { return curr; }
297        value_and_holder *operator->() { return &curr; }
298    };
299
300    iterator begin() { return iterator(inst, &tinfo); }
301    iterator end() { return iterator(tinfo.size()); }
302
303    iterator find(const type_info *find_type) {
304        auto it = begin(), endit = end();
305        while (it != endit && it->type != find_type) ++it;
306        return it;
307    }
308
309    size_t size() { return tinfo.size(); }
310};
311
312/**
313 * Extracts C++ value and holder pointer references from an instance (which may contain multiple
314 * values/holders for python-side multiple inheritance) that match the given type.  Throws an error
315 * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance.  If
316 * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
317 * regardless of type (and the resulting .type will be nullptr).
318 *
319 * The returned object should be short-lived: in particular, it must not outlive the called-upon
320 * instance.
321 */
322PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) {
323    // Optimize common case:
324    if (!find_type || Py_TYPE(this) == find_type->type)
325        return value_and_holder(this, find_type, 0, 0);
326
327    detail::values_and_holders vhs(this);
328    auto it = vhs.find(find_type);
329    if (it != vhs.end())
330        return *it;
331
332    if (!throw_if_missing)
333        return value_and_holder();
334
335#if defined(NDEBUG)
336    pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
337            "type is not a pybind11 base of the given instance "
338            "(compile in debug mode for type details)");
339#else
340    pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
341            std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" +
342            std::string(Py_TYPE(this)->tp_name) + "' instance");
343#endif
344}
345
346PYBIND11_NOINLINE inline void instance::allocate_layout() {
347    auto &tinfo = all_type_info(Py_TYPE(this));
348
349    const size_t n_types = tinfo.size();
350
351    if (n_types == 0)
352        pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");
353
354    simple_layout =
355        n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
356
357    // Simple path: no python-side multiple inheritance, and a small-enough holder
358    if (simple_layout) {
359        simple_value_holder[0] = nullptr;
360        simple_holder_constructed = false;
361        simple_instance_registered = false;
362    }
363    else { // multiple base types or a too-large holder
364        // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
365        // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
366        // values that tracks whether each associated holder has been initialized.  Each [block] is
367        // padded, if necessary, to an integer multiple of sizeof(void *).
368        size_t space = 0;
369        for (auto t : tinfo) {
370            space += 1; // value pointer
371            space += t->holder_size_in_ptrs; // holder instance
372        }
373        size_t flags_at = space;
374        space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)
375
376        // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
377        // in particular, need to be 0).  Use Python's memory allocation functions: in Python 3.6
378        // they default to using pymalloc, which is designed to be efficient for small allocations
379        // like the one we're doing here; in earlier versions (and for larger allocations) they are
380        // just wrappers around malloc.
381#if PY_VERSION_HEX >= 0x03050000
382        nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
383        if (!nonsimple.values_and_holders) throw std::bad_alloc();
384#else
385        nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
386        if (!nonsimple.values_and_holders) throw std::bad_alloc();
387        std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
388#endif
389        nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
390    }
391    owned = true;
392}
393
394PYBIND11_NOINLINE inline void instance::deallocate_layout() {
395    if (!simple_layout)
396        PyMem_Free(nonsimple.values_and_holders);
397}
398
399PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
400    handle type = detail::get_type_handle(tp, false);
401    if (!type)
402        return false;
403    return isinstance(obj, type);
404}
405
406PYBIND11_NOINLINE inline std::string error_string() {
407    if (!PyErr_Occurred()) {
408        PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
409        return "Unknown internal error occurred";
410    }
411
412    error_scope scope; // Preserve error state
413
414    std::string errorString;
415    if (scope.type) {
416        errorString += handle(scope.type).attr("__name__").cast<std::string>();
417        errorString += ": ";
418    }
419    if (scope.value)
420        errorString += (std::string) str(scope.value);
421
422    PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
423
424#if PY_MAJOR_VERSION >= 3
425    if (scope.trace != nullptr)
426        PyException_SetTraceback(scope.value, scope.trace);
427#endif
428
429#if !defined(PYPY_VERSION)
430    if (scope.trace) {
431        PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
432
433        /* Get the deepest trace possible */
434        while (trace->tb_next)
435            trace = trace->tb_next;
436
437        PyFrameObject *frame = trace->tb_frame;
438        errorString += "\n\nAt:\n";
439        while (frame) {
440            int lineno = PyFrame_GetLineNumber(frame);
441            errorString +=
442                "  " + handle(frame->f_code->co_filename).cast<std::string>() +
443                "(" + std::to_string(lineno) + "): " +
444                handle(frame->f_code->co_name).cast<std::string>() + "\n";
445            frame = frame->f_back;
446        }
447    }
448#endif
449
450    return errorString;
451}
452
453PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
454    auto &instances = get_internals().registered_instances;
455    auto range = instances.equal_range(ptr);
456    for (auto it = range.first; it != range.second; ++it) {
457        for (auto vh : values_and_holders(it->second)) {
458            if (vh.type == type)
459                return handle((PyObject *) it->second);
460        }
461    }
462    return handle();
463}
464
465inline PyThreadState *get_thread_state_unchecked() {
466#if defined(PYPY_VERSION)
467    return PyThreadState_GET();
468#elif PY_VERSION_HEX < 0x03000000
469    return _PyThreadState_Current;
470#elif PY_VERSION_HEX < 0x03050000
471    return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
472#elif PY_VERSION_HEX < 0x03050200
473    return (PyThreadState*) _PyThreadState_Current.value;
474#else
475    return _PyThreadState_UncheckedGet();
476#endif
477}
478
479// Forward declarations
480inline void keep_alive_impl(handle nurse, handle patient);
481inline PyObject *make_new_instance(PyTypeObject *type);
482
483class type_caster_generic {
484public:
485    PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
486        : typeinfo(get_type_info(type_info)), cpptype(&type_info) { }
487
488    type_caster_generic(const type_info *typeinfo)
489        : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { }
490
491    bool load(handle src, bool convert) {
492        return load_impl<type_caster_generic>(src, convert);
493    }
494
495    PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
496                                         const detail::type_info *tinfo,
497                                         void *(*copy_constructor)(const void *),
498                                         void *(*move_constructor)(const void *),
499                                         const void *existing_holder = nullptr) {
500        if (!tinfo) // no type info: error will be set already
501            return handle();
502
503        void *src = const_cast<void *>(_src);
504        if (src == nullptr)
505            return none().release();
506
507        auto it_instances = get_internals().registered_instances.equal_range(src);
508        for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
509            for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
510                if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype))
511                    return handle((PyObject *) it_i->second).inc_ref();
512            }
513        }
514
515        auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
516        auto wrapper = reinterpret_cast<instance *>(inst.ptr());
517        wrapper->owned = false;
518        void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
519
520        switch (policy) {
521            case return_value_policy::automatic:
522            case return_value_policy::take_ownership:
523                valueptr = src;
524                wrapper->owned = true;
525                break;
526
527            case return_value_policy::automatic_reference:
528            case return_value_policy::reference:
529                valueptr = src;
530                wrapper->owned = false;
531                break;
532
533            case return_value_policy::copy:
534                if (copy_constructor)
535                    valueptr = copy_constructor(src);
536                else
537                    throw cast_error("return_value_policy = copy, but the "
538                                     "object is non-copyable!");
539                wrapper->owned = true;
540                break;
541
542            case return_value_policy::move:
543                if (move_constructor)
544                    valueptr = move_constructor(src);
545                else if (copy_constructor)
546                    valueptr = copy_constructor(src);
547                else
548                    throw cast_error("return_value_policy = move, but the "
549                                     "object is neither movable nor copyable!");
550                wrapper->owned = true;
551                break;
552
553            case return_value_policy::reference_internal:
554                valueptr = src;
555                wrapper->owned = false;
556                keep_alive_impl(inst, parent);
557                break;
558
559            default:
560                throw cast_error("unhandled return_value_policy: should not happen!");
561        }
562
563        tinfo->init_instance(wrapper, existing_holder);
564
565        return inst.release();
566    }
567
568    // Base methods for generic caster; there are overridden in copyable_holder_caster
569    void load_value(value_and_holder &&v_h) {
570        auto *&vptr = v_h.value_ptr();
571        // Lazy allocation for unallocated values:
572        if (vptr == nullptr) {
573            auto *type = v_h.type ? v_h.type : typeinfo;
574            if (type->operator_new) {
575                vptr = type->operator_new(type->type_size);
576            } else {
577                #if defined(PYBIND11_CPP17)
578                    if (type->type_align > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
579                        vptr = ::operator new(type->type_size,
580                                              (std::align_val_t) type->type_align);
581                    else
582                #endif
583                vptr = ::operator new(type->type_size);
584            }
585        }
586        value = vptr;
587    }
588    bool try_implicit_casts(handle src, bool convert) {
589        for (auto &cast : typeinfo->implicit_casts) {
590            type_caster_generic sub_caster(*cast.first);
591            if (sub_caster.load(src, convert)) {
592                value = cast.second(sub_caster.value);
593                return true;
594            }
595        }
596        return false;
597    }
598    bool try_direct_conversions(handle src) {
599        for (auto &converter : *typeinfo->direct_conversions) {
600            if (converter(src.ptr(), value))
601                return true;
602        }
603        return false;
604    }
605    void check_holder_compat() {}
606
607    PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
608        auto caster = type_caster_generic(ti);
609        if (caster.load(src, false))
610            return caster.value;
611        return nullptr;
612    }
613
614    /// Try to load with foreign typeinfo, if available. Used when there is no
615    /// native typeinfo, or when the native one wasn't able to produce a value.
616    PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
617        constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
618        const auto pytype = src.get_type();
619        if (!hasattr(pytype, local_key))
620            return false;
621
622        type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
623        // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type
624        if (foreign_typeinfo->module_local_load == &local_load
625            || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype)))
626            return false;
627
628        if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
629            value = result;
630            return true;
631        }
632        return false;
633    }
634
635    // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
636    // bits of code between here and copyable_holder_caster where the two classes need different
637    // logic (without having to resort to virtual inheritance).
638    template <typename ThisT>
639    PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
640        if (!src) return false;
641        if (!typeinfo) return try_load_foreign_module_local(src);
642        if (src.is_none()) {
643            // Defer accepting None to other overloads (if we aren't in convert mode):
644            if (!convert) return false;
645            value = nullptr;
646            return true;
647        }
648
649        auto &this_ = static_cast<ThisT &>(*this);
650        this_.check_holder_compat();
651
652        PyTypeObject *srctype = Py_TYPE(src.ptr());
653
654        // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
655        // the instance's value pointer to the target type:
656        if (srctype == typeinfo->type) {
657            this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
658            return true;
659        }
660        // Case 2: We have a derived class
661        else if (PyType_IsSubtype(srctype, typeinfo->type)) {
662            auto &bases = all_type_info(srctype);
663            bool no_cpp_mi = typeinfo->simple_type;
664
665            // Case 2a: the python type is a Python-inherited derived class that inherits from just
666            // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
667            // the right type and we can use reinterpret_cast.
668            // (This is essentially the same as case 2b, but because not using multiple inheritance
669            // is extremely common, we handle it specially to avoid the loop iterator and type
670            // pointer lookup overhead)
671            if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
672                this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
673                return true;
674            }
675            // Case 2b: the python type inherits from multiple C++ bases.  Check the bases to see if
676            // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
677            // can safely reinterpret_cast to the relevant pointer.
678            else if (bases.size() > 1) {
679                for (auto base : bases) {
680                    if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
681                        this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
682                        return true;
683                    }
684                }
685            }
686
687            // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
688            // in the registered bases, above, so try implicit casting (needed for proper C++ casting
689            // when MI is involved).
690            if (this_.try_implicit_casts(src, convert))
691                return true;
692        }
693
694        // Perform an implicit conversion
695        if (convert) {
696            for (auto &converter : typeinfo->implicit_conversions) {
697                auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
698                if (load_impl<ThisT>(temp, false)) {
699                    loader_life_support::add_patient(temp);
700                    return true;
701                }
702            }
703            if (this_.try_direct_conversions(src))
704                return true;
705        }
706
707        // Failed to match local typeinfo. Try again with global.
708        if (typeinfo->module_local) {
709            if (auto gtype = get_global_type_info(*typeinfo->cpptype)) {
710                typeinfo = gtype;
711                return load(src, false);
712            }
713        }
714
715        // Global typeinfo has precedence over foreign module_local
716        return try_load_foreign_module_local(src);
717    }
718
719
720    // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
721    // isn't needed or can't be used.  If the type is unknown, sets the error and returns a pair
722    // with .second = nullptr.  (p.first = nullptr is not an error: it becomes None).
723    PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
724            const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
725        if (auto *tpi = get_type_info(cast_type))
726            return {src, const_cast<const type_info *>(tpi)};
727
728        // Not found, set error:
729        std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
730        detail::clean_type_id(tname);
731        std::string msg = "Unregistered type : " + tname;
732        PyErr_SetString(PyExc_TypeError, msg.c_str());
733        return {nullptr, nullptr};
734    }
735
736    const type_info *typeinfo = nullptr;
737    const std::type_info *cpptype = nullptr;
738    void *value = nullptr;
739};
740
741/**
742 * Determine suitable casting operator for pointer-or-lvalue-casting type casters.  The type caster
743 * needs to provide `operator T*()` and `operator T&()` operators.
744 *
745 * If the type supports moving the value away via an `operator T&&() &&` method, it should use
746 * `movable_cast_op_type` instead.
747 */
748template <typename T>
749using cast_op_type =
750    conditional_t<std::is_pointer<remove_reference_t<T>>::value,
751        typename std::add_pointer<intrinsic_t<T>>::type,
752        typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
753
754/**
755 * Determine suitable casting operator for a type caster with a movable value.  Such a type caster
756 * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`.  The latter will be
757 * called in appropriate contexts where the value can be moved rather than copied.
758 *
759 * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
760 */
761template <typename T>
762using movable_cast_op_type =
763    conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
764        typename std::add_pointer<intrinsic_t<T>>::type,
765    conditional_t<std::is_rvalue_reference<T>::value,
766        typename std::add_rvalue_reference<intrinsic_t<T>>::type,
767        typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
768
769// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
770// T is non-copyable, but code containing such a copy constructor fails to actually compile.
771template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
772
773// Specialization for types that appear to be copy constructible but also look like stl containers
774// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
775// so, copy constructability depends on whether the value_type is copy constructible.
776template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
777        std::is_copy_constructible<Container>,
778        std::is_same<typename Container::value_type &, typename Container::reference>,
779        // Avoid infinite recursion
780        negation<std::is_same<Container, typename Container::value_type>>
781    >::value>> : is_copy_constructible<typename Container::value_type> {};
782
783#if !defined(PYBIND11_CPP17)
784// Likewise for std::pair before C++17 (which mandates that the copy constructor not exist when the
785// two types aren't themselves copy constructible).
786template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
787    : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
788#endif
789
790NAMESPACE_END(detail)
791
792// polymorphic_type_hook<itype>::get(src, tinfo) determines whether the object pointed
793// to by `src` actually is an instance of some class derived from `itype`.
794// If so, it sets `tinfo` to point to the std::type_info representing that derived
795// type, and returns a pointer to the start of the most-derived object of that type
796// (in which `src` is a subobject; this will be the same address as `src` in most
797// single inheritance cases). If not, or if `src` is nullptr, it simply returns `src`
798// and leaves `tinfo` at its default value of nullptr.
799//
800// The default polymorphic_type_hook just returns src. A specialization for polymorphic
801// types determines the runtime type of the passed object and adjusts the this-pointer
802// appropriately via dynamic_cast<void*>. This is what enables a C++ Animal* to appear
803// to Python as a Dog (if Dog inherits from Animal, Animal is polymorphic, Dog is
804// registered with pybind11, and this Animal is in fact a Dog).
805//
806// You may specialize polymorphic_type_hook yourself for types that want to appear
807// polymorphic to Python but do not use C++ RTTI. (This is a not uncommon pattern
808// in performance-sensitive applications, used most notably in LLVM.)
809template <typename itype, typename SFINAE = void>
810struct polymorphic_type_hook
811{
812    static const void *get(const itype *src, const std::type_info*&) { return src; }
813};
814template <typename itype>
815struct polymorphic_type_hook<itype, detail::enable_if_t<std::is_polymorphic<itype>::value>>
816{
817    static const void *get(const itype *src, const std::type_info*& type) {
818        type = src ? &typeid(*src) : nullptr;
819        return dynamic_cast<const void*>(src);
820    }
821};
822
823NAMESPACE_BEGIN(detail)
824
825/// Generic type caster for objects stored on the heap
826template <typename type> class type_caster_base : public type_caster_generic {
827    using itype = intrinsic_t<type>;
828
829public:
830    static constexpr auto name = _<type>();
831
832    type_caster_base() : type_caster_base(typeid(type)) { }
833    explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
834
835    static handle cast(const itype &src, return_value_policy policy, handle parent) {
836        if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
837            policy = return_value_policy::copy;
838        return cast(&src, policy, parent);
839    }
840
841    static handle cast(itype &&src, return_value_policy, handle parent) {
842        return cast(&src, return_value_policy::move, parent);
843    }
844
845    // Returns a (pointer, type_info) pair taking care of necessary type lookup for a
846    // polymorphic type (using RTTI by default, but can be overridden by specializing
847    // polymorphic_type_hook). If the instance isn't derived, returns the base version.
848    static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
849        auto &cast_type = typeid(itype);
850        const std::type_info *instance_type = nullptr;
851        const void *vsrc = polymorphic_type_hook<itype>::get(src, instance_type);
852        if (instance_type && !same_type(cast_type, *instance_type)) {
853            // This is a base pointer to a derived type. If the derived type is registered
854            // with pybind11, we want to make the full derived object available.
855            // In the typical case where itype is polymorphic, we get the correct
856            // derived pointer (which may be != base pointer) by a dynamic_cast to
857            // most derived type. If itype is not polymorphic, we won't get here
858            // except via a user-provided specialization of polymorphic_type_hook,
859            // and the user has promised that no this-pointer adjustment is
860            // required in that case, so it's OK to use static_cast.
861            if (const auto *tpi = get_type_info(*instance_type))
862                return {vsrc, tpi};
863        }
864        // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
865        // don't do a cast
866        return type_caster_generic::src_and_type(src, cast_type, instance_type);
867    }
868
869    static handle cast(const itype *src, return_value_policy policy, handle parent) {
870        auto st = src_and_type(src);
871        return type_caster_generic::cast(
872            st.first, policy, parent, st.second,
873            make_copy_constructor(src), make_move_constructor(src));
874    }
875
876    static handle cast_holder(const itype *src, const void *holder) {
877        auto st = src_and_type(src);
878        return type_caster_generic::cast(
879            st.first, return_value_policy::take_ownership, {}, st.second,
880            nullptr, nullptr, holder);
881    }
882
883    template <typename T> using cast_op_type = detail::cast_op_type<T>;
884
885    operator itype*() { return (type *) value; }
886    operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
887
888protected:
889    using Constructor = void *(*)(const void *);
890
891    /* Only enabled when the types are {copy,move}-constructible *and* when the type
892       does not have a private operator new implementation. */
893    template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
894    static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
895        return [](const void *arg) -> void * {
896            return new T(*reinterpret_cast<const T *>(arg));
897        };
898    }
899
900    template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
901    static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
902        return [](const void *arg) -> void * {
903            return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
904        };
905    }
906
907    static Constructor make_copy_constructor(...) { return nullptr; }
908    static Constructor make_move_constructor(...) { return nullptr; }
909};
910
911template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
912template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
913
914// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
915template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
916    return caster.operator typename make_caster<T>::template cast_op_type<T>();
917}
918template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
919cast_op(make_caster<T> &&caster) {
920    return std::move(caster).operator
921        typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
922}
923
924template <typename type> class type_caster<std::reference_wrapper<type>> {
925private:
926    using caster_t = make_caster<type>;
927    caster_t subcaster;
928    using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
929    static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
930            "std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
931public:
932    bool load(handle src, bool convert) { return subcaster.load(src, convert); }
933    static constexpr auto name = caster_t::name;
934    static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
935        // It is definitely wrong to take ownership of this pointer, so mask that rvp
936        if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
937            policy = return_value_policy::automatic_reference;
938        return caster_t::cast(&src.get(), policy, parent);
939    }
940    template <typename T> using cast_op_type = std::reference_wrapper<type>;
941    operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
942};
943
944#define PYBIND11_TYPE_CASTER(type, py_name) \
945    protected: \
946        type value; \
947    public: \
948        static constexpr auto name = py_name; \
949        template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
950        static handle cast(T_ *src, return_value_policy policy, handle parent) { \
951            if (!src) return none().release(); \
952            if (policy == return_value_policy::take_ownership) { \
953                auto h = cast(std::move(*src), policy, parent); delete src; return h; \
954            } else { \
955                return cast(*src, policy, parent); \
956            } \
957        } \
958        operator type*() { return &value; } \
959        operator type&() { return value; } \
960        operator type&&() && { return std::move(value); } \
961        template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>
962
963
964template <typename CharT> using is_std_char_type = any_of<
965    std::is_same<CharT, char>, /* std::string */
966    std::is_same<CharT, char16_t>, /* std::u16string */
967    std::is_same<CharT, char32_t>, /* std::u32string */
968    std::is_same<CharT, wchar_t> /* std::wstring */
969>;
970
971template <typename T>
972struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
973    using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
974    using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
975    using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
976public:
977
978    bool load(handle src, bool convert) {
979        py_type py_value;
980
981        if (!src)
982            return false;
983
984        if (std::is_floating_point<T>::value) {
985            if (convert || PyFloat_Check(src.ptr()))
986                py_value = (py_type) PyFloat_AsDouble(src.ptr());
987            else
988                return false;
989        } else if (PyFloat_Check(src.ptr())) {
990            return false;
991        } else if (std::is_unsigned<py_type>::value) {
992            py_value = as_unsigned<py_type>(src.ptr());
993        } else { // signed integer:
994            py_value = sizeof(T) <= sizeof(long)
995                ? (py_type) PyLong_AsLong(src.ptr())
996                : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
997        }
998
999        bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
1000
1001        // Protect std::numeric_limits::min/max with parentheses
1002        if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
1003                       (py_value < (py_type) (std::numeric_limits<T>::min)() ||
1004                        py_value > (py_type) (std::numeric_limits<T>::max)()))) {
1005            bool type_error = py_err && PyErr_ExceptionMatches(
1006#if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
1007                PyExc_SystemError
1008#else
1009                PyExc_TypeError
1010#endif
1011            );
1012            PyErr_Clear();
1013            if (type_error && convert && PyNumber_Check(src.ptr())) {
1014                auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
1015                                                     ? PyNumber_Float(src.ptr())
1016                                                     : PyNumber_Long(src.ptr()));
1017                PyErr_Clear();
1018                return load(tmp, false);
1019            }
1020            return false;
1021        }
1022
1023        value = (T) py_value;
1024        return true;
1025    }
1026
1027    template<typename U = T>
1028    static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
1029    cast(U src, return_value_policy /* policy */, handle /* parent */) {
1030        return PyFloat_FromDouble((double) src);
1031    }
1032
1033    template<typename U = T>
1034    static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) <= sizeof(long)), handle>::type
1035    cast(U src, return_value_policy /* policy */, handle /* parent */) {
1036        return PYBIND11_LONG_FROM_SIGNED((long) src);
1037    }
1038
1039    template<typename U = T>
1040    static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type
1041    cast(U src, return_value_policy /* policy */, handle /* parent */) {
1042        return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
1043    }
1044
1045    template<typename U = T>
1046    static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) > sizeof(long)), handle>::type
1047    cast(U src, return_value_policy /* policy */, handle /* parent */) {
1048        return PyLong_FromLongLong((long long) src);
1049    }
1050
1051    template<typename U = T>
1052    static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) > sizeof(unsigned long)), handle>::type
1053    cast(U src, return_value_policy /* policy */, handle /* parent */) {
1054        return PyLong_FromUnsignedLongLong((unsigned long long) src);
1055    }
1056
1057    PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
1058};
1059
1060template<typename T> struct void_caster {
1061public:
1062    bool load(handle src, bool) {
1063        if (src && src.is_none())
1064            return true;
1065        return false;
1066    }
1067    static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
1068        return none().inc_ref();
1069    }
1070    PYBIND11_TYPE_CASTER(T, _("None"));
1071};
1072
1073template <> class type_caster<void_type> : public void_caster<void_type> {};
1074
1075template <> class type_caster<void> : public type_caster<void_type> {
1076public:
1077    using type_caster<void_type>::cast;
1078
1079    bool load(handle h, bool) {
1080        if (!h) {
1081            return false;
1082        } else if (h.is_none()) {
1083            value = nullptr;
1084            return true;
1085        }
1086
1087        /* Check if this is a capsule */
1088        if (isinstance<capsule>(h)) {
1089            value = reinterpret_borrow<capsule>(h);
1090            return true;
1091        }
1092
1093        /* Check if this is a C++ type */
1094        auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr());
1095        if (bases.size() == 1) { // Only allowing loading from a single-value type
1096            value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
1097            return true;
1098        }
1099
1100        /* Fail */
1101        return false;
1102    }
1103
1104    static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
1105        if (ptr)
1106            return capsule(ptr).release();
1107        else
1108            return none().inc_ref();
1109    }
1110
1111    template <typename T> using cast_op_type = void*&;
1112    operator void *&() { return value; }
1113    static constexpr auto name = _("capsule");
1114private:
1115    void *value = nullptr;
1116};
1117
1118template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
1119
1120template <> class type_caster<bool> {
1121public:
1122    bool load(handle src, bool convert) {
1123        if (!src) return false;
1124        else if (src.ptr() == Py_True) { value = true; return true; }
1125        else if (src.ptr() == Py_False) { value = false; return true; }
1126        else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
1127            // (allow non-implicit conversion for numpy booleans)
1128
1129            Py_ssize_t res = -1;
1130            if (src.is_none()) {
1131                res = 0;  // None is implicitly converted to False
1132            }
1133            #if defined(PYPY_VERSION)
1134            // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
1135            else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
1136                res = PyObject_IsTrue(src.ptr());
1137            }
1138            #else
1139            // Alternate approach for CPython: this does the same as the above, but optimized
1140            // using the CPython API so as to avoid an unneeded attribute lookup.
1141            else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
1142                if (PYBIND11_NB_BOOL(tp_as_number)) {
1143                    res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
1144                }
1145            }
1146            #endif
1147            if (res == 0 || res == 1) {
1148                value = (bool) res;
1149                return true;
1150            }
1151        }
1152        return false;
1153    }
1154    static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
1155        return handle(src ? Py_True : Py_False).inc_ref();
1156    }
1157    PYBIND11_TYPE_CASTER(bool, _("bool"));
1158};
1159
1160// Helper class for UTF-{8,16,32} C++ stl strings:
1161template <typename StringType, bool IsView = false> struct string_caster {
1162    using CharT = typename StringType::value_type;
1163
1164    // Simplify life by being able to assume standard char sizes (the standard only guarantees
1165    // minimums, but Python requires exact sizes)
1166    static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
1167    static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
1168    static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
1169    // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
1170    static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
1171            "Unsupported wchar_t size != 2/4");
1172    static constexpr size_t UTF_N = 8 * sizeof(CharT);
1173
1174    bool load(handle src, bool) {
1175#if PY_MAJOR_VERSION < 3
1176        object temp;
1177#endif
1178        handle load_src = src;
1179        if (!src) {
1180            return false;
1181        } else if (!PyUnicode_Check(load_src.ptr())) {
1182#if PY_MAJOR_VERSION >= 3
1183            return load_bytes(load_src);
1184#else
1185            if (sizeof(CharT) == 1) {
1186                return load_bytes(load_src);
1187            }
1188
1189            // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
1190            if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
1191                return false;
1192
1193            temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
1194            if (!temp) { PyErr_Clear(); return false; }
1195            load_src = temp;
1196#endif
1197        }
1198
1199        object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
1200            load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
1201        if (!utfNbytes) { PyErr_Clear(); return false; }
1202
1203        const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
1204        size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
1205        if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
1206        value = StringType(buffer, length);
1207
1208        // If we're loading a string_view we need to keep the encoded Python object alive:
1209        if (IsView)
1210            loader_life_support::add_patient(utfNbytes);
1211
1212        return true;
1213    }
1214
1215    static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
1216        const char *buffer = reinterpret_cast<const char *>(src.data());
1217        ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
1218        handle s = decode_utfN(buffer, nbytes);
1219        if (!s) throw error_already_set();
1220        return s;
1221    }
1222
1223    PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
1224
1225private:
1226    static handle decode_utfN(const char *buffer, ssize_t nbytes) {
1227#if !defined(PYPY_VERSION)
1228        return
1229            UTF_N == 8  ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
1230            UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
1231                          PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
1232#else
1233        // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
1234        // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
1235        // non-const char * arguments, which is also a nuisance, so bypass the whole thing by just
1236        // passing the encoding as a string value, which works properly:
1237        return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
1238#endif
1239    }
1240
1241    // When loading into a std::string or char*, accept a bytes object as-is (i.e.
1242    // without any encoding/decoding attempt).  For other C++ char sizes this is a no-op.
1243    // which supports loading a unicode from a str, doesn't take this path.
1244    template <typename C = CharT>
1245    bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) {
1246        if (PYBIND11_BYTES_CHECK(src.ptr())) {
1247            // We were passed a Python 3 raw bytes; accept it into a std::string or char*
1248            // without any encoding attempt.
1249            const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
1250            if (bytes) {
1251                value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
1252                return true;
1253            }
1254        }
1255
1256        return false;
1257    }
1258
1259    template <typename C = CharT>
1260    bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; }
1261};
1262
1263template <typename CharT, class Traits, class Allocator>
1264struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
1265    : string_caster<std::basic_string<CharT, Traits, Allocator>> {};
1266
1267#ifdef PYBIND11_HAS_STRING_VIEW
1268template <typename CharT, class Traits>
1269struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
1270    : string_caster<std::basic_string_view<CharT, Traits>, true> {};
1271#endif
1272
1273// Type caster for C-style strings.  We basically use a std::string type caster, but also add the
1274// ability to use None as a nullptr char* (which the string caster doesn't allow).
1275template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
1276    using StringType = std::basic_string<CharT>;
1277    using StringCaster = type_caster<StringType>;
1278    StringCaster str_caster;
1279    bool none = false;
1280    CharT one_char = 0;
1281public:
1282    bool load(handle src, bool convert) {
1283        if (!src) return false;
1284        if (src.is_none()) {
1285            // Defer accepting None to other overloads (if we aren't in convert mode):
1286            if (!convert) return false;
1287            none = true;
1288            return true;
1289        }
1290        return str_caster.load(src, convert);
1291    }
1292
1293    static handle cast(const CharT *src, return_value_policy policy, handle parent) {
1294        if (src == nullptr) return pybind11::none().inc_ref();
1295        return StringCaster::cast(StringType(src), policy, parent);
1296    }
1297
1298    static handle cast(CharT src, return_value_policy policy, handle parent) {
1299        if (std::is_same<char, CharT>::value) {
1300            handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
1301            if (!s) throw error_already_set();
1302            return s;
1303        }
1304        return StringCaster::cast(StringType(1, src), policy, parent);
1305    }
1306
1307    operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
1308    operator CharT&() {
1309        if (none)
1310            throw value_error("Cannot convert None to a character");
1311
1312        auto &value = static_cast<StringType &>(str_caster);
1313        size_t str_len = value.size();
1314        if (str_len == 0)
1315            throw value_error("Cannot convert empty string to a character");
1316
1317        // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
1318        // is too high, and one for multiple unicode characters (caught later), so we need to figure
1319        // out how long the first encoded character is in bytes to distinguish between these two
1320        // errors.  We also allow want to allow unicode characters U+0080 through U+00FF, as those
1321        // can fit into a single char value.
1322        if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
1323            unsigned char v0 = static_cast<unsigned char>(value[0]);
1324            size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
1325                (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
1326                (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
1327                4; // 0b11110xxx - start of 4-byte sequence
1328
1329            if (char0_bytes == str_len) {
1330                // If we have a 128-255 value, we can decode it into a single char:
1331                if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
1332                    one_char = static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
1333                    return one_char;
1334                }
1335                // Otherwise we have a single character, but it's > U+00FF
1336                throw value_error("Character code point not in range(0x100)");
1337            }
1338        }
1339
1340        // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
1341        // surrogate pair with total length 2 instantly indicates a range error (but not a "your
1342        // string was too long" error).
1343        else if (StringCaster::UTF_N == 16 && str_len == 2) {
1344            one_char = static_cast<CharT>(value[0]);
1345            if (one_char >= 0xD800 && one_char < 0xE000)
1346                throw value_error("Character code point not in range(0x10000)");
1347        }
1348
1349        if (str_len != 1)
1350            throw value_error("Expected a character, but multi-character string found");
1351
1352        one_char = value[0];
1353        return one_char;
1354    }
1355
1356    static constexpr auto name = _(PYBIND11_STRING_NAME);
1357    template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
1358};
1359
1360// Base implementation for std::tuple and std::pair
1361template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
1362    using type = Tuple<Ts...>;
1363    static constexpr auto size = sizeof...(Ts);
1364    using indices = make_index_sequence<size>;
1365public:
1366
1367    bool load(handle src, bool convert) {
1368        if (!isinstance<sequence>(src))
1369            return false;
1370        const auto seq = reinterpret_borrow<sequence>(src);
1371        if (seq.size() != size)
1372            return false;
1373        return load_impl(seq, convert, indices{});
1374    }
1375
1376    template <typename T>
1377    static handle cast(T &&src, return_value_policy policy, handle parent) {
1378        return cast_impl(std::forward<T>(src), policy, parent, indices{});
1379    }
1380
1381    static constexpr auto name = _("Tuple[") + concat(make_caster<Ts>::name...) + _("]");
1382
1383    template <typename T> using cast_op_type = type;
1384
1385    operator type() & { return implicit_cast(indices{}); }
1386    operator type() && { return std::move(*this).implicit_cast(indices{}); }
1387
1388protected:
1389    template <size_t... Is>
1390    type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
1391    template <size_t... Is>
1392    type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
1393
1394    static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
1395
1396    template <size_t... Is>
1397    bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
1398        for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
1399            if (!r)
1400                return false;
1401        return true;
1402    }
1403
1404    /* Implementation: Convert a C++ tuple into a Python tuple */
1405    template <typename T, size_t... Is>
1406    static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
1407        std::array<object, size> entries{{
1408            reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
1409        }};
1410        for (const auto &entry: entries)
1411            if (!entry)
1412                return handle();
1413        tuple result(size);
1414        int counter = 0;
1415        for (auto & entry: entries)
1416            PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
1417        return result.release();
1418    }
1419
1420    Tuple<make_caster<Ts>...> subcasters;
1421};
1422
1423template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
1424    : public tuple_caster<std::pair, T1, T2> {};
1425
1426template <typename... Ts> class type_caster<std::tuple<Ts...>>
1427    : public tuple_caster<std::tuple, Ts...> {};
1428
1429/// Helper class which abstracts away certain actions. Users can provide specializations for
1430/// custom holders, but it's only necessary if the type has a non-standard interface.
1431template <typename T>
1432struct holder_helper {
1433    static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
1434};
1435
1436/// Type caster for holder types like std::shared_ptr, etc.
1437template <typename type, typename holder_type>
1438struct copyable_holder_caster : public type_caster_base<type> {
1439public:
1440    using base = type_caster_base<type>;
1441    static_assert(std::is_base_of<base, type_caster<type>>::value,
1442            "Holder classes are only supported for custom types");
1443    using base::base;
1444    using base::cast;
1445    using base::typeinfo;
1446    using base::value;
1447
1448    bool load(handle src, bool convert) {
1449        return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
1450    }
1451
1452    explicit operator type*() { return this->value; }
1453    explicit operator type&() { return *(this->value); }
1454    explicit operator holder_type*() { return std::addressof(holder); }
1455
1456    // Workaround for Intel compiler bug
1457    // see pybind11 issue 94
1458    #if defined(__ICC) || defined(__INTEL_COMPILER)
1459    operator holder_type&() { return holder; }
1460    #else
1461    explicit operator holder_type&() { return holder; }
1462    #endif
1463
1464    static handle cast(const holder_type &src, return_value_policy, handle) {
1465        const auto *ptr = holder_helper<holder_type>::get(src);
1466        return type_caster_base<type>::cast_holder(ptr, &src);
1467    }
1468
1469protected:
1470    friend class type_caster_generic;
1471    void check_holder_compat() {
1472        if (typeinfo->default_holder)
1473            throw cast_error("Unable to load a custom holder type from a default-holder instance");
1474    }
1475
1476    bool load_value(value_and_holder &&v_h) {
1477        if (v_h.holder_constructed()) {
1478            value = v_h.value_ptr();
1479            holder = v_h.template holder<holder_type>();
1480            return true;
1481        } else {
1482            throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
1483#if defined(NDEBUG)
1484                             "(compile in debug mode for type information)");
1485#else
1486                             "of type '" + type_id<holder_type>() + "''");
1487#endif
1488        }
1489    }
1490
1491    template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
1492    bool try_implicit_casts(handle, bool) { return false; }
1493
1494    template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
1495    bool try_implicit_casts(handle src, bool convert) {
1496        for (auto &cast : typeinfo->implicit_casts) {
1497            copyable_holder_caster sub_caster(*cast.first);
1498            if (sub_caster.load(src, convert)) {
1499                value = cast.second(sub_caster.value);
1500                holder = holder_type(sub_caster.holder, (type *) value);
1501                return true;
1502            }
1503        }
1504        return false;
1505    }
1506
1507    static bool try_direct_conversions(handle) { return false; }
1508
1509
1510    holder_type holder;
1511};
1512
1513/// Specialize for the common std::shared_ptr, so users don't need to
1514template <typename T>
1515class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
1516
1517template <typename type, typename holder_type>
1518struct move_only_holder_caster {
1519    static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
1520            "Holder classes are only supported for custom types");
1521
1522    static handle cast(holder_type &&src, return_value_policy, handle) {
1523        auto *ptr = holder_helper<holder_type>::get(src);
1524        return type_caster_base<type>::cast_holder(ptr, std::addressof(src));
1525    }
1526    static constexpr auto name = type_caster_base<type>::name;
1527};
1528
1529template <typename type, typename deleter>
1530class type_caster<std::unique_ptr<type, deleter>>
1531    : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
1532
1533template <typename type, typename holder_type>
1534using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
1535                                         copyable_holder_caster<type, holder_type>,
1536                                         move_only_holder_caster<type, holder_type>>;
1537
1538template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
1539
1540/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
1541#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
1542    namespace pybind11 { namespace detail { \
1543    template <typename type> \
1544    struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__>  { }; \
1545    template <typename type> \
1546    class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
1547        : public type_caster_holder<type, holder_type> { }; \
1548    }}
1549
1550// PYBIND11_DECLARE_HOLDER_TYPE holder types:
1551template <typename base, typename holder> struct is_holder_type :
1552    std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
1553// Specialization for always-supported unique_ptr holders:
1554template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
1555    std::true_type {};
1556
1557template <typename T> struct handle_type_name { static constexpr auto name = _<T>(); };
1558template <> struct handle_type_name<bytes> { static constexpr auto name = _(PYBIND11_BYTES_NAME); };
1559template <> struct handle_type_name<args> { static constexpr auto name = _("*args"); };
1560template <> struct handle_type_name<kwargs> { static constexpr auto name = _("**kwargs"); };
1561
1562template <typename type>
1563struct pyobject_caster {
1564    template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
1565    bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
1566
1567    template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
1568    bool load(handle src, bool /* convert */) {
1569        if (!isinstance<type>(src))
1570            return false;
1571        value = reinterpret_borrow<type>(src);
1572        return true;
1573    }
1574
1575    static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
1576        return src.inc_ref();
1577    }
1578    PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
1579};
1580
1581template <typename T>
1582class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
1583
1584// Our conditions for enabling moving are quite restrictive:
1585// At compile time:
1586// - T needs to be a non-const, non-pointer, non-reference type
1587// - type_caster<T>::operator T&() must exist
1588// - the type must be move constructible (obviously)
1589// At run-time:
1590// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
1591//   must have ref_count() == 1)h
1592// If any of the above are not satisfied, we fall back to copying.
1593template <typename T> using move_is_plain_type = satisfies_none_of<T,
1594    std::is_void, std::is_pointer, std::is_reference, std::is_const
1595>;
1596template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
1597template <typename T> struct move_always<T, enable_if_t<all_of<
1598    move_is_plain_type<T>,
1599    negation<is_copy_constructible<T>>,
1600    std::is_move_constructible<T>,
1601    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
1602>::value>> : std::true_type {};
1603template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
1604template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
1605    move_is_plain_type<T>,
1606    negation<move_always<T>>,
1607    std::is_move_constructible<T>,
1608    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
1609>::value>> : std::true_type {};
1610template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
1611
1612// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
1613// reference or pointer to a local variable of the type_caster.  Basically, only
1614// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
1615// everything else returns a reference/pointer to a local variable.
1616template <typename type> using cast_is_temporary_value_reference = bool_constant<
1617    (std::is_reference<type>::value || std::is_pointer<type>::value) &&
1618    !std::is_base_of<type_caster_generic, make_caster<type>>::value &&
1619    !std::is_same<intrinsic_t<type>, void>::value
1620>;
1621
1622// When a value returned from a C++ function is being cast back to Python, we almost always want to
1623// force `policy = move`, regardless of the return value policy the function/method was declared
1624// with.
1625template <typename Return, typename SFINAE = void> struct return_value_policy_override {
1626    static return_value_policy policy(return_value_policy p) { return p; }
1627};
1628
1629template <typename Return> struct return_value_policy_override<Return,
1630        detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
1631    static return_value_policy policy(return_value_policy p) {
1632        return !std::is_lvalue_reference<Return>::value &&
1633               !std::is_pointer<Return>::value
1634                   ? return_value_policy::move : p;
1635    }
1636};
1637
1638// Basic python -> C++ casting; throws if casting fails
1639template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
1640    if (!conv.load(handle, true)) {
1641#if defined(NDEBUG)
1642        throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
1643#else
1644        throw cast_error("Unable to cast Python instance of type " +
1645            (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "'");
1646#endif
1647    }
1648    return conv;
1649}
1650// Wrapper around the above that also constructs and returns a type_caster
1651template <typename T> make_caster<T> load_type(const handle &handle) {
1652    make_caster<T> conv;
1653    load_type(conv, handle);
1654    return conv;
1655}
1656
1657NAMESPACE_END(detail)
1658
1659// pytype -> C++ type
1660template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1661T cast(const handle &handle) {
1662    using namespace detail;
1663    static_assert(!cast_is_temporary_value_reference<T>::value,
1664            "Unable to cast type to reference: value is local to type caster");
1665    return cast_op<T>(load_type<T>(handle));
1666}
1667
1668// pytype -> pytype (calls converting constructor)
1669template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
1670T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
1671
1672// C++ type -> py::object
1673template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1674object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
1675            handle parent = handle()) {
1676    if (policy == return_value_policy::automatic)
1677        policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
1678    else if (policy == return_value_policy::automatic_reference)
1679        policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
1680    return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
1681}
1682
1683template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
1684template <> inline void handle::cast() const { return; }
1685
1686template <typename T>
1687detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
1688    if (obj.ref_count() > 1)
1689#if defined(NDEBUG)
1690        throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
1691            " (compile in debug mode for details)");
1692#else
1693        throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
1694                " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
1695#endif
1696
1697    // Move into a temporary and return that, because the reference may be a local value of `conv`
1698    T ret = std::move(detail::load_type<T>(obj).operator T&());
1699    return ret;
1700}
1701
1702// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
1703// - If we have to move (because T has no copy constructor), do it.  This will fail if the moved
1704//   object has multiple references, but trying to copy will fail to compile.
1705// - If both movable and copyable, check ref count: if 1, move; otherwise copy
1706// - Otherwise (not movable), copy.
1707template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
1708    return move<T>(std::move(object));
1709}
1710template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
1711    if (object.ref_count() > 1)
1712        return cast<T>(object);
1713    else
1714        return move<T>(std::move(object));
1715}
1716template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
1717    return cast<T>(object);
1718}
1719
1720template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
1721template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
1722template <> inline void object::cast() const & { return; }
1723template <> inline void object::cast() && { return; }
1724
1725NAMESPACE_BEGIN(detail)
1726
1727// Declared in pytypes.h:
1728template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
1729object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
1730
1731struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
1732template <typename ret_type> using overload_caster_t = conditional_t<
1733    cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
1734
1735// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
1736// store the result in the given variable.  For other types, this is a no-op.
1737template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
1738    return cast_op<T>(load_type(caster, o));
1739}
1740template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
1741    pybind11_fail("Internal error: cast_ref fallback invoked"); }
1742
1743// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
1744// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
1745// cases where pybind11::cast is valid.
1746template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
1747    return pybind11::cast<T>(std::move(o)); }
1748template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
1749    pybind11_fail("Internal error: cast_safe fallback invoked"); }
1750template <> inline void cast_safe<void>(object &&) {}
1751
1752NAMESPACE_END(detail)
1753
1754template <return_value_policy policy = return_value_policy::automatic_reference>
1755tuple make_tuple() { return tuple(0); }
1756
1757template <return_value_policy policy = return_value_policy::automatic_reference,
1758          typename... Args> tuple make_tuple(Args&&... args_) {
1759    constexpr size_t size = sizeof...(Args);
1760    std::array<object, size> args {
1761        { reinterpret_steal<object>(detail::make_caster<Args>::cast(
1762            std::forward<Args>(args_), policy, nullptr))... }
1763    };
1764    for (size_t i = 0; i < args.size(); i++) {
1765        if (!args[i]) {
1766#if defined(NDEBUG)
1767            throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
1768#else
1769            std::array<std::string, size> argtypes { {type_id<Args>()...} };
1770            throw cast_error("make_tuple(): unable to convert argument of type '" +
1771                argtypes[i] + "' to Python object");
1772#endif
1773        }
1774    }
1775    tuple result(size);
1776    int counter = 0;
1777    for (auto &arg_value : args)
1778        PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
1779    return result;
1780}
1781
1782/// \ingroup annotations
1783/// Annotation for arguments
1784struct arg {
1785    /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
1786    constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
1787    /// Assign a value to this argument
1788    template <typename T> arg_v operator=(T &&value) const;
1789    /// Indicate that the type should not be converted in the type caster
1790    arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
1791    /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
1792    arg &none(bool flag = true) { flag_none = flag; return *this; }
1793
1794    const char *name; ///< If non-null, this is a named kwargs argument
1795    bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
1796    bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
1797};
1798
1799/// \ingroup annotations
1800/// Annotation for arguments with values
1801struct arg_v : arg {
1802private:
1803    template <typename T>
1804    arg_v(arg &&base, T &&x, const char *descr = nullptr)
1805        : arg(base),
1806          value(reinterpret_steal<object>(
1807              detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
1808          )),
1809          descr(descr)
1810#if !defined(NDEBUG)
1811        , type(type_id<T>())
1812#endif
1813    { }
1814
1815public:
1816    /// Direct construction with name, default, and description
1817    template <typename T>
1818    arg_v(const char *name, T &&x, const char *descr = nullptr)
1819        : arg_v(arg(name), std::forward<T>(x), descr) { }
1820
1821    /// Called internally when invoking `py::arg("a") = value`
1822    template <typename T>
1823    arg_v(const arg &base, T &&x, const char *descr = nullptr)
1824        : arg_v(arg(base), std::forward<T>(x), descr) { }
1825
1826    /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
1827    arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
1828
1829    /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
1830    arg_v &none(bool flag = true) { arg::none(flag); return *this; }
1831
1832    /// The default value
1833    object value;
1834    /// The (optional) description of the default value
1835    const char *descr;
1836#if !defined(NDEBUG)
1837    /// The C++ type name of the default value (only available when compiled in debug mode)
1838    std::string type;
1839#endif
1840};
1841
1842template <typename T>
1843arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
1844
1845/// Alias for backward compatibility -- to be removed in version 2.0
1846template <typename /*unused*/> using arg_t = arg_v;
1847
1848inline namespace literals {
1849/** \rst
1850    String literal version of `arg`
1851 \endrst */
1852constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
1853}
1854
1855NAMESPACE_BEGIN(detail)
1856
1857// forward declaration (definition in attr.h)
1858struct function_record;
1859
1860/// Internal data associated with a single function call
1861struct function_call {
1862    function_call(const function_record &f, handle p); // Implementation in attr.h
1863
1864    /// The function data:
1865    const function_record &func;
1866
1867    /// Arguments passed to the function:
1868    std::vector<handle> args;
1869
1870    /// The `convert` value the arguments should be loaded with
1871    std::vector<bool> args_convert;
1872
1873    /// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
1874    /// present, are also in `args` but without a reference).
1875    object args_ref, kwargs_ref;
1876
1877    /// The parent, if any
1878    handle parent;
1879
1880    /// If this is a call to an initializer, this argument contains `self`
1881    handle init_self;
1882};
1883
1884
1885/// Helper class which loads arguments for C++ functions called from Python
1886template <typename... Args>
1887class argument_loader {
1888    using indices = make_index_sequence<sizeof...(Args)>;
1889
1890    template <typename Arg> using argument_is_args   = std::is_same<intrinsic_t<Arg>, args>;
1891    template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
1892    // Get args/kwargs argument positions relative to the end of the argument list:
1893    static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
1894                        kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
1895
1896    static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
1897
1898    static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
1899
1900public:
1901    static constexpr bool has_kwargs = kwargs_pos < 0;
1902    static constexpr bool has_args = args_pos < 0;
1903
1904    static constexpr auto arg_names = concat(type_descr(make_caster<Args>::name)...);
1905
1906    bool load_args(function_call &call) {
1907        return load_impl_sequence(call, indices{});
1908    }
1909
1910    template <typename Return, typename Guard, typename Func>
1911    enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
1912        return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
1913    }
1914
1915    template <typename Return, typename Guard, typename Func>
1916    enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
1917        std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
1918        return void_type();
1919    }
1920
1921private:
1922
1923    static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
1924
1925    template <size_t... Is>
1926    bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
1927        for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
1928            if (!r)
1929                return false;
1930        return true;
1931    }
1932
1933    template <typename Return, typename Func, size_t... Is, typename Guard>
1934    Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
1935        return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
1936    }
1937
1938    std::tuple<make_caster<Args>...> argcasters;
1939};
1940
1941/// Helper class which collects only positional arguments for a Python function call.
1942/// A fancier version below can collect any argument, but this one is optimal for simple calls.
1943template <return_value_policy policy>
1944class simple_collector {
1945public:
1946    template <typename... Ts>
1947    explicit simple_collector(Ts &&...values)
1948        : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
1949
1950    const tuple &args() const & { return m_args; }
1951    dict kwargs() const { return {}; }
1952
1953    tuple args() && { return std::move(m_args); }
1954
1955    /// Call a Python function and pass the collected arguments
1956    object call(PyObject *ptr) const {
1957        PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
1958        if (!result)
1959            throw error_already_set();
1960        return reinterpret_steal<object>(result);
1961    }
1962
1963private:
1964    tuple m_args;
1965};
1966
1967/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
1968template <return_value_policy policy>
1969class unpacking_collector {
1970public:
1971    template <typename... Ts>
1972    explicit unpacking_collector(Ts &&...values) {
1973        // Tuples aren't (easily) resizable so a list is needed for collection,
1974        // but the actual function call strictly requires a tuple.
1975        auto args_list = list();
1976        int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
1977        ignore_unused(_);
1978
1979        m_args = std::move(args_list);
1980    }
1981
1982    const tuple &args() const & { return m_args; }
1983    const dict &kwargs() const & { return m_kwargs; }
1984
1985    tuple args() && { return std::move(m_args); }
1986    dict kwargs() && { return std::move(m_kwargs); }
1987
1988    /// Call a Python function and pass the collected arguments
1989    object call(PyObject *ptr) const {
1990        PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
1991        if (!result)
1992            throw error_already_set();
1993        return reinterpret_steal<object>(result);
1994    }
1995
1996private:
1997    template <typename T>
1998    void process(list &args_list, T &&x) {
1999        auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
2000        if (!o) {
2001#if defined(NDEBUG)
2002            argument_cast_error();
2003#else
2004            argument_cast_error(std::to_string(args_list.size()), type_id<T>());
2005#endif
2006        }
2007        args_list.append(o);
2008    }
2009
2010    void process(list &args_list, detail::args_proxy ap) {
2011        for (const auto &a : ap)
2012            args_list.append(a);
2013    }
2014
2015    void process(list &/*args_list*/, arg_v a) {
2016        if (!a.name)
2017#if defined(NDEBUG)
2018            nameless_argument_error();
2019#else
2020            nameless_argument_error(a.type);
2021#endif
2022
2023        if (m_kwargs.contains(a.name)) {
2024#if defined(NDEBUG)
2025            multiple_values_error();
2026#else
2027            multiple_values_error(a.name);
2028#endif
2029        }
2030        if (!a.value) {
2031#if defined(NDEBUG)
2032            argument_cast_error();
2033#else
2034            argument_cast_error(a.name, a.type);
2035#endif
2036        }
2037        m_kwargs[a.name] = a.value;
2038    }
2039
2040    void process(list &/*args_list*/, detail::kwargs_proxy kp) {
2041        if (!kp)
2042            return;
2043        for (const auto &k : reinterpret_borrow<dict>(kp)) {
2044            if (m_kwargs.contains(k.first)) {
2045#if defined(NDEBUG)
2046                multiple_values_error();
2047#else
2048                multiple_values_error(str(k.first));
2049#endif
2050            }
2051            m_kwargs[k.first] = k.second;
2052        }
2053    }
2054
2055    [[noreturn]] static void nameless_argument_error() {
2056        throw type_error("Got kwargs without a name; only named arguments "
2057                         "may be passed via py::arg() to a python function call. "
2058                         "(compile in debug mode for details)");
2059    }
2060    [[noreturn]] static void nameless_argument_error(std::string type) {
2061        throw type_error("Got kwargs without a name of type '" + type + "'; only named "
2062                         "arguments may be passed via py::arg() to a python function call. ");
2063    }
2064    [[noreturn]] static void multiple_values_error() {
2065        throw type_error("Got multiple values for keyword argument "
2066                         "(compile in debug mode for details)");
2067    }
2068
2069    [[noreturn]] static void multiple_values_error(std::string name) {
2070        throw type_error("Got multiple values for keyword argument '" + name + "'");
2071    }
2072
2073    [[noreturn]] static void argument_cast_error() {
2074        throw cast_error("Unable to convert call argument to Python object "
2075                         "(compile in debug mode for details)");
2076    }
2077
2078    [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
2079        throw cast_error("Unable to convert call argument '" + name
2080                         + "' of type '" + type + "' to Python object");
2081    }
2082
2083private:
2084    tuple m_args;
2085    dict m_kwargs;
2086};
2087
2088/// Collect only positional arguments for a Python function call
2089template <return_value_policy policy, typename... Args,
2090          typename = enable_if_t<all_of<is_positional<Args>...>::value>>
2091simple_collector<policy> collect_arguments(Args &&...args) {
2092    return simple_collector<policy>(std::forward<Args>(args)...);
2093}
2094
2095/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
2096template <return_value_policy policy, typename... Args,
2097          typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
2098unpacking_collector<policy> collect_arguments(Args &&...args) {
2099    // Following argument order rules for generalized unpacking according to PEP 448
2100    static_assert(
2101        constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
2102        && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
2103        "Invalid function call: positional args must precede keywords and ** unpacking; "
2104        "* unpacking must precede ** unpacking"
2105    );
2106    return unpacking_collector<policy>(std::forward<Args>(args)...);
2107}
2108
2109template <typename Derived>
2110template <return_value_policy policy, typename... Args>
2111object object_api<Derived>::operator()(Args &&...args) const {
2112    return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
2113}
2114
2115template <typename Derived>
2116template <return_value_policy policy, typename... Args>
2117object object_api<Derived>::call(Args &&...args) const {
2118    return operator()<policy>(std::forward<Args>(args)...);
2119}
2120
2121NAMESPACE_END(detail)
2122
2123#define PYBIND11_MAKE_OPAQUE(...) \
2124    namespace pybind11 { namespace detail { \
2125        template<> class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> { }; \
2126    }}
2127
2128/// Lets you pass a type containing a `,` through a macro parameter without needing a separate
2129/// typedef, e.g.: `PYBIND11_OVERLOAD(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
2130#define PYBIND11_TYPE(...) __VA_ARGS__
2131
2132NAMESPACE_END(PYBIND11_NAMESPACE)
2133