cast.h revision 12391:ceeca8b41e4b
1/*
2    pybind11/cast.h: Partial template specializations to cast between
3    C++ and Python types
4
5    Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
6
7    All rights reserved. Use of this source code is governed by a
8    BSD-style license that can be found in the LICENSE file.
9*/
10
11#pragma once
12
13#include "pytypes.h"
14#include "detail/typeid.h"
15#include "detail/descr.h"
16#include "detail/internals.h"
17#include <array>
18#include <limits>
19#include <tuple>
20
21#if defined(PYBIND11_CPP17)
22#  if defined(__has_include)
23#    if __has_include(<string_view>)
24#      define PYBIND11_HAS_STRING_VIEW
25#    endif
26#  elif defined(_MSC_VER)
27#    define PYBIND11_HAS_STRING_VIEW
28#  endif
29#endif
30#ifdef PYBIND11_HAS_STRING_VIEW
31#include <string_view>
32#endif
33
34NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
35NAMESPACE_BEGIN(detail)
36
37/// A life support system for temporary objects created by `type_caster::load()`.
38/// Adding a patient will keep it alive up until the enclosing function returns.
39class loader_life_support {
40public:
41    /// A new patient frame is created when a function is entered
42    loader_life_support() {
43        get_internals().loader_patient_stack.push_back(nullptr);
44    }
45
46    /// ... and destroyed after it returns
47    ~loader_life_support() {
48        auto &stack = get_internals().loader_patient_stack;
49        if (stack.empty())
50            pybind11_fail("loader_life_support: internal error");
51
52        auto ptr = stack.back();
53        stack.pop_back();
54        Py_CLEAR(ptr);
55
56        // A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
57        if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2)
58            stack.shrink_to_fit();
59    }
60
61    /// This can only be used inside a pybind11-bound function, either by `argument_loader`
62    /// at argument preparation time or by `py::cast()` at execution time.
63    PYBIND11_NOINLINE static void add_patient(handle h) {
64        auto &stack = get_internals().loader_patient_stack;
65        if (stack.empty())
66            throw cast_error("When called outside a bound function, py::cast() cannot "
67                             "do Python -> C++ conversions which require the creation "
68                             "of temporary values");
69
70        auto &list_ptr = stack.back();
71        if (list_ptr == nullptr) {
72            list_ptr = PyList_New(1);
73            if (!list_ptr)
74                pybind11_fail("loader_life_support: error allocating list");
75            PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
76        } else {
77            auto result = PyList_Append(list_ptr, h.ptr());
78            if (result == -1)
79                pybind11_fail("loader_life_support: error adding patient");
80        }
81    }
82};
83
84// Gets the cache entry for the given type, creating it if necessary.  The return value is the pair
85// returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
86// just created.
87inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);
88
89// Populates a just-created cache entry.
90PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
91    std::vector<PyTypeObject *> check;
92    for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
93        check.push_back((PyTypeObject *) parent.ptr());
94
95    auto const &type_dict = get_internals().registered_types_py;
96    for (size_t i = 0; i < check.size(); i++) {
97        auto type = check[i];
98        // Ignore Python2 old-style class super type:
99        if (!PyType_Check((PyObject *) type)) continue;
100
101        // Check `type` in the current set of registered python types:
102        auto it = type_dict.find(type);
103        if (it != type_dict.end()) {
104            // We found a cache entry for it, so it's either pybind-registered or has pre-computed
105            // pybind bases, but we have to make sure we haven't already seen the type(s) before: we
106            // want to follow Python/virtual C++ rules that there should only be one instance of a
107            // common base.
108            for (auto *tinfo : it->second) {
109                // NB: Could use a second set here, rather than doing a linear search, but since
110                // having a large number of immediate pybind11-registered types seems fairly
111                // unlikely, that probably isn't worthwhile.
112                bool found = false;
113                for (auto *known : bases) {
114                    if (known == tinfo) { found = true; break; }
115                }
116                if (!found) bases.push_back(tinfo);
117            }
118        }
119        else if (type->tp_bases) {
120            // It's some python type, so keep follow its bases classes to look for one or more
121            // registered types
122            if (i + 1 == check.size()) {
123                // When we're at the end, we can pop off the current element to avoid growing
124                // `check` when adding just one base (which is typical--i.e. when there is no
125                // multiple inheritance)
126                check.pop_back();
127                i--;
128            }
129            for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
130                check.push_back((PyTypeObject *) parent.ptr());
131        }
132    }
133}
134
135/**
136 * Extracts vector of type_info pointers of pybind-registered roots of the given Python type.  Will
137 * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
138 * derived class that uses single inheritance.  Will contain as many types as required for a Python
139 * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
140 * pybind-registered classes.  Will be empty if neither the type nor any base classes are
141 * pybind-registered.
142 *
143 * The value is cached for the lifetime of the Python type.
144 */
145inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
146    auto ins = all_type_info_get_cache(type);
147    if (ins.second)
148        // New cache entry: populate it
149        all_type_info_populate(type, ins.first->second);
150
151    return ins.first->second;
152}
153
154/**
155 * Gets a single pybind11 type info for a python type.  Returns nullptr if neither the type nor any
156 * ancestors are pybind11-registered.  Throws an exception if there are multiple bases--use
157 * `all_type_info` instead if you want to support multiple bases.
158 */
159PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
160    auto &bases = all_type_info(type);
161    if (bases.size() == 0)
162        return nullptr;
163    if (bases.size() > 1)
164        pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
165    return bases.front();
166}
167
168inline detail::type_info *get_local_type_info(const std::type_index &tp) {
169    auto &locals = registered_local_types_cpp();
170    auto it = locals.find(tp);
171    if (it != locals.end())
172        return it->second;
173    return nullptr;
174}
175
176inline detail::type_info *get_global_type_info(const std::type_index &tp) {
177    auto &types = get_internals().registered_types_cpp;
178    auto it = types.find(tp);
179    if (it != types.end())
180        return it->second;
181    return nullptr;
182}
183
184/// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr.
185PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp,
186                                                          bool throw_if_missing = false) {
187    if (auto ltype = get_local_type_info(tp))
188        return ltype;
189    if (auto gtype = get_global_type_info(tp))
190        return gtype;
191
192    if (throw_if_missing) {
193        std::string tname = tp.name();
194        detail::clean_type_id(tname);
195        pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
196    }
197    return nullptr;
198}
199
200PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
201    detail::type_info *type_info = get_type_info(tp, throw_if_missing);
202    return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
203}
204
205struct value_and_holder {
206    instance *inst;
207    size_t index;
208    const detail::type_info *type;
209    void **vh;
210
211    // Main constructor for a found value/holder:
212    value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
213        inst{i}, index{index}, type{type},
214        vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
215    {}
216
217    // Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
218    value_and_holder() : inst{nullptr} {}
219
220    // Used for past-the-end iterator
221    value_and_holder(size_t index) : index{index} {}
222
223    template <typename V = void> V *&value_ptr() const {
224        return reinterpret_cast<V *&>(vh[0]);
225    }
226    // True if this `value_and_holder` has a non-null value pointer
227    explicit operator bool() const { return value_ptr(); }
228
229    template <typename H> H &holder() const {
230        return reinterpret_cast<H &>(vh[1]);
231    }
232    bool holder_constructed() const {
233        return inst->simple_layout
234            ? inst->simple_holder_constructed
235            : inst->nonsimple.status[index] & instance::status_holder_constructed;
236    }
237    void set_holder_constructed(bool v = true) {
238        if (inst->simple_layout)
239            inst->simple_holder_constructed = v;
240        else if (v)
241            inst->nonsimple.status[index] |= instance::status_holder_constructed;
242        else
243            inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed;
244    }
245    bool instance_registered() const {
246        return inst->simple_layout
247            ? inst->simple_instance_registered
248            : inst->nonsimple.status[index] & instance::status_instance_registered;
249    }
250    void set_instance_registered(bool v = true) {
251        if (inst->simple_layout)
252            inst->simple_instance_registered = v;
253        else if (v)
254            inst->nonsimple.status[index] |= instance::status_instance_registered;
255        else
256            inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered;
257    }
258};
259
260// Container for accessing and iterating over an instance's values/holders
261struct values_and_holders {
262private:
263    instance *inst;
264    using type_vec = std::vector<detail::type_info *>;
265    const type_vec &tinfo;
266
267public:
268    values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
269
270    struct iterator {
271    private:
272        instance *inst;
273        const type_vec *types;
274        value_and_holder curr;
275        friend struct values_and_holders;
276        iterator(instance *inst, const type_vec *tinfo)
277            : inst{inst}, types{tinfo},
278            curr(inst /* instance */,
279                 types->empty() ? nullptr : (*types)[0] /* type info */,
280                 0, /* vpos: (non-simple types only): the first vptr comes first */
281                 0 /* index */)
282        {}
283        // Past-the-end iterator:
284        iterator(size_t end) : curr(end) {}
285    public:
286        bool operator==(const iterator &other) { return curr.index == other.curr.index; }
287        bool operator!=(const iterator &other) { return curr.index != other.curr.index; }
288        iterator &operator++() {
289            if (!inst->simple_layout)
290                curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
291            ++curr.index;
292            curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
293            return *this;
294        }
295        value_and_holder &operator*() { return curr; }
296        value_and_holder *operator->() { return &curr; }
297    };
298
299    iterator begin() { return iterator(inst, &tinfo); }
300    iterator end() { return iterator(tinfo.size()); }
301
302    iterator find(const type_info *find_type) {
303        auto it = begin(), endit = end();
304        while (it != endit && it->type != find_type) ++it;
305        return it;
306    }
307
308    size_t size() { return tinfo.size(); }
309};
310
311/**
312 * Extracts C++ value and holder pointer references from an instance (which may contain multiple
313 * values/holders for python-side multiple inheritance) that match the given type.  Throws an error
314 * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance.  If
315 * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
316 * regardless of type (and the resulting .type will be nullptr).
317 *
318 * The returned object should be short-lived: in particular, it must not outlive the called-upon
319 * instance.
320 */
321PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) {
322    // Optimize common case:
323    if (!find_type || Py_TYPE(this) == find_type->type)
324        return value_and_holder(this, find_type, 0, 0);
325
326    detail::values_and_holders vhs(this);
327    auto it = vhs.find(find_type);
328    if (it != vhs.end())
329        return *it;
330
331    if (!throw_if_missing)
332        return value_and_holder();
333
334#if defined(NDEBUG)
335    pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
336            "type is not a pybind11 base of the given instance "
337            "(compile in debug mode for type details)");
338#else
339    pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
340            std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" +
341            std::string(Py_TYPE(this)->tp_name) + "' instance");
342#endif
343}
344
345PYBIND11_NOINLINE inline void instance::allocate_layout() {
346    auto &tinfo = all_type_info(Py_TYPE(this));
347
348    const size_t n_types = tinfo.size();
349
350    if (n_types == 0)
351        pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");
352
353    simple_layout =
354        n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
355
356    // Simple path: no python-side multiple inheritance, and a small-enough holder
357    if (simple_layout) {
358        simple_value_holder[0] = nullptr;
359        simple_holder_constructed = false;
360        simple_instance_registered = false;
361    }
362    else { // multiple base types or a too-large holder
363        // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
364        // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
365        // values that tracks whether each associated holder has been initialized.  Each [block] is
366        // padded, if necessary, to an integer multiple of sizeof(void *).
367        size_t space = 0;
368        for (auto t : tinfo) {
369            space += 1; // value pointer
370            space += t->holder_size_in_ptrs; // holder instance
371        }
372        size_t flags_at = space;
373        space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)
374
375        // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
376        // in particular, need to be 0).  Use Python's memory allocation functions: in Python 3.6
377        // they default to using pymalloc, which is designed to be efficient for small allocations
378        // like the one we're doing here; in earlier versions (and for larger allocations) they are
379        // just wrappers around malloc.
380#if PY_VERSION_HEX >= 0x03050000
381        nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
382        if (!nonsimple.values_and_holders) throw std::bad_alloc();
383#else
384        nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
385        if (!nonsimple.values_and_holders) throw std::bad_alloc();
386        std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
387#endif
388        nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
389    }
390    owned = true;
391}
392
393PYBIND11_NOINLINE inline void instance::deallocate_layout() {
394    if (!simple_layout)
395        PyMem_Free(nonsimple.values_and_holders);
396}
397
398PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
399    handle type = detail::get_type_handle(tp, false);
400    if (!type)
401        return false;
402    return isinstance(obj, type);
403}
404
405PYBIND11_NOINLINE inline std::string error_string() {
406    if (!PyErr_Occurred()) {
407        PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
408        return "Unknown internal error occurred";
409    }
410
411    error_scope scope; // Preserve error state
412
413    std::string errorString;
414    if (scope.type) {
415        errorString += handle(scope.type).attr("__name__").cast<std::string>();
416        errorString += ": ";
417    }
418    if (scope.value)
419        errorString += (std::string) str(scope.value);
420
421    PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
422
423#if PY_MAJOR_VERSION >= 3
424    if (scope.trace != nullptr)
425        PyException_SetTraceback(scope.value, scope.trace);
426#endif
427
428#if !defined(PYPY_VERSION)
429    if (scope.trace) {
430        PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
431
432        /* Get the deepest trace possible */
433        while (trace->tb_next)
434            trace = trace->tb_next;
435
436        PyFrameObject *frame = trace->tb_frame;
437        errorString += "\n\nAt:\n";
438        while (frame) {
439            int lineno = PyFrame_GetLineNumber(frame);
440            errorString +=
441                "  " + handle(frame->f_code->co_filename).cast<std::string>() +
442                "(" + std::to_string(lineno) + "): " +
443                handle(frame->f_code->co_name).cast<std::string>() + "\n";
444            frame = frame->f_back;
445        }
446    }
447#endif
448
449    return errorString;
450}
451
452PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
453    auto &instances = get_internals().registered_instances;
454    auto range = instances.equal_range(ptr);
455    for (auto it = range.first; it != range.second; ++it) {
456        for (auto vh : values_and_holders(it->second)) {
457            if (vh.type == type)
458                return handle((PyObject *) it->second);
459        }
460    }
461    return handle();
462}
463
464inline PyThreadState *get_thread_state_unchecked() {
465#if defined(PYPY_VERSION)
466    return PyThreadState_GET();
467#elif PY_VERSION_HEX < 0x03000000
468    return _PyThreadState_Current;
469#elif PY_VERSION_HEX < 0x03050000
470    return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
471#elif PY_VERSION_HEX < 0x03050200
472    return (PyThreadState*) _PyThreadState_Current.value;
473#else
474    return _PyThreadState_UncheckedGet();
475#endif
476}
477
478// Forward declarations
479inline void keep_alive_impl(handle nurse, handle patient);
480inline PyObject *make_new_instance(PyTypeObject *type);
481
482class type_caster_generic {
483public:
484    PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
485        : typeinfo(get_type_info(type_info)), cpptype(&type_info) { }
486
487    type_caster_generic(const type_info *typeinfo)
488        : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { }
489
490    bool load(handle src, bool convert) {
491        return load_impl<type_caster_generic>(src, convert);
492    }
493
494    PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
495                                         const detail::type_info *tinfo,
496                                         void *(*copy_constructor)(const void *),
497                                         void *(*move_constructor)(const void *),
498                                         const void *existing_holder = nullptr) {
499        if (!tinfo) // no type info: error will be set already
500            return handle();
501
502        void *src = const_cast<void *>(_src);
503        if (src == nullptr)
504            return none().release();
505
506        auto it_instances = get_internals().registered_instances.equal_range(src);
507        for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
508            for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
509                if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype))
510                    return handle((PyObject *) it_i->second).inc_ref();
511            }
512        }
513
514        auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
515        auto wrapper = reinterpret_cast<instance *>(inst.ptr());
516        wrapper->owned = false;
517        void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
518
519        switch (policy) {
520            case return_value_policy::automatic:
521            case return_value_policy::take_ownership:
522                valueptr = src;
523                wrapper->owned = true;
524                break;
525
526            case return_value_policy::automatic_reference:
527            case return_value_policy::reference:
528                valueptr = src;
529                wrapper->owned = false;
530                break;
531
532            case return_value_policy::copy:
533                if (copy_constructor)
534                    valueptr = copy_constructor(src);
535                else
536                    throw cast_error("return_value_policy = copy, but the "
537                                     "object is non-copyable!");
538                wrapper->owned = true;
539                break;
540
541            case return_value_policy::move:
542                if (move_constructor)
543                    valueptr = move_constructor(src);
544                else if (copy_constructor)
545                    valueptr = copy_constructor(src);
546                else
547                    throw cast_error("return_value_policy = move, but the "
548                                     "object is neither movable nor copyable!");
549                wrapper->owned = true;
550                break;
551
552            case return_value_policy::reference_internal:
553                valueptr = src;
554                wrapper->owned = false;
555                keep_alive_impl(inst, parent);
556                break;
557
558            default:
559                throw cast_error("unhandled return_value_policy: should not happen!");
560        }
561
562        tinfo->init_instance(wrapper, existing_holder);
563
564        return inst.release();
565    }
566
567    // Base methods for generic caster; there are overridden in copyable_holder_caster
568    void load_value(value_and_holder &&v_h) {
569        auto *&vptr = v_h.value_ptr();
570        // Lazy allocation for unallocated values:
571        if (vptr == nullptr) {
572            auto *type = v_h.type ? v_h.type : typeinfo;
573            vptr = type->operator_new(type->type_size);
574        }
575        value = vptr;
576    }
577    bool try_implicit_casts(handle src, bool convert) {
578        for (auto &cast : typeinfo->implicit_casts) {
579            type_caster_generic sub_caster(*cast.first);
580            if (sub_caster.load(src, convert)) {
581                value = cast.second(sub_caster.value);
582                return true;
583            }
584        }
585        return false;
586    }
587    bool try_direct_conversions(handle src) {
588        for (auto &converter : *typeinfo->direct_conversions) {
589            if (converter(src.ptr(), value))
590                return true;
591        }
592        return false;
593    }
594    void check_holder_compat() {}
595
596    PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
597        auto caster = type_caster_generic(ti);
598        if (caster.load(src, false))
599            return caster.value;
600        return nullptr;
601    }
602
603    /// Try to load with foreign typeinfo, if available. Used when there is no
604    /// native typeinfo, or when the native one wasn't able to produce a value.
605    PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
606        constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
607        const auto pytype = src.get_type();
608        if (!hasattr(pytype, local_key))
609            return false;
610
611        type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
612        // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type
613        if (foreign_typeinfo->module_local_load == &local_load
614            || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype)))
615            return false;
616
617        if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
618            value = result;
619            return true;
620        }
621        return false;
622    }
623
624    // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
625    // bits of code between here and copyable_holder_caster where the two classes need different
626    // logic (without having to resort to virtual inheritance).
627    template <typename ThisT>
628    PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
629        if (!src) return false;
630        if (!typeinfo) return try_load_foreign_module_local(src);
631        if (src.is_none()) {
632            // Defer accepting None to other overloads (if we aren't in convert mode):
633            if (!convert) return false;
634            value = nullptr;
635            return true;
636        }
637
638        auto &this_ = static_cast<ThisT &>(*this);
639        this_.check_holder_compat();
640
641        PyTypeObject *srctype = Py_TYPE(src.ptr());
642
643        // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
644        // the instance's value pointer to the target type:
645        if (srctype == typeinfo->type) {
646            this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
647            return true;
648        }
649        // Case 2: We have a derived class
650        else if (PyType_IsSubtype(srctype, typeinfo->type)) {
651            auto &bases = all_type_info(srctype);
652            bool no_cpp_mi = typeinfo->simple_type;
653
654            // Case 2a: the python type is a Python-inherited derived class that inherits from just
655            // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
656            // the right type and we can use reinterpret_cast.
657            // (This is essentially the same as case 2b, but because not using multiple inheritance
658            // is extremely common, we handle it specially to avoid the loop iterator and type
659            // pointer lookup overhead)
660            if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
661                this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
662                return true;
663            }
664            // Case 2b: the python type inherits from multiple C++ bases.  Check the bases to see if
665            // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
666            // can safely reinterpret_cast to the relevant pointer.
667            else if (bases.size() > 1) {
668                for (auto base : bases) {
669                    if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
670                        this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
671                        return true;
672                    }
673                }
674            }
675
676            // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
677            // in the registered bases, above, so try implicit casting (needed for proper C++ casting
678            // when MI is involved).
679            if (this_.try_implicit_casts(src, convert))
680                return true;
681        }
682
683        // Perform an implicit conversion
684        if (convert) {
685            for (auto &converter : typeinfo->implicit_conversions) {
686                auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
687                if (load_impl<ThisT>(temp, false)) {
688                    loader_life_support::add_patient(temp);
689                    return true;
690                }
691            }
692            if (this_.try_direct_conversions(src))
693                return true;
694        }
695
696        // Failed to match local typeinfo. Try again with global.
697        if (typeinfo->module_local) {
698            if (auto gtype = get_global_type_info(*typeinfo->cpptype)) {
699                typeinfo = gtype;
700                return load(src, false);
701            }
702        }
703
704        // Global typeinfo has precedence over foreign module_local
705        return try_load_foreign_module_local(src);
706    }
707
708
709    // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
710    // isn't needed or can't be used.  If the type is unknown, sets the error and returns a pair
711    // with .second = nullptr.  (p.first = nullptr is not an error: it becomes None).
712    PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
713            const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
714        if (auto *tpi = get_type_info(cast_type))
715            return {src, const_cast<const type_info *>(tpi)};
716
717        // Not found, set error:
718        std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
719        detail::clean_type_id(tname);
720        std::string msg = "Unregistered type : " + tname;
721        PyErr_SetString(PyExc_TypeError, msg.c_str());
722        return {nullptr, nullptr};
723    }
724
725    const type_info *typeinfo = nullptr;
726    const std::type_info *cpptype = nullptr;
727    void *value = nullptr;
728};
729
730/**
731 * Determine suitable casting operator for pointer-or-lvalue-casting type casters.  The type caster
732 * needs to provide `operator T*()` and `operator T&()` operators.
733 *
734 * If the type supports moving the value away via an `operator T&&() &&` method, it should use
735 * `movable_cast_op_type` instead.
736 */
737template <typename T>
738using cast_op_type =
739    conditional_t<std::is_pointer<remove_reference_t<T>>::value,
740        typename std::add_pointer<intrinsic_t<T>>::type,
741        typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
742
743/**
744 * Determine suitable casting operator for a type caster with a movable value.  Such a type caster
745 * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`.  The latter will be
746 * called in appropriate contexts where the value can be moved rather than copied.
747 *
748 * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
749 */
750template <typename T>
751using movable_cast_op_type =
752    conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
753        typename std::add_pointer<intrinsic_t<T>>::type,
754    conditional_t<std::is_rvalue_reference<T>::value,
755        typename std::add_rvalue_reference<intrinsic_t<T>>::type,
756        typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
757
758// std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
759// T is non-copyable, but code containing such a copy constructor fails to actually compile.
760template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
761
762// Specialization for types that appear to be copy constructible but also look like stl containers
763// (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
764// so, copy constructability depends on whether the value_type is copy constructible.
765template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
766        std::is_copy_constructible<Container>,
767        std::is_same<typename Container::value_type &, typename Container::reference>
768    >::value>> : is_copy_constructible<typename Container::value_type> {};
769
770#if !defined(PYBIND11_CPP17)
771// Likewise for std::pair before C++17 (which mandates that the copy constructor not exist when the
772// two types aren't themselves copy constructible).
773template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
774    : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
775#endif
776
777/// Generic type caster for objects stored on the heap
778template <typename type> class type_caster_base : public type_caster_generic {
779    using itype = intrinsic_t<type>;
780public:
781    static PYBIND11_DESCR name() { return type_descr(_<type>()); }
782
783    type_caster_base() : type_caster_base(typeid(type)) { }
784    explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
785
786    static handle cast(const itype &src, return_value_policy policy, handle parent) {
787        if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
788            policy = return_value_policy::copy;
789        return cast(&src, policy, parent);
790    }
791
792    static handle cast(itype &&src, return_value_policy, handle parent) {
793        return cast(&src, return_value_policy::move, parent);
794    }
795
796    // Returns a (pointer, type_info) pair taking care of necessary RTTI type lookup for a
797    // polymorphic type.  If the instance isn't derived, returns the non-RTTI base version.
798    template <typename T = itype, enable_if_t<std::is_polymorphic<T>::value, int> = 0>
799    static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
800        const void *vsrc = src;
801        auto &cast_type = typeid(itype);
802        const std::type_info *instance_type = nullptr;
803        if (vsrc) {
804            instance_type = &typeid(*src);
805            if (!same_type(cast_type, *instance_type)) {
806                // This is a base pointer to a derived type; if it is a pybind11-registered type, we
807                // can get the correct derived pointer (which may be != base pointer) by a
808                // dynamic_cast to most derived type:
809                if (auto *tpi = get_type_info(*instance_type))
810                    return {dynamic_cast<const void *>(src), const_cast<const type_info *>(tpi)};
811            }
812        }
813        // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
814        // don't do a cast
815        return type_caster_generic::src_and_type(vsrc, cast_type, instance_type);
816    }
817
818    // Non-polymorphic type, so no dynamic casting; just call the generic version directly
819    template <typename T = itype, enable_if_t<!std::is_polymorphic<T>::value, int> = 0>
820    static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
821        return type_caster_generic::src_and_type(src, typeid(itype));
822    }
823
824    static handle cast(const itype *src, return_value_policy policy, handle parent) {
825        auto st = src_and_type(src);
826        return type_caster_generic::cast(
827            st.first, policy, parent, st.second,
828            make_copy_constructor(src), make_move_constructor(src));
829    }
830
831    static handle cast_holder(const itype *src, const void *holder) {
832        auto st = src_and_type(src);
833        return type_caster_generic::cast(
834            st.first, return_value_policy::take_ownership, {}, st.second,
835            nullptr, nullptr, holder);
836    }
837
838    template <typename T> using cast_op_type = cast_op_type<T>;
839
840    operator itype*() { return (type *) value; }
841    operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
842
843protected:
844    using Constructor = void *(*)(const void *);
845
846    /* Only enabled when the types are {copy,move}-constructible *and* when the type
847       does not have a private operator new implementation. */
848    template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
849    static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
850        return [](const void *arg) -> void * {
851            return new T(*reinterpret_cast<const T *>(arg));
852        };
853    }
854
855    template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
856    static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
857        return [](const void *arg) -> void * {
858            return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
859        };
860    }
861
862    static Constructor make_copy_constructor(...) { return nullptr; }
863    static Constructor make_move_constructor(...) { return nullptr; }
864};
865
866template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
867template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
868
869// Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
870template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
871    return caster.operator typename make_caster<T>::template cast_op_type<T>();
872}
873template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
874cast_op(make_caster<T> &&caster) {
875    return std::move(caster).operator
876        typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
877}
878
879template <typename type> class type_caster<std::reference_wrapper<type>> {
880private:
881    using caster_t = make_caster<type>;
882    caster_t subcaster;
883    using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
884    static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
885            "std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
886public:
887    bool load(handle src, bool convert) { return subcaster.load(src, convert); }
888    static PYBIND11_DESCR name() { return caster_t::name(); }
889    static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
890        // It is definitely wrong to take ownership of this pointer, so mask that rvp
891        if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
892            policy = return_value_policy::automatic_reference;
893        return caster_t::cast(&src.get(), policy, parent);
894    }
895    template <typename T> using cast_op_type = std::reference_wrapper<type>;
896    operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
897};
898
899#define PYBIND11_TYPE_CASTER(type, py_name) \
900    protected: \
901        type value; \
902    public: \
903        static PYBIND11_DESCR name() { return type_descr(py_name); } \
904        template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
905        static handle cast(T_ *src, return_value_policy policy, handle parent) { \
906            if (!src) return none().release(); \
907            if (policy == return_value_policy::take_ownership) { \
908                auto h = cast(std::move(*src), policy, parent); delete src; return h; \
909            } else { \
910                return cast(*src, policy, parent); \
911            } \
912        } \
913        operator type*() { return &value; } \
914        operator type&() { return value; } \
915        operator type&&() && { return std::move(value); } \
916        template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>
917
918
919template <typename CharT> using is_std_char_type = any_of<
920    std::is_same<CharT, char>, /* std::string */
921    std::is_same<CharT, char16_t>, /* std::u16string */
922    std::is_same<CharT, char32_t>, /* std::u32string */
923    std::is_same<CharT, wchar_t> /* std::wstring */
924>;
925
926template <typename T>
927struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
928    using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
929    using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
930    using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
931public:
932
933    bool load(handle src, bool convert) {
934        py_type py_value;
935
936        if (!src)
937            return false;
938
939        if (std::is_floating_point<T>::value) {
940            if (convert || PyFloat_Check(src.ptr()))
941                py_value = (py_type) PyFloat_AsDouble(src.ptr());
942            else
943                return false;
944        } else if (PyFloat_Check(src.ptr())) {
945            return false;
946        } else if (std::is_unsigned<py_type>::value) {
947            py_value = as_unsigned<py_type>(src.ptr());
948        } else { // signed integer:
949            py_value = sizeof(T) <= sizeof(long)
950                ? (py_type) PyLong_AsLong(src.ptr())
951                : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
952        }
953
954        bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
955        if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
956                       (py_value < (py_type) std::numeric_limits<T>::min() ||
957                        py_value > (py_type) std::numeric_limits<T>::max()))) {
958            bool type_error = py_err && PyErr_ExceptionMatches(
959#if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
960                PyExc_SystemError
961#else
962                PyExc_TypeError
963#endif
964            );
965            PyErr_Clear();
966            if (type_error && convert && PyNumber_Check(src.ptr())) {
967                auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
968                                                     ? PyNumber_Float(src.ptr())
969                                                     : PyNumber_Long(src.ptr()));
970                PyErr_Clear();
971                return load(tmp, false);
972            }
973            return false;
974        }
975
976        value = (T) py_value;
977        return true;
978    }
979
980    static handle cast(T src, return_value_policy /* policy */, handle /* parent */) {
981        if (std::is_floating_point<T>::value) {
982            return PyFloat_FromDouble((double) src);
983        } else if (sizeof(T) <= sizeof(long)) {
984            if (std::is_signed<T>::value)
985                return PyLong_FromLong((long) src);
986            else
987                return PyLong_FromUnsignedLong((unsigned long) src);
988        } else {
989            if (std::is_signed<T>::value)
990                return PyLong_FromLongLong((long long) src);
991            else
992                return PyLong_FromUnsignedLongLong((unsigned long long) src);
993        }
994    }
995
996    PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
997};
998
999template<typename T> struct void_caster {
1000public:
1001    bool load(handle src, bool) {
1002        if (src && src.is_none())
1003            return true;
1004        return false;
1005    }
1006    static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
1007        return none().inc_ref();
1008    }
1009    PYBIND11_TYPE_CASTER(T, _("None"));
1010};
1011
1012template <> class type_caster<void_type> : public void_caster<void_type> {};
1013
1014template <> class type_caster<void> : public type_caster<void_type> {
1015public:
1016    using type_caster<void_type>::cast;
1017
1018    bool load(handle h, bool) {
1019        if (!h) {
1020            return false;
1021        } else if (h.is_none()) {
1022            value = nullptr;
1023            return true;
1024        }
1025
1026        /* Check if this is a capsule */
1027        if (isinstance<capsule>(h)) {
1028            value = reinterpret_borrow<capsule>(h);
1029            return true;
1030        }
1031
1032        /* Check if this is a C++ type */
1033        auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr());
1034        if (bases.size() == 1) { // Only allowing loading from a single-value type
1035            value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
1036            return true;
1037        }
1038
1039        /* Fail */
1040        return false;
1041    }
1042
1043    static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
1044        if (ptr)
1045            return capsule(ptr).release();
1046        else
1047            return none().inc_ref();
1048    }
1049
1050    template <typename T> using cast_op_type = void*&;
1051    operator void *&() { return value; }
1052    static PYBIND11_DESCR name() { return type_descr(_("capsule")); }
1053private:
1054    void *value = nullptr;
1055};
1056
1057template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
1058
1059template <> class type_caster<bool> {
1060public:
1061    bool load(handle src, bool convert) {
1062        if (!src) return false;
1063        else if (src.ptr() == Py_True) { value = true; return true; }
1064        else if (src.ptr() == Py_False) { value = false; return true; }
1065        else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
1066            // (allow non-implicit conversion for numpy booleans)
1067
1068            Py_ssize_t res = -1;
1069            if (src.is_none()) {
1070                res = 0;  // None is implicitly converted to False
1071            }
1072            #if defined(PYPY_VERSION)
1073            // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
1074            else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
1075                res = PyObject_IsTrue(src.ptr());
1076            }
1077            #else
1078            // Alternate approach for CPython: this does the same as the above, but optimized
1079            // using the CPython API so as to avoid an unneeded attribute lookup.
1080            else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
1081                if (PYBIND11_NB_BOOL(tp_as_number)) {
1082                    res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
1083                }
1084            }
1085            #endif
1086            if (res == 0 || res == 1) {
1087                value = (bool) res;
1088                return true;
1089            }
1090        }
1091        return false;
1092    }
1093    static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
1094        return handle(src ? Py_True : Py_False).inc_ref();
1095    }
1096    PYBIND11_TYPE_CASTER(bool, _("bool"));
1097};
1098
1099// Helper class for UTF-{8,16,32} C++ stl strings:
1100template <typename StringType, bool IsView = false> struct string_caster {
1101    using CharT = typename StringType::value_type;
1102
1103    // Simplify life by being able to assume standard char sizes (the standard only guarantees
1104    // minimums, but Python requires exact sizes)
1105    static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
1106    static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
1107    static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
1108    // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
1109    static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
1110            "Unsupported wchar_t size != 2/4");
1111    static constexpr size_t UTF_N = 8 * sizeof(CharT);
1112
1113    bool load(handle src, bool) {
1114#if PY_MAJOR_VERSION < 3
1115        object temp;
1116#endif
1117        handle load_src = src;
1118        if (!src) {
1119            return false;
1120        } else if (!PyUnicode_Check(load_src.ptr())) {
1121#if PY_MAJOR_VERSION >= 3
1122            return load_bytes(load_src);
1123#else
1124            if (sizeof(CharT) == 1) {
1125                return load_bytes(load_src);
1126            }
1127
1128            // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
1129            if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
1130                return false;
1131
1132            temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
1133            if (!temp) { PyErr_Clear(); return false; }
1134            load_src = temp;
1135#endif
1136        }
1137
1138        object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
1139            load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
1140        if (!utfNbytes) { PyErr_Clear(); return false; }
1141
1142        const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
1143        size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
1144        if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
1145        value = StringType(buffer, length);
1146
1147        // If we're loading a string_view we need to keep the encoded Python object alive:
1148        if (IsView)
1149            loader_life_support::add_patient(utfNbytes);
1150
1151        return true;
1152    }
1153
1154    static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
1155        const char *buffer = reinterpret_cast<const char *>(src.data());
1156        ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
1157        handle s = decode_utfN(buffer, nbytes);
1158        if (!s) throw error_already_set();
1159        return s;
1160    }
1161
1162    PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
1163
1164private:
1165    static handle decode_utfN(const char *buffer, ssize_t nbytes) {
1166#if !defined(PYPY_VERSION)
1167        return
1168            UTF_N == 8  ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
1169            UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
1170                          PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
1171#else
1172        // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
1173        // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
1174        // non-const char * arguments, which is also a nuissance, so bypass the whole thing by just
1175        // passing the encoding as a string value, which works properly:
1176        return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
1177#endif
1178    }
1179
1180    // When loading into a std::string or char*, accept a bytes object as-is (i.e.
1181    // without any encoding/decoding attempt).  For other C++ char sizes this is a no-op.
1182    // which supports loading a unicode from a str, doesn't take this path.
1183    template <typename C = CharT>
1184    bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) {
1185        if (PYBIND11_BYTES_CHECK(src.ptr())) {
1186            // We were passed a Python 3 raw bytes; accept it into a std::string or char*
1187            // without any encoding attempt.
1188            const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
1189            if (bytes) {
1190                value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
1191                return true;
1192            }
1193        }
1194
1195        return false;
1196    }
1197
1198    template <typename C = CharT>
1199    bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; }
1200};
1201
1202template <typename CharT, class Traits, class Allocator>
1203struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
1204    : string_caster<std::basic_string<CharT, Traits, Allocator>> {};
1205
1206#ifdef PYBIND11_HAS_STRING_VIEW
1207template <typename CharT, class Traits>
1208struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
1209    : string_caster<std::basic_string_view<CharT, Traits>, true> {};
1210#endif
1211
1212// Type caster for C-style strings.  We basically use a std::string type caster, but also add the
1213// ability to use None as a nullptr char* (which the string caster doesn't allow).
1214template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
1215    using StringType = std::basic_string<CharT>;
1216    using StringCaster = type_caster<StringType>;
1217    StringCaster str_caster;
1218    bool none = false;
1219public:
1220    bool load(handle src, bool convert) {
1221        if (!src) return false;
1222        if (src.is_none()) {
1223            // Defer accepting None to other overloads (if we aren't in convert mode):
1224            if (!convert) return false;
1225            none = true;
1226            return true;
1227        }
1228        return str_caster.load(src, convert);
1229    }
1230
1231    static handle cast(const CharT *src, return_value_policy policy, handle parent) {
1232        if (src == nullptr) return pybind11::none().inc_ref();
1233        return StringCaster::cast(StringType(src), policy, parent);
1234    }
1235
1236    static handle cast(CharT src, return_value_policy policy, handle parent) {
1237        if (std::is_same<char, CharT>::value) {
1238            handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
1239            if (!s) throw error_already_set();
1240            return s;
1241        }
1242        return StringCaster::cast(StringType(1, src), policy, parent);
1243    }
1244
1245    operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
1246    operator CharT() {
1247        if (none)
1248            throw value_error("Cannot convert None to a character");
1249
1250        auto &value = static_cast<StringType &>(str_caster);
1251        size_t str_len = value.size();
1252        if (str_len == 0)
1253            throw value_error("Cannot convert empty string to a character");
1254
1255        // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
1256        // is too high, and one for multiple unicode characters (caught later), so we need to figure
1257        // out how long the first encoded character is in bytes to distinguish between these two
1258        // errors.  We also allow want to allow unicode characters U+0080 through U+00FF, as those
1259        // can fit into a single char value.
1260        if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
1261            unsigned char v0 = static_cast<unsigned char>(value[0]);
1262            size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
1263                (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
1264                (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
1265                4; // 0b11110xxx - start of 4-byte sequence
1266
1267            if (char0_bytes == str_len) {
1268                // If we have a 128-255 value, we can decode it into a single char:
1269                if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
1270                    return static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
1271                }
1272                // Otherwise we have a single character, but it's > U+00FF
1273                throw value_error("Character code point not in range(0x100)");
1274            }
1275        }
1276
1277        // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
1278        // surrogate pair with total length 2 instantly indicates a range error (but not a "your
1279        // string was too long" error).
1280        else if (StringCaster::UTF_N == 16 && str_len == 2) {
1281            char16_t v0 = static_cast<char16_t>(value[0]);
1282            if (v0 >= 0xD800 && v0 < 0xE000)
1283                throw value_error("Character code point not in range(0x10000)");
1284        }
1285
1286        if (str_len != 1)
1287            throw value_error("Expected a character, but multi-character string found");
1288
1289        return value[0];
1290    }
1291
1292    static PYBIND11_DESCR name() { return type_descr(_(PYBIND11_STRING_NAME)); }
1293    template <typename _T> using cast_op_type = remove_reference_t<pybind11::detail::cast_op_type<_T>>;
1294};
1295
1296// Base implementation for std::tuple and std::pair
1297template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
1298    using type = Tuple<Ts...>;
1299    static constexpr auto size = sizeof...(Ts);
1300    using indices = make_index_sequence<size>;
1301public:
1302
1303    bool load(handle src, bool convert) {
1304        if (!isinstance<sequence>(src))
1305            return false;
1306        const auto seq = reinterpret_borrow<sequence>(src);
1307        if (seq.size() != size)
1308            return false;
1309        return load_impl(seq, convert, indices{});
1310    }
1311
1312    template <typename T>
1313    static handle cast(T &&src, return_value_policy policy, handle parent) {
1314        return cast_impl(std::forward<T>(src), policy, parent, indices{});
1315    }
1316
1317    static PYBIND11_DESCR name() {
1318        return type_descr(_("Tuple[") + detail::concat(make_caster<Ts>::name()...) + _("]"));
1319    }
1320
1321    template <typename T> using cast_op_type = type;
1322
1323    operator type() & { return implicit_cast(indices{}); }
1324    operator type() && { return std::move(*this).implicit_cast(indices{}); }
1325
1326protected:
1327    template <size_t... Is>
1328    type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
1329    template <size_t... Is>
1330    type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
1331
1332    static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
1333
1334    template <size_t... Is>
1335    bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
1336        for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
1337            if (!r)
1338                return false;
1339        return true;
1340    }
1341
1342    /* Implementation: Convert a C++ tuple into a Python tuple */
1343    template <typename T, size_t... Is>
1344    static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
1345        std::array<object, size> entries{{
1346            reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
1347        }};
1348        for (const auto &entry: entries)
1349            if (!entry)
1350                return handle();
1351        tuple result(size);
1352        int counter = 0;
1353        for (auto & entry: entries)
1354            PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
1355        return result.release();
1356    }
1357
1358    Tuple<make_caster<Ts>...> subcasters;
1359};
1360
1361template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
1362    : public tuple_caster<std::pair, T1, T2> {};
1363
1364template <typename... Ts> class type_caster<std::tuple<Ts...>>
1365    : public tuple_caster<std::tuple, Ts...> {};
1366
1367/// Helper class which abstracts away certain actions. Users can provide specializations for
1368/// custom holders, but it's only necessary if the type has a non-standard interface.
1369template <typename T>
1370struct holder_helper {
1371    static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
1372};
1373
1374/// Type caster for holder types like std::shared_ptr, etc.
1375template <typename type, typename holder_type>
1376struct copyable_holder_caster : public type_caster_base<type> {
1377public:
1378    using base = type_caster_base<type>;
1379    static_assert(std::is_base_of<base, type_caster<type>>::value,
1380            "Holder classes are only supported for custom types");
1381    using base::base;
1382    using base::cast;
1383    using base::typeinfo;
1384    using base::value;
1385
1386    bool load(handle src, bool convert) {
1387        return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
1388    }
1389
1390    explicit operator type*() { return this->value; }
1391    explicit operator type&() { return *(this->value); }
1392    explicit operator holder_type*() { return &holder; }
1393
1394    // Workaround for Intel compiler bug
1395    // see pybind11 issue 94
1396    #if defined(__ICC) || defined(__INTEL_COMPILER)
1397    operator holder_type&() { return holder; }
1398    #else
1399    explicit operator holder_type&() { return holder; }
1400    #endif
1401
1402    static handle cast(const holder_type &src, return_value_policy, handle) {
1403        const auto *ptr = holder_helper<holder_type>::get(src);
1404        return type_caster_base<type>::cast_holder(ptr, &src);
1405    }
1406
1407protected:
1408    friend class type_caster_generic;
1409    void check_holder_compat() {
1410        if (typeinfo->default_holder)
1411            throw cast_error("Unable to load a custom holder type from a default-holder instance");
1412    }
1413
1414    bool load_value(value_and_holder &&v_h) {
1415        if (v_h.holder_constructed()) {
1416            value = v_h.value_ptr();
1417            holder = v_h.holder<holder_type>();
1418            return true;
1419        } else {
1420            throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
1421#if defined(NDEBUG)
1422                             "(compile in debug mode for type information)");
1423#else
1424                             "of type '" + type_id<holder_type>() + "''");
1425#endif
1426        }
1427    }
1428
1429    template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
1430    bool try_implicit_casts(handle, bool) { return false; }
1431
1432    template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
1433    bool try_implicit_casts(handle src, bool convert) {
1434        for (auto &cast : typeinfo->implicit_casts) {
1435            copyable_holder_caster sub_caster(*cast.first);
1436            if (sub_caster.load(src, convert)) {
1437                value = cast.second(sub_caster.value);
1438                holder = holder_type(sub_caster.holder, (type *) value);
1439                return true;
1440            }
1441        }
1442        return false;
1443    }
1444
1445    static bool try_direct_conversions(handle) { return false; }
1446
1447
1448    holder_type holder;
1449};
1450
1451/// Specialize for the common std::shared_ptr, so users don't need to
1452template <typename T>
1453class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
1454
1455template <typename type, typename holder_type>
1456struct move_only_holder_caster {
1457    static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
1458            "Holder classes are only supported for custom types");
1459
1460    static handle cast(holder_type &&src, return_value_policy, handle) {
1461        auto *ptr = holder_helper<holder_type>::get(src);
1462        return type_caster_base<type>::cast_holder(ptr, &src);
1463    }
1464    static PYBIND11_DESCR name() { return type_caster_base<type>::name(); }
1465};
1466
1467template <typename type, typename deleter>
1468class type_caster<std::unique_ptr<type, deleter>>
1469    : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
1470
1471template <typename type, typename holder_type>
1472using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
1473                                         copyable_holder_caster<type, holder_type>,
1474                                         move_only_holder_caster<type, holder_type>>;
1475
1476template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
1477
1478/// Create a specialization for custom holder types (silently ignores std::shared_ptr)
1479#define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
1480    namespace pybind11 { namespace detail { \
1481    template <typename type> \
1482    struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__>  { }; \
1483    template <typename type> \
1484    class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
1485        : public type_caster_holder<type, holder_type> { }; \
1486    }}
1487
1488// PYBIND11_DECLARE_HOLDER_TYPE holder types:
1489template <typename base, typename holder> struct is_holder_type :
1490    std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
1491// Specialization for always-supported unique_ptr holders:
1492template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
1493    std::true_type {};
1494
1495template <typename T> struct handle_type_name { static PYBIND11_DESCR name() { return _<T>(); } };
1496template <> struct handle_type_name<bytes> { static PYBIND11_DESCR name() { return _(PYBIND11_BYTES_NAME); } };
1497template <> struct handle_type_name<args> { static PYBIND11_DESCR name() { return _("*args"); } };
1498template <> struct handle_type_name<kwargs> { static PYBIND11_DESCR name() { return _("**kwargs"); } };
1499
1500template <typename type>
1501struct pyobject_caster {
1502    template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
1503    bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
1504
1505    template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
1506    bool load(handle src, bool /* convert */) {
1507        if (!isinstance<type>(src))
1508            return false;
1509        value = reinterpret_borrow<type>(src);
1510        return true;
1511    }
1512
1513    static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
1514        return src.inc_ref();
1515    }
1516    PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name());
1517};
1518
1519template <typename T>
1520class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
1521
1522// Our conditions for enabling moving are quite restrictive:
1523// At compile time:
1524// - T needs to be a non-const, non-pointer, non-reference type
1525// - type_caster<T>::operator T&() must exist
1526// - the type must be move constructible (obviously)
1527// At run-time:
1528// - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
1529//   must have ref_count() == 1)h
1530// If any of the above are not satisfied, we fall back to copying.
1531template <typename T> using move_is_plain_type = satisfies_none_of<T,
1532    std::is_void, std::is_pointer, std::is_reference, std::is_const
1533>;
1534template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
1535template <typename T> struct move_always<T, enable_if_t<all_of<
1536    move_is_plain_type<T>,
1537    negation<is_copy_constructible<T>>,
1538    std::is_move_constructible<T>,
1539    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
1540>::value>> : std::true_type {};
1541template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
1542template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
1543    move_is_plain_type<T>,
1544    negation<move_always<T>>,
1545    std::is_move_constructible<T>,
1546    std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
1547>::value>> : std::true_type {};
1548template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
1549
1550// Detect whether returning a `type` from a cast on type's type_caster is going to result in a
1551// reference or pointer to a local variable of the type_caster.  Basically, only
1552// non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
1553// everything else returns a reference/pointer to a local variable.
1554template <typename type> using cast_is_temporary_value_reference = bool_constant<
1555    (std::is_reference<type>::value || std::is_pointer<type>::value) &&
1556    !std::is_base_of<type_caster_generic, make_caster<type>>::value
1557>;
1558
1559// When a value returned from a C++ function is being cast back to Python, we almost always want to
1560// force `policy = move`, regardless of the return value policy the function/method was declared
1561// with.  Some classes (most notably Eigen::Ref and related) need to avoid this, and so can do so by
1562// specializing this struct.
1563template <typename Return, typename SFINAE = void> struct return_value_policy_override {
1564    static return_value_policy policy(return_value_policy p) {
1565        return !std::is_lvalue_reference<Return>::value && !std::is_pointer<Return>::value
1566            ? return_value_policy::move : p;
1567    }
1568};
1569
1570// Basic python -> C++ casting; throws if casting fails
1571template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
1572    if (!conv.load(handle, true)) {
1573#if defined(NDEBUG)
1574        throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
1575#else
1576        throw cast_error("Unable to cast Python instance of type " +
1577            (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "''");
1578#endif
1579    }
1580    return conv;
1581}
1582// Wrapper around the above that also constructs and returns a type_caster
1583template <typename T> make_caster<T> load_type(const handle &handle) {
1584    make_caster<T> conv;
1585    load_type(conv, handle);
1586    return conv;
1587}
1588
1589NAMESPACE_END(detail)
1590
1591// pytype -> C++ type
1592template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1593T cast(const handle &handle) {
1594    using namespace detail;
1595    static_assert(!cast_is_temporary_value_reference<T>::value,
1596            "Unable to cast type to reference: value is local to type caster");
1597    return cast_op<T>(load_type<T>(handle));
1598}
1599
1600// pytype -> pytype (calls converting constructor)
1601template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
1602T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
1603
1604// C++ type -> py::object
1605template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1606object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
1607            handle parent = handle()) {
1608    if (policy == return_value_policy::automatic)
1609        policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
1610    else if (policy == return_value_policy::automatic_reference)
1611        policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
1612    return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
1613}
1614
1615template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
1616template <> inline void handle::cast() const { return; }
1617
1618template <typename T>
1619detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
1620    if (obj.ref_count() > 1)
1621#if defined(NDEBUG)
1622        throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
1623            " (compile in debug mode for details)");
1624#else
1625        throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
1626                " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
1627#endif
1628
1629    // Move into a temporary and return that, because the reference may be a local value of `conv`
1630    T ret = std::move(detail::load_type<T>(obj).operator T&());
1631    return ret;
1632}
1633
1634// Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
1635// - If we have to move (because T has no copy constructor), do it.  This will fail if the moved
1636//   object has multiple references, but trying to copy will fail to compile.
1637// - If both movable and copyable, check ref count: if 1, move; otherwise copy
1638// - Otherwise (not movable), copy.
1639template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
1640    return move<T>(std::move(object));
1641}
1642template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
1643    if (object.ref_count() > 1)
1644        return cast<T>(object);
1645    else
1646        return move<T>(std::move(object));
1647}
1648template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
1649    return cast<T>(object);
1650}
1651
1652template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
1653template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
1654template <> inline void object::cast() const & { return; }
1655template <> inline void object::cast() && { return; }
1656
1657NAMESPACE_BEGIN(detail)
1658
1659// Declared in pytypes.h:
1660template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
1661object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
1662
1663struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
1664template <typename ret_type> using overload_caster_t = conditional_t<
1665    cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
1666
1667// Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
1668// store the result in the given variable.  For other types, this is a no-op.
1669template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
1670    return cast_op<T>(load_type(caster, o));
1671}
1672template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
1673    pybind11_fail("Internal error: cast_ref fallback invoked"); }
1674
1675// Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
1676// though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
1677// cases where pybind11::cast is valid.
1678template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
1679    return pybind11::cast<T>(std::move(o)); }
1680template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
1681    pybind11_fail("Internal error: cast_safe fallback invoked"); }
1682template <> inline void cast_safe<void>(object &&) {}
1683
1684NAMESPACE_END(detail)
1685
1686template <return_value_policy policy = return_value_policy::automatic_reference,
1687          typename... Args> tuple make_tuple(Args&&... args_) {
1688    constexpr size_t size = sizeof...(Args);
1689    std::array<object, size> args {
1690        { reinterpret_steal<object>(detail::make_caster<Args>::cast(
1691            std::forward<Args>(args_), policy, nullptr))... }
1692    };
1693    for (size_t i = 0; i < args.size(); i++) {
1694        if (!args[i]) {
1695#if defined(NDEBUG)
1696            throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
1697#else
1698            std::array<std::string, size> argtypes { {type_id<Args>()...} };
1699            throw cast_error("make_tuple(): unable to convert argument of type '" +
1700                argtypes[i] + "' to Python object");
1701#endif
1702        }
1703    }
1704    tuple result(size);
1705    int counter = 0;
1706    for (auto &arg_value : args)
1707        PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
1708    return result;
1709}
1710
1711/// \ingroup annotations
1712/// Annotation for arguments
1713struct arg {
1714    /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
1715    constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
1716    /// Assign a value to this argument
1717    template <typename T> arg_v operator=(T &&value) const;
1718    /// Indicate that the type should not be converted in the type caster
1719    arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
1720    /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
1721    arg &none(bool flag = true) { flag_none = flag; return *this; }
1722
1723    const char *name; ///< If non-null, this is a named kwargs argument
1724    bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
1725    bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
1726};
1727
1728/// \ingroup annotations
1729/// Annotation for arguments with values
1730struct arg_v : arg {
1731private:
1732    template <typename T>
1733    arg_v(arg &&base, T &&x, const char *descr = nullptr)
1734        : arg(base),
1735          value(reinterpret_steal<object>(
1736              detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
1737          )),
1738          descr(descr)
1739#if !defined(NDEBUG)
1740        , type(type_id<T>())
1741#endif
1742    { }
1743
1744public:
1745    /// Direct construction with name, default, and description
1746    template <typename T>
1747    arg_v(const char *name, T &&x, const char *descr = nullptr)
1748        : arg_v(arg(name), std::forward<T>(x), descr) { }
1749
1750    /// Called internally when invoking `py::arg("a") = value`
1751    template <typename T>
1752    arg_v(const arg &base, T &&x, const char *descr = nullptr)
1753        : arg_v(arg(base), std::forward<T>(x), descr) { }
1754
1755    /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
1756    arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
1757
1758    /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
1759    arg_v &none(bool flag = true) { arg::none(flag); return *this; }
1760
1761    /// The default value
1762    object value;
1763    /// The (optional) description of the default value
1764    const char *descr;
1765#if !defined(NDEBUG)
1766    /// The C++ type name of the default value (only available when compiled in debug mode)
1767    std::string type;
1768#endif
1769};
1770
1771template <typename T>
1772arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
1773
1774/// Alias for backward compatibility -- to be removed in version 2.0
1775template <typename /*unused*/> using arg_t = arg_v;
1776
1777inline namespace literals {
1778/** \rst
1779    String literal version of `arg`
1780 \endrst */
1781constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
1782}
1783
1784NAMESPACE_BEGIN(detail)
1785
1786// forward declaration (definition in attr.h)
1787struct function_record;
1788
1789/// Internal data associated with a single function call
1790struct function_call {
1791    function_call(function_record &f, handle p); // Implementation in attr.h
1792
1793    /// The function data:
1794    const function_record &func;
1795
1796    /// Arguments passed to the function:
1797    std::vector<handle> args;
1798
1799    /// The `convert` value the arguments should be loaded with
1800    std::vector<bool> args_convert;
1801
1802    /// The parent, if any
1803    handle parent;
1804
1805    /// If this is a call to an initializer, this argument contains `self`
1806    handle init_self;
1807};
1808
1809
1810/// Helper class which loads arguments for C++ functions called from Python
1811template <typename... Args>
1812class argument_loader {
1813    using indices = make_index_sequence<sizeof...(Args)>;
1814
1815    template <typename Arg> using argument_is_args   = std::is_same<intrinsic_t<Arg>, args>;
1816    template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
1817    // Get args/kwargs argument positions relative to the end of the argument list:
1818    static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
1819                        kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
1820
1821    static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
1822
1823    static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
1824
1825public:
1826    static constexpr bool has_kwargs = kwargs_pos < 0;
1827    static constexpr bool has_args = args_pos < 0;
1828
1829    static PYBIND11_DESCR arg_names() { return detail::concat(make_caster<Args>::name()...); }
1830
1831    bool load_args(function_call &call) {
1832        return load_impl_sequence(call, indices{});
1833    }
1834
1835    template <typename Return, typename Guard, typename Func>
1836    enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
1837        return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
1838    }
1839
1840    template <typename Return, typename Guard, typename Func>
1841    enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
1842        std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
1843        return void_type();
1844    }
1845
1846private:
1847
1848    static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
1849
1850    template <size_t... Is>
1851    bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
1852        for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
1853            if (!r)
1854                return false;
1855        return true;
1856    }
1857
1858    template <typename Return, typename Func, size_t... Is, typename Guard>
1859    Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
1860        return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
1861    }
1862
1863    std::tuple<make_caster<Args>...> argcasters;
1864};
1865
1866/// Helper class which collects only positional arguments for a Python function call.
1867/// A fancier version below can collect any argument, but this one is optimal for simple calls.
1868template <return_value_policy policy>
1869class simple_collector {
1870public:
1871    template <typename... Ts>
1872    explicit simple_collector(Ts &&...values)
1873        : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
1874
1875    const tuple &args() const & { return m_args; }
1876    dict kwargs() const { return {}; }
1877
1878    tuple args() && { return std::move(m_args); }
1879
1880    /// Call a Python function and pass the collected arguments
1881    object call(PyObject *ptr) const {
1882        PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
1883        if (!result)
1884            throw error_already_set();
1885        return reinterpret_steal<object>(result);
1886    }
1887
1888private:
1889    tuple m_args;
1890};
1891
1892/// Helper class which collects positional, keyword, * and ** arguments for a Python function call
1893template <return_value_policy policy>
1894class unpacking_collector {
1895public:
1896    template <typename... Ts>
1897    explicit unpacking_collector(Ts &&...values) {
1898        // Tuples aren't (easily) resizable so a list is needed for collection,
1899        // but the actual function call strictly requires a tuple.
1900        auto args_list = list();
1901        int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
1902        ignore_unused(_);
1903
1904        m_args = std::move(args_list);
1905    }
1906
1907    const tuple &args() const & { return m_args; }
1908    const dict &kwargs() const & { return m_kwargs; }
1909
1910    tuple args() && { return std::move(m_args); }
1911    dict kwargs() && { return std::move(m_kwargs); }
1912
1913    /// Call a Python function and pass the collected arguments
1914    object call(PyObject *ptr) const {
1915        PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
1916        if (!result)
1917            throw error_already_set();
1918        return reinterpret_steal<object>(result);
1919    }
1920
1921private:
1922    template <typename T>
1923    void process(list &args_list, T &&x) {
1924        auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
1925        if (!o) {
1926#if defined(NDEBUG)
1927            argument_cast_error();
1928#else
1929            argument_cast_error(std::to_string(args_list.size()), type_id<T>());
1930#endif
1931        }
1932        args_list.append(o);
1933    }
1934
1935    void process(list &args_list, detail::args_proxy ap) {
1936        for (const auto &a : ap)
1937            args_list.append(a);
1938    }
1939
1940    void process(list &/*args_list*/, arg_v a) {
1941        if (!a.name)
1942#if defined(NDEBUG)
1943            nameless_argument_error();
1944#else
1945            nameless_argument_error(a.type);
1946#endif
1947
1948        if (m_kwargs.contains(a.name)) {
1949#if defined(NDEBUG)
1950            multiple_values_error();
1951#else
1952            multiple_values_error(a.name);
1953#endif
1954        }
1955        if (!a.value) {
1956#if defined(NDEBUG)
1957            argument_cast_error();
1958#else
1959            argument_cast_error(a.name, a.type);
1960#endif
1961        }
1962        m_kwargs[a.name] = a.value;
1963    }
1964
1965    void process(list &/*args_list*/, detail::kwargs_proxy kp) {
1966        if (!kp)
1967            return;
1968        for (const auto &k : reinterpret_borrow<dict>(kp)) {
1969            if (m_kwargs.contains(k.first)) {
1970#if defined(NDEBUG)
1971                multiple_values_error();
1972#else
1973                multiple_values_error(str(k.first));
1974#endif
1975            }
1976            m_kwargs[k.first] = k.second;
1977        }
1978    }
1979
1980    [[noreturn]] static void nameless_argument_error() {
1981        throw type_error("Got kwargs without a name; only named arguments "
1982                         "may be passed via py::arg() to a python function call. "
1983                         "(compile in debug mode for details)");
1984    }
1985    [[noreturn]] static void nameless_argument_error(std::string type) {
1986        throw type_error("Got kwargs without a name of type '" + type + "'; only named "
1987                         "arguments may be passed via py::arg() to a python function call. ");
1988    }
1989    [[noreturn]] static void multiple_values_error() {
1990        throw type_error("Got multiple values for keyword argument "
1991                         "(compile in debug mode for details)");
1992    }
1993
1994    [[noreturn]] static void multiple_values_error(std::string name) {
1995        throw type_error("Got multiple values for keyword argument '" + name + "'");
1996    }
1997
1998    [[noreturn]] static void argument_cast_error() {
1999        throw cast_error("Unable to convert call argument to Python object "
2000                         "(compile in debug mode for details)");
2001    }
2002
2003    [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
2004        throw cast_error("Unable to convert call argument '" + name
2005                         + "' of type '" + type + "' to Python object");
2006    }
2007
2008private:
2009    tuple m_args;
2010    dict m_kwargs;
2011};
2012
2013/// Collect only positional arguments for a Python function call
2014template <return_value_policy policy, typename... Args,
2015          typename = enable_if_t<all_of<is_positional<Args>...>::value>>
2016simple_collector<policy> collect_arguments(Args &&...args) {
2017    return simple_collector<policy>(std::forward<Args>(args)...);
2018}
2019
2020/// Collect all arguments, including keywords and unpacking (only instantiated when needed)
2021template <return_value_policy policy, typename... Args,
2022          typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
2023unpacking_collector<policy> collect_arguments(Args &&...args) {
2024    // Following argument order rules for generalized unpacking according to PEP 448
2025    static_assert(
2026        constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
2027        && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
2028        "Invalid function call: positional args must precede keywords and ** unpacking; "
2029        "* unpacking must precede ** unpacking"
2030    );
2031    return unpacking_collector<policy>(std::forward<Args>(args)...);
2032}
2033
2034template <typename Derived>
2035template <return_value_policy policy, typename... Args>
2036object object_api<Derived>::operator()(Args &&...args) const {
2037    return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
2038}
2039
2040template <typename Derived>
2041template <return_value_policy policy, typename... Args>
2042object object_api<Derived>::call(Args &&...args) const {
2043    return operator()<policy>(std::forward<Args>(args)...);
2044}
2045
2046NAMESPACE_END(detail)
2047
2048#define PYBIND11_MAKE_OPAQUE(Type) \
2049    namespace pybind11 { namespace detail { \
2050        template<> class type_caster<Type> : public type_caster_base<Type> { }; \
2051    }}
2052
2053NAMESPACE_END(PYBIND11_NAMESPACE)
2054