classes.rst revision 12391:ceeca8b41e4b
1.. _classes:
2
3Object-oriented code
4####################
5
6Creating bindings for a custom type
7===================================
8
9Let's now look at a more complex example where we'll create bindings for a
10custom C++ data structure named ``Pet``. Its definition is given below:
11
12.. code-block:: cpp
13
14    struct Pet {
15        Pet(const std::string &name) : name(name) { }
16        void setName(const std::string &name_) { name = name_; }
17        const std::string &getName() const { return name; }
18
19        std::string name;
20    };
21
22The binding code for ``Pet`` looks as follows:
23
24.. code-block:: cpp
25
26    #include <pybind11/pybind11.h>
27
28    namespace py = pybind11;
29
30    PYBIND11_MODULE(example, m) {
31        py::class_<Pet>(m, "Pet")
32            .def(py::init<const std::string &>())
33            .def("setName", &Pet::setName)
34            .def("getName", &Pet::getName);
35    }
36
37:class:`class_` creates bindings for a C++ *class* or *struct*-style data
38structure. :func:`init` is a convenience function that takes the types of a
39constructor's parameters as template arguments and wraps the corresponding
40constructor (see the :ref:`custom_constructors` section for details). An
41interactive Python session demonstrating this example is shown below:
42
43.. code-block:: pycon
44
45    % python
46    >>> import example
47    >>> p = example.Pet('Molly')
48    >>> print(p)
49    <example.Pet object at 0x10cd98060>
50    >>> p.getName()
51    u'Molly'
52    >>> p.setName('Charly')
53    >>> p.getName()
54    u'Charly'
55
56.. seealso::
57
58    Static member functions can be bound in the same way using
59    :func:`class_::def_static`.
60
61Keyword and default arguments
62=============================
63It is possible to specify keyword and default arguments using the syntax
64discussed in the previous chapter. Refer to the sections :ref:`keyword_args`
65and :ref:`default_args` for details.
66
67Binding lambda functions
68========================
69
70Note how ``print(p)`` produced a rather useless summary of our data structure in the example above:
71
72.. code-block:: pycon
73
74    >>> print(p)
75    <example.Pet object at 0x10cd98060>
76
77To address this, we could bind an utility function that returns a human-readable
78summary to the special method slot named ``__repr__``. Unfortunately, there is no
79suitable functionality in the ``Pet`` data structure, and it would be nice if
80we did not have to change it. This can easily be accomplished by binding a
81Lambda function instead:
82
83.. code-block:: cpp
84
85        py::class_<Pet>(m, "Pet")
86            .def(py::init<const std::string &>())
87            .def("setName", &Pet::setName)
88            .def("getName", &Pet::getName)
89            .def("__repr__",
90                [](const Pet &a) {
91                    return "<example.Pet named '" + a.name + "'>";
92                }
93            );
94
95Both stateless [#f1]_ and stateful lambda closures are supported by pybind11.
96With the above change, the same Python code now produces the following output:
97
98.. code-block:: pycon
99
100    >>> print(p)
101    <example.Pet named 'Molly'>
102
103.. [#f1] Stateless closures are those with an empty pair of brackets ``[]`` as the capture object.
104
105.. _properties:
106
107Instance and static fields
108==========================
109
110We can also directly expose the ``name`` field using the
111:func:`class_::def_readwrite` method. A similar :func:`class_::def_readonly`
112method also exists for ``const`` fields.
113
114.. code-block:: cpp
115
116        py::class_<Pet>(m, "Pet")
117            .def(py::init<const std::string &>())
118            .def_readwrite("name", &Pet::name)
119            // ... remainder ...
120
121This makes it possible to write
122
123.. code-block:: pycon
124
125    >>> p = example.Pet('Molly')
126    >>> p.name
127    u'Molly'
128    >>> p.name = 'Charly'
129    >>> p.name
130    u'Charly'
131
132Now suppose that ``Pet::name`` was a private internal variable
133that can only be accessed via setters and getters.
134
135.. code-block:: cpp
136
137    class Pet {
138    public:
139        Pet(const std::string &name) : name(name) { }
140        void setName(const std::string &name_) { name = name_; }
141        const std::string &getName() const { return name; }
142    private:
143        std::string name;
144    };
145
146In this case, the method :func:`class_::def_property`
147(:func:`class_::def_property_readonly` for read-only data) can be used to
148provide a field-like interface within Python that will transparently call
149the setter and getter functions:
150
151.. code-block:: cpp
152
153        py::class_<Pet>(m, "Pet")
154            .def(py::init<const std::string &>())
155            .def_property("name", &Pet::getName, &Pet::setName)
156            // ... remainder ...
157
158.. seealso::
159
160    Similar functions :func:`class_::def_readwrite_static`,
161    :func:`class_::def_readonly_static` :func:`class_::def_property_static`,
162    and :func:`class_::def_property_readonly_static` are provided for binding
163    static variables and properties. Please also see the section on
164    :ref:`static_properties` in the advanced part of the documentation.
165
166Dynamic attributes
167==================
168
169Native Python classes can pick up new attributes dynamically:
170
171.. code-block:: pycon
172
173    >>> class Pet:
174    ...     name = 'Molly'
175    ...
176    >>> p = Pet()
177    >>> p.name = 'Charly'  # overwrite existing
178    >>> p.age = 2  # dynamically add a new attribute
179
180By default, classes exported from C++ do not support this and the only writable
181attributes are the ones explicitly defined using :func:`class_::def_readwrite`
182or :func:`class_::def_property`.
183
184.. code-block:: cpp
185
186    py::class_<Pet>(m, "Pet")
187        .def(py::init<>())
188        .def_readwrite("name", &Pet::name);
189
190Trying to set any other attribute results in an error:
191
192.. code-block:: pycon
193
194    >>> p = example.Pet()
195    >>> p.name = 'Charly'  # OK, attribute defined in C++
196    >>> p.age = 2  # fail
197    AttributeError: 'Pet' object has no attribute 'age'
198
199To enable dynamic attributes for C++ classes, the :class:`py::dynamic_attr` tag
200must be added to the :class:`py::class_` constructor:
201
202.. code-block:: cpp
203
204    py::class_<Pet>(m, "Pet", py::dynamic_attr())
205        .def(py::init<>())
206        .def_readwrite("name", &Pet::name);
207
208Now everything works as expected:
209
210.. code-block:: pycon
211
212    >>> p = example.Pet()
213    >>> p.name = 'Charly'  # OK, overwrite value in C++
214    >>> p.age = 2  # OK, dynamically add a new attribute
215    >>> p.__dict__  # just like a native Python class
216    {'age': 2}
217
218Note that there is a small runtime cost for a class with dynamic attributes.
219Not only because of the addition of a ``__dict__``, but also because of more
220expensive garbage collection tracking which must be activated to resolve
221possible circular references. Native Python classes incur this same cost by
222default, so this is not anything to worry about. By default, pybind11 classes
223are more efficient than native Python classes. Enabling dynamic attributes
224just brings them on par.
225
226.. _inheritance:
227
228Inheritance and automatic upcasting
229===================================
230
231Suppose now that the example consists of two data structures with an
232inheritance relationship:
233
234.. code-block:: cpp
235
236    struct Pet {
237        Pet(const std::string &name) : name(name) { }
238        std::string name;
239    };
240
241    struct Dog : Pet {
242        Dog(const std::string &name) : Pet(name) { }
243        std::string bark() const { return "woof!"; }
244    };
245
246There are two different ways of indicating a hierarchical relationship to
247pybind11: the first specifies the C++ base class as an extra template
248parameter of the :class:`class_`:
249
250.. code-block:: cpp
251
252    py::class_<Pet>(m, "Pet")
253       .def(py::init<const std::string &>())
254       .def_readwrite("name", &Pet::name);
255
256    // Method 1: template parameter:
257    py::class_<Dog, Pet /* <- specify C++ parent type */>(m, "Dog")
258        .def(py::init<const std::string &>())
259        .def("bark", &Dog::bark);
260
261Alternatively, we can also assign a name to the previously bound ``Pet``
262:class:`class_` object and reference it when binding the ``Dog`` class:
263
264.. code-block:: cpp
265
266    py::class_<Pet> pet(m, "Pet");
267    pet.def(py::init<const std::string &>())
268       .def_readwrite("name", &Pet::name);
269
270    // Method 2: pass parent class_ object:
271    py::class_<Dog>(m, "Dog", pet /* <- specify Python parent type */)
272        .def(py::init<const std::string &>())
273        .def("bark", &Dog::bark);
274
275Functionality-wise, both approaches are equivalent. Afterwards, instances will
276expose fields and methods of both types:
277
278.. code-block:: pycon
279
280    >>> p = example.Dog('Molly')
281    >>> p.name
282    u'Molly'
283    >>> p.bark()
284    u'woof!'
285
286The C++ classes defined above are regular non-polymorphic types with an
287inheritance relationship. This is reflected in Python:
288
289.. code-block:: cpp
290
291    // Return a base pointer to a derived instance
292    m.def("pet_store", []() { return std::unique_ptr<Pet>(new Dog("Molly")); });
293
294.. code-block:: pycon
295
296    >>> p = example.pet_store()
297    >>> type(p)  # `Dog` instance behind `Pet` pointer
298    Pet          # no pointer upcasting for regular non-polymorphic types
299    >>> p.bark()
300    AttributeError: 'Pet' object has no attribute 'bark'
301
302The function returned a ``Dog`` instance, but because it's a non-polymorphic
303type behind a base pointer, Python only sees a ``Pet``. In C++, a type is only
304considered polymorphic if it has at least one virtual function and pybind11
305will automatically recognize this:
306
307.. code-block:: cpp
308
309    struct PolymorphicPet {
310        virtual ~PolymorphicPet() = default;
311    };
312
313    struct PolymorphicDog : PolymorphicPet {
314        std::string bark() const { return "woof!"; }
315    };
316
317    // Same binding code
318    py::class_<PolymorphicPet>(m, "PolymorphicPet");
319    py::class_<PolymorphicDog, PolymorphicPet>(m, "PolymorphicDog")
320        .def(py::init<>())
321        .def("bark", &PolymorphicDog::bark);
322
323    // Again, return a base pointer to a derived instance
324    m.def("pet_store2", []() { return std::unique_ptr<PolymorphicPet>(new PolymorphicDog); });
325
326.. code-block:: pycon
327
328    >>> p = example.pet_store2()
329    >>> type(p)
330    PolymorphicDog  # automatically upcast
331    >>> p.bark()
332    u'woof!'
333
334Given a pointer to a polymorphic base, pybind11 performs automatic upcasting
335to the actual derived type. Note that this goes beyond the usual situation in
336C++: we don't just get access to the virtual functions of the base, we get the
337concrete derived type including functions and attributes that the base type may
338not even be aware of.
339
340.. seealso::
341
342    For more information about polymorphic behavior see :ref:`overriding_virtuals`.
343
344
345Overloaded methods
346==================
347
348Sometimes there are several overloaded C++ methods with the same name taking
349different kinds of input arguments:
350
351.. code-block:: cpp
352
353    struct Pet {
354        Pet(const std::string &name, int age) : name(name), age(age) { }
355
356        void set(int age_) { age = age_; }
357        void set(const std::string &name_) { name = name_; }
358
359        std::string name;
360        int age;
361    };
362
363Attempting to bind ``Pet::set`` will cause an error since the compiler does not
364know which method the user intended to select. We can disambiguate by casting
365them to function pointers. Binding multiple functions to the same Python name
366automatically creates a chain of function overloads that will be tried in
367sequence.
368
369.. code-block:: cpp
370
371    py::class_<Pet>(m, "Pet")
372       .def(py::init<const std::string &, int>())
373       .def("set", (void (Pet::*)(int)) &Pet::set, "Set the pet's age")
374       .def("set", (void (Pet::*)(const std::string &)) &Pet::set, "Set the pet's name");
375
376The overload signatures are also visible in the method's docstring:
377
378.. code-block:: pycon
379
380    >>> help(example.Pet)
381
382    class Pet(__builtin__.object)
383     |  Methods defined here:
384     |
385     |  __init__(...)
386     |      Signature : (Pet, str, int) -> NoneType
387     |
388     |  set(...)
389     |      1. Signature : (Pet, int) -> NoneType
390     |
391     |      Set the pet's age
392     |
393     |      2. Signature : (Pet, str) -> NoneType
394     |
395     |      Set the pet's name
396
397If you have a C++14 compatible compiler [#cpp14]_, you can use an alternative
398syntax to cast the overloaded function:
399
400.. code-block:: cpp
401
402    py::class_<Pet>(m, "Pet")
403        .def("set", py::overload_cast<int>(&Pet::set), "Set the pet's age")
404        .def("set", py::overload_cast<const std::string &>(&Pet::set), "Set the pet's name");
405
406Here, ``py::overload_cast`` only requires the parameter types to be specified.
407The return type and class are deduced. This avoids the additional noise of
408``void (Pet::*)()`` as seen in the raw cast. If a function is overloaded based
409on constness, the ``py::const_`` tag should be used:
410
411.. code-block:: cpp
412
413    struct Widget {
414        int foo(int x, float y);
415        int foo(int x, float y) const;
416    };
417
418    py::class_<Widget>(m, "Widget")
419       .def("foo_mutable", py::overload_cast<int, float>(&Widget::foo))
420       .def("foo_const",   py::overload_cast<int, float>(&Widget::foo, py::const_));
421
422
423.. [#cpp14] A compiler which supports the ``-std=c++14`` flag
424            or Visual Studio 2015 Update 2 and newer.
425
426.. note::
427
428    To define multiple overloaded constructors, simply declare one after the
429    other using the ``.def(py::init<...>())`` syntax. The existing machinery
430    for specifying keyword and default arguments also works.
431
432Enumerations and internal types
433===============================
434
435Let's now suppose that the example class contains an internal enumeration type,
436e.g.:
437
438.. code-block:: cpp
439
440    struct Pet {
441        enum Kind {
442            Dog = 0,
443            Cat
444        };
445
446        Pet(const std::string &name, Kind type) : name(name), type(type) { }
447
448        std::string name;
449        Kind type;
450    };
451
452The binding code for this example looks as follows:
453
454.. code-block:: cpp
455
456    py::class_<Pet> pet(m, "Pet");
457
458    pet.def(py::init<const std::string &, Pet::Kind>())
459        .def_readwrite("name", &Pet::name)
460        .def_readwrite("type", &Pet::type);
461
462    py::enum_<Pet::Kind>(pet, "Kind")
463        .value("Dog", Pet::Kind::Dog)
464        .value("Cat", Pet::Kind::Cat)
465        .export_values();
466
467To ensure that the ``Kind`` type is created within the scope of ``Pet``, the
468``pet`` :class:`class_` instance must be supplied to the :class:`enum_`.
469constructor. The :func:`enum_::export_values` function exports the enum entries
470into the parent scope, which should be skipped for newer C++11-style strongly
471typed enums.
472
473.. code-block:: pycon
474
475    >>> p = Pet('Lucy', Pet.Cat)
476    >>> p.type
477    Kind.Cat
478    >>> int(p.type)
479    1L
480
481The entries defined by the enumeration type are exposed in the ``__members__`` property:
482
483.. code-block:: pycon
484
485    >>> Pet.Kind.__members__
486    {'Dog': Kind.Dog, 'Cat': Kind.Cat}
487
488.. note::
489
490    When the special tag ``py::arithmetic()`` is specified to the ``enum_``
491    constructor, pybind11 creates an enumeration that also supports rudimentary
492    arithmetic and bit-level operations like comparisons, and, or, xor, negation,
493    etc.
494
495    .. code-block:: cpp
496
497        py::enum_<Pet::Kind>(pet, "Kind", py::arithmetic())
498           ...
499
500    By default, these are omitted to conserve space.
501