classes.rst revision 12391:ceeca8b41e4b
1Classes
2#######
3
4This section presents advanced binding code for classes and it is assumed
5that you are already familiar with the basics from :doc:`/classes`.
6
7.. _overriding_virtuals:
8
9Overriding virtual functions in Python
10======================================
11
12Suppose that a C++ class or interface has a virtual function that we'd like to
13to override from within Python (we'll focus on the class ``Animal``; ``Dog`` is
14given as a specific example of how one would do this with traditional C++
15code).
16
17.. code-block:: cpp
18
19    class Animal {
20    public:
21        virtual ~Animal() { }
22        virtual std::string go(int n_times) = 0;
23    };
24
25    class Dog : public Animal {
26    public:
27        std::string go(int n_times) override {
28            std::string result;
29            for (int i=0; i<n_times; ++i)
30                result += "woof! ";
31            return result;
32        }
33    };
34
35Let's also suppose that we are given a plain function which calls the
36function ``go()`` on an arbitrary ``Animal`` instance.
37
38.. code-block:: cpp
39
40    std::string call_go(Animal *animal) {
41        return animal->go(3);
42    }
43
44Normally, the binding code for these classes would look as follows:
45
46.. code-block:: cpp
47
48    PYBIND11_MODULE(example, m) {
49        py::class_<Animal> animal(m, "Animal");
50        animal
51            .def("go", &Animal::go);
52
53        py::class_<Dog>(m, "Dog", animal)
54            .def(py::init<>());
55
56        m.def("call_go", &call_go);
57    }
58
59However, these bindings are impossible to extend: ``Animal`` is not
60constructible, and we clearly require some kind of "trampoline" that
61redirects virtual calls back to Python.
62
63Defining a new type of ``Animal`` from within Python is possible but requires a
64helper class that is defined as follows:
65
66.. code-block:: cpp
67
68    class PyAnimal : public Animal {
69    public:
70        /* Inherit the constructors */
71        using Animal::Animal;
72
73        /* Trampoline (need one for each virtual function) */
74        std::string go(int n_times) override {
75            PYBIND11_OVERLOAD_PURE(
76                std::string, /* Return type */
77                Animal,      /* Parent class */
78                go,          /* Name of function in C++ (must match Python name) */
79                n_times      /* Argument(s) */
80            );
81        }
82    };
83
84The macro :func:`PYBIND11_OVERLOAD_PURE` should be used for pure virtual
85functions, and :func:`PYBIND11_OVERLOAD` should be used for functions which have
86a default implementation.  There are also two alternate macros
87:func:`PYBIND11_OVERLOAD_PURE_NAME` and :func:`PYBIND11_OVERLOAD_NAME` which
88take a string-valued name argument between the *Parent class* and *Name of the
89function* slots, which defines the name of function in Python. This is required
90when the C++ and Python versions of the
91function have different names, e.g.  ``operator()`` vs ``__call__``.
92
93The binding code also needs a few minor adaptations (highlighted):
94
95.. code-block:: cpp
96    :emphasize-lines: 2,4,5
97
98    PYBIND11_MODULE(example, m) {
99        py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
100        animal
101            .def(py::init<>())
102            .def("go", &Animal::go);
103
104        py::class_<Dog>(m, "Dog", animal)
105            .def(py::init<>());
106
107        m.def("call_go", &call_go);
108    }
109
110Importantly, pybind11 is made aware of the trampoline helper class by
111specifying it as an extra template argument to :class:`class_`. (This can also
112be combined with other template arguments such as a custom holder type; the
113order of template types does not matter).  Following this, we are able to
114define a constructor as usual.
115
116Bindings should be made against the actual class, not the trampoline helper class.
117
118.. code-block:: cpp
119
120    py::class_<Animal, PyAnimal /* <--- trampoline*/> animal(m, "Animal");
121        animal
122            .def(py::init<>())
123            .def("go", &PyAnimal::go); /* <--- THIS IS WRONG, use &Animal::go */
124
125Note, however, that the above is sufficient for allowing python classes to
126extend ``Animal``, but not ``Dog``: see :ref:`virtual_and_inheritance` for the
127necessary steps required to providing proper overload support for inherited
128classes.
129
130The Python session below shows how to override ``Animal::go`` and invoke it via
131a virtual method call.
132
133.. code-block:: pycon
134
135    >>> from example import *
136    >>> d = Dog()
137    >>> call_go(d)
138    u'woof! woof! woof! '
139    >>> class Cat(Animal):
140    ...     def go(self, n_times):
141    ...             return "meow! " * n_times
142    ...
143    >>> c = Cat()
144    >>> call_go(c)
145    u'meow! meow! meow! '
146
147If you are defining a custom constructor in a derived Python class, you *must*
148ensure that you explicitly call the bound C++ constructor using ``__init__``,
149*regardless* of whether it is a default constructor or not. Otherwise, the
150memory for the C++ portion of the instance will be left uninitialized, which
151will generally leave the C++ instance in an invalid state and cause undefined
152behavior if the C++ instance is subsequently used.
153
154Here is an example:
155
156.. code-block:: python
157
158    class Dachschund(Dog):
159        def __init__(self, name):
160            Dog.__init__(self) # Without this, undefind behavior may occur if the C++ portions are referenced.
161            self.name = name
162        def bark(self):
163            return "yap!"
164
165Note that a direct ``__init__`` constructor *should be called*, and ``super()``
166should not be used. For simple cases of linear inheritance, ``super()``
167may work, but once you begin mixing Python and C++ multiple inheritance,
168things will fall apart due to differences between Python's MRO and C++'s
169mechanisms.
170
171Please take a look at the :ref:`macro_notes` before using this feature.
172
173.. note::
174
175    When the overridden type returns a reference or pointer to a type that
176    pybind11 converts from Python (for example, numeric values, std::string,
177    and other built-in value-converting types), there are some limitations to
178    be aware of:
179
180    - because in these cases there is no C++ variable to reference (the value
181      is stored in the referenced Python variable), pybind11 provides one in
182      the PYBIND11_OVERLOAD macros (when needed) with static storage duration.
183      Note that this means that invoking the overloaded method on *any*
184      instance will change the referenced value stored in *all* instances of
185      that type.
186
187    - Attempts to modify a non-const reference will not have the desired
188      effect: it will change only the static cache variable, but this change
189      will not propagate to underlying Python instance, and the change will be
190      replaced the next time the overload is invoked.
191
192.. seealso::
193
194    The file :file:`tests/test_virtual_functions.cpp` contains a complete
195    example that demonstrates how to override virtual functions using pybind11
196    in more detail.
197
198.. _virtual_and_inheritance:
199
200Combining virtual functions and inheritance
201===========================================
202
203When combining virtual methods with inheritance, you need to be sure to provide
204an override for each method for which you want to allow overrides from derived
205python classes.  For example, suppose we extend the above ``Animal``/``Dog``
206example as follows:
207
208.. code-block:: cpp
209
210    class Animal {
211    public:
212        virtual std::string go(int n_times) = 0;
213        virtual std::string name() { return "unknown"; }
214    };
215    class Dog : public Animal {
216    public:
217        std::string go(int n_times) override {
218            std::string result;
219            for (int i=0; i<n_times; ++i)
220                result += bark() + " ";
221            return result;
222        }
223        virtual std::string bark() { return "woof!"; }
224    };
225
226then the trampoline class for ``Animal`` must, as described in the previous
227section, override ``go()`` and ``name()``, but in order to allow python code to
228inherit properly from ``Dog``, we also need a trampoline class for ``Dog`` that
229overrides both the added ``bark()`` method *and* the ``go()`` and ``name()``
230methods inherited from ``Animal`` (even though ``Dog`` doesn't directly
231override the ``name()`` method):
232
233.. code-block:: cpp
234
235    class PyAnimal : public Animal {
236    public:
237        using Animal::Animal; // Inherit constructors
238        std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Animal, go, n_times); }
239        std::string name() override { PYBIND11_OVERLOAD(std::string, Animal, name, ); }
240    };
241    class PyDog : public Dog {
242    public:
243        using Dog::Dog; // Inherit constructors
244        std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Dog, go, n_times); }
245        std::string name() override { PYBIND11_OVERLOAD(std::string, Dog, name, ); }
246        std::string bark() override { PYBIND11_OVERLOAD(std::string, Dog, bark, ); }
247    };
248
249.. note::
250
251    Note the trailing commas in the ``PYBIND11_OVERLOAD`` calls to ``name()``
252    and ``bark()``. These are needed to portably implement a trampoline for a
253    function that does not take any arguments. For functions that take
254    a nonzero number of arguments, the trailing comma must be omitted.
255
256A registered class derived from a pybind11-registered class with virtual
257methods requires a similar trampoline class, *even if* it doesn't explicitly
258declare or override any virtual methods itself:
259
260.. code-block:: cpp
261
262    class Husky : public Dog {};
263    class PyHusky : public Husky {
264    public:
265        using Husky::Husky; // Inherit constructors
266        std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, Husky, go, n_times); }
267        std::string name() override { PYBIND11_OVERLOAD(std::string, Husky, name, ); }
268        std::string bark() override { PYBIND11_OVERLOAD(std::string, Husky, bark, ); }
269    };
270
271There is, however, a technique that can be used to avoid this duplication
272(which can be especially helpful for a base class with several virtual
273methods).  The technique involves using template trampoline classes, as
274follows:
275
276.. code-block:: cpp
277
278    template <class AnimalBase = Animal> class PyAnimal : public AnimalBase {
279    public:
280        using AnimalBase::AnimalBase; // Inherit constructors
281        std::string go(int n_times) override { PYBIND11_OVERLOAD_PURE(std::string, AnimalBase, go, n_times); }
282        std::string name() override { PYBIND11_OVERLOAD(std::string, AnimalBase, name, ); }
283    };
284    template <class DogBase = Dog> class PyDog : public PyAnimal<DogBase> {
285    public:
286        using PyAnimal<DogBase>::PyAnimal; // Inherit constructors
287        // Override PyAnimal's pure virtual go() with a non-pure one:
288        std::string go(int n_times) override { PYBIND11_OVERLOAD(std::string, DogBase, go, n_times); }
289        std::string bark() override { PYBIND11_OVERLOAD(std::string, DogBase, bark, ); }
290    };
291
292This technique has the advantage of requiring just one trampoline method to be
293declared per virtual method and pure virtual method override.  It does,
294however, require the compiler to generate at least as many methods (and
295possibly more, if both pure virtual and overridden pure virtual methods are
296exposed, as above).
297
298The classes are then registered with pybind11 using:
299
300.. code-block:: cpp
301
302    py::class_<Animal, PyAnimal<>> animal(m, "Animal");
303    py::class_<Dog, PyDog<>> dog(m, "Dog");
304    py::class_<Husky, PyDog<Husky>> husky(m, "Husky");
305    // ... add animal, dog, husky definitions
306
307Note that ``Husky`` did not require a dedicated trampoline template class at
308all, since it neither declares any new virtual methods nor provides any pure
309virtual method implementations.
310
311With either the repeated-virtuals or templated trampoline methods in place, you
312can now create a python class that inherits from ``Dog``:
313
314.. code-block:: python
315
316    class ShihTzu(Dog):
317        def bark(self):
318            return "yip!"
319
320.. seealso::
321
322    See the file :file:`tests/test_virtual_functions.cpp` for complete examples
323    using both the duplication and templated trampoline approaches.
324
325.. _extended_aliases:
326
327Extended trampoline class functionality
328=======================================
329
330The trampoline classes described in the previous sections are, by default, only
331initialized when needed.  More specifically, they are initialized when a python
332class actually inherits from a registered type (instead of merely creating an
333instance of the registered type), or when a registered constructor is only
334valid for the trampoline class but not the registered class.  This is primarily
335for performance reasons: when the trampoline class is not needed for anything
336except virtual method dispatching, not initializing the trampoline class
337improves performance by avoiding needing to do a run-time check to see if the
338inheriting python instance has an overloaded method.
339
340Sometimes, however, it is useful to always initialize a trampoline class as an
341intermediate class that does more than just handle virtual method dispatching.
342For example, such a class might perform extra class initialization, extra
343destruction operations, and might define new members and methods to enable a
344more python-like interface to a class.
345
346In order to tell pybind11 that it should *always* initialize the trampoline
347class when creating new instances of a type, the class constructors should be
348declared using ``py::init_alias<Args, ...>()`` instead of the usual
349``py::init<Args, ...>()``.  This forces construction via the trampoline class,
350ensuring member initialization and (eventual) destruction.
351
352.. seealso::
353
354    See the file :file:`tests/test_virtual_functions.cpp` for complete examples
355    showing both normal and forced trampoline instantiation.
356
357.. _custom_constructors:
358
359Custom constructors
360===================
361
362The syntax for binding constructors was previously introduced, but it only
363works when a constructor of the appropriate arguments actually exists on the
364C++ side.  To extend this to more general cases, pybind11 makes it possible
365to bind factory functions as constructors. For example, suppose you have a
366class like this:
367
368.. code-block:: cpp
369
370    class Example {
371    private:
372        Example(int); // private constructor
373    public:
374        // Factory function:
375        static Example create(int a) { return Example(a); }
376    };
377
378    py::class_<Example>(m, "Example")
379        .def(py::init(&Example::create));
380
381While it is possible to create a straightforward binding of the static
382``create`` method, it may sometimes be preferable to expose it as a constructor
383on the Python side. This can be accomplished by calling ``.def(py::init(...))``
384with the function reference returning the new instance passed as an argument.
385It is also possible to use this approach to bind a function returning a new
386instance by raw pointer or by the holder (e.g. ``std::unique_ptr``).
387
388The following example shows the different approaches:
389
390.. code-block:: cpp
391
392    class Example {
393    private:
394        Example(int); // private constructor
395    public:
396        // Factory function - returned by value:
397        static Example create(int a) { return Example(a); }
398
399        // These constructors are publicly callable:
400        Example(double);
401        Example(int, int);
402        Example(std::string);
403    };
404
405    py::class_<Example>(m, "Example")
406        // Bind the factory function as a constructor:
407        .def(py::init(&Example::create))
408        // Bind a lambda function returning a pointer wrapped in a holder:
409        .def(py::init([](std::string arg) {
410            return std::unique_ptr<Example>(new Example(arg));
411        }))
412        // Return a raw pointer:
413        .def(py::init([](int a, int b) { return new Example(a, b); }))
414        // You can mix the above with regular C++ constructor bindings as well:
415        .def(py::init<double>())
416        ;
417
418When the constructor is invoked from Python, pybind11 will call the factory
419function and store the resulting C++ instance in the Python instance.
420
421When combining factory functions constructors with :ref:`virtual function
422trampolines <overriding_virtuals>` there are two approaches.  The first is to
423add a constructor to the alias class that takes a base value by
424rvalue-reference.  If such a constructor is available, it will be used to
425construct an alias instance from the value returned by the factory function.
426The second option is to provide two factory functions to ``py::init()``: the
427first will be invoked when no alias class is required (i.e. when the class is
428being used but not inherited from in Python), and the second will be invoked
429when an alias is required.
430
431You can also specify a single factory function that always returns an alias
432instance: this will result in behaviour similar to ``py::init_alias<...>()``,
433as described in the :ref:`extended trampoline class documentation
434<extended_aliases>`.
435
436The following example shows the different factory approaches for a class with
437an alias:
438
439.. code-block:: cpp
440
441    #include <pybind11/factory.h>
442    class Example {
443    public:
444        // ...
445        virtual ~Example() = default;
446    };
447    class PyExample : public Example {
448    public:
449        using Example::Example;
450        PyExample(Example &&base) : Example(std::move(base)) {}
451    };
452    py::class_<Example, PyExample>(m, "Example")
453        // Returns an Example pointer.  If a PyExample is needed, the Example
454        // instance will be moved via the extra constructor in PyExample, above.
455        .def(py::init([]() { return new Example(); }))
456        // Two callbacks:
457        .def(py::init([]() { return new Example(); } /* no alias needed */,
458                      []() { return new PyExample(); } /* alias needed */))
459        // *Always* returns an alias instance (like py::init_alias<>())
460        .def(py::init([]() { return new PyExample(); }))
461        ;
462
463Brace initialization
464--------------------
465
466``pybind11::init<>`` internally uses C++11 brace initialization to call the
467constructor of the target class. This means that it can be used to bind
468*implicit* constructors as well:
469
470.. code-block:: cpp
471
472    struct Aggregate {
473        int a;
474        std::string b;
475    };
476
477    py::class_<Aggregate>(m, "Aggregate")
478        .def(py::init<int, const std::string &>());
479
480.. note::
481
482    Note that brace initialization preferentially invokes constructor overloads
483    taking a ``std::initializer_list``. In the rare event that this causes an
484    issue, you can work around it by using ``py::init(...)`` with a lambda
485    function that constructs the new object as desired.
486
487.. _classes_with_non_public_destructors:
488
489Non-public destructors
490======================
491
492If a class has a private or protected destructor (as might e.g. be the case in
493a singleton pattern), a compile error will occur when creating bindings via
494pybind11. The underlying issue is that the ``std::unique_ptr`` holder type that
495is responsible for managing the lifetime of instances will reference the
496destructor even if no deallocations ever take place. In order to expose classes
497with private or protected destructors, it is possible to override the holder
498type via a holder type argument to ``class_``. Pybind11 provides a helper class
499``py::nodelete`` that disables any destructor invocations. In this case, it is
500crucial that instances are deallocated on the C++ side to avoid memory leaks.
501
502.. code-block:: cpp
503
504    /* ... definition ... */
505
506    class MyClass {
507    private:
508        ~MyClass() { }
509    };
510
511    /* ... binding code ... */
512
513    py::class_<MyClass, std::unique_ptr<MyClass, py::nodelete>>(m, "MyClass")
514        .def(py::init<>())
515
516.. _implicit_conversions:
517
518Implicit conversions
519====================
520
521Suppose that instances of two types ``A`` and ``B`` are used in a project, and
522that an ``A`` can easily be converted into an instance of type ``B`` (examples of this
523could be a fixed and an arbitrary precision number type).
524
525.. code-block:: cpp
526
527    py::class_<A>(m, "A")
528        /// ... members ...
529
530    py::class_<B>(m, "B")
531        .def(py::init<A>())
532        /// ... members ...
533
534    m.def("func",
535        [](const B &) { /* .... */ }
536    );
537
538To invoke the function ``func`` using a variable ``a`` containing an ``A``
539instance, we'd have to write ``func(B(a))`` in Python. On the other hand, C++
540will automatically apply an implicit type conversion, which makes it possible
541to directly write ``func(a)``.
542
543In this situation (i.e. where ``B`` has a constructor that converts from
544``A``), the following statement enables similar implicit conversions on the
545Python side:
546
547.. code-block:: cpp
548
549    py::implicitly_convertible<A, B>();
550
551.. note::
552
553    Implicit conversions from ``A`` to ``B`` only work when ``B`` is a custom
554    data type that is exposed to Python via pybind11.
555
556    To prevent runaway recursion, implicit conversions are non-reentrant: an
557    implicit conversion invoked as part of another implicit conversion of the
558    same type (i.e. from ``A`` to ``B``) will fail.
559
560.. _static_properties:
561
562Static properties
563=================
564
565The section on :ref:`properties` discussed the creation of instance properties
566that are implemented in terms of C++ getters and setters.
567
568Static properties can also be created in a similar way to expose getters and
569setters of static class attributes. Note that the implicit ``self`` argument
570also exists in this case and is used to pass the Python ``type`` subclass
571instance. This parameter will often not be needed by the C++ side, and the
572following example illustrates how to instantiate a lambda getter function
573that ignores it:
574
575.. code-block:: cpp
576
577    py::class_<Foo>(m, "Foo")
578        .def_property_readonly_static("foo", [](py::object /* self */) { return Foo(); });
579
580Operator overloading
581====================
582
583Suppose that we're given the following ``Vector2`` class with a vector addition
584and scalar multiplication operation, all implemented using overloaded operators
585in C++.
586
587.. code-block:: cpp
588
589    class Vector2 {
590    public:
591        Vector2(float x, float y) : x(x), y(y) { }
592
593        Vector2 operator+(const Vector2 &v) const { return Vector2(x + v.x, y + v.y); }
594        Vector2 operator*(float value) const { return Vector2(x * value, y * value); }
595        Vector2& operator+=(const Vector2 &v) { x += v.x; y += v.y; return *this; }
596        Vector2& operator*=(float v) { x *= v; y *= v; return *this; }
597
598        friend Vector2 operator*(float f, const Vector2 &v) {
599            return Vector2(f * v.x, f * v.y);
600        }
601
602        std::string toString() const {
603            return "[" + std::to_string(x) + ", " + std::to_string(y) + "]";
604        }
605    private:
606        float x, y;
607    };
608
609The following snippet shows how the above operators can be conveniently exposed
610to Python.
611
612.. code-block:: cpp
613
614    #include <pybind11/operators.h>
615
616    PYBIND11_MODULE(example, m) {
617        py::class_<Vector2>(m, "Vector2")
618            .def(py::init<float, float>())
619            .def(py::self + py::self)
620            .def(py::self += py::self)
621            .def(py::self *= float())
622            .def(float() * py::self)
623            .def(py::self * float())
624            .def("__repr__", &Vector2::toString);
625    }
626
627Note that a line like
628
629.. code-block:: cpp
630
631            .def(py::self * float())
632
633is really just short hand notation for
634
635.. code-block:: cpp
636
637    .def("__mul__", [](const Vector2 &a, float b) {
638        return a * b;
639    }, py::is_operator())
640
641This can be useful for exposing additional operators that don't exist on the
642C++ side, or to perform other types of customization. The ``py::is_operator``
643flag marker is needed to inform pybind11 that this is an operator, which
644returns ``NotImplemented`` when invoked with incompatible arguments rather than
645throwing a type error.
646
647.. note::
648
649    To use the more convenient ``py::self`` notation, the additional
650    header file :file:`pybind11/operators.h` must be included.
651
652.. seealso::
653
654    The file :file:`tests/test_operator_overloading.cpp` contains a
655    complete example that demonstrates how to work with overloaded operators in
656    more detail.
657
658.. _pickling:
659
660Pickling support
661================
662
663Python's ``pickle`` module provides a powerful facility to serialize and
664de-serialize a Python object graph into a binary data stream. To pickle and
665unpickle C++ classes using pybind11, a ``py::pickle()`` definition must be
666provided. Suppose the class in question has the following signature:
667
668.. code-block:: cpp
669
670    class Pickleable {
671    public:
672        Pickleable(const std::string &value) : m_value(value) { }
673        const std::string &value() const { return m_value; }
674
675        void setExtra(int extra) { m_extra = extra; }
676        int extra() const { return m_extra; }
677    private:
678        std::string m_value;
679        int m_extra = 0;
680    };
681
682Pickling support in Python is enabled by defining the ``__setstate__`` and
683``__getstate__`` methods [#f3]_. For pybind11 classes, use ``py::pickle()``
684to bind these two functions:
685
686.. code-block:: cpp
687
688    py::class_<Pickleable>(m, "Pickleable")
689        .def(py::init<std::string>())
690        .def("value", &Pickleable::value)
691        .def("extra", &Pickleable::extra)
692        .def("setExtra", &Pickleable::setExtra)
693        .def(py::pickle(
694            [](const Pickleable &p) { // __getstate__
695                /* Return a tuple that fully encodes the state of the object */
696                return py::make_tuple(p.value(), p.extra());
697            },
698            [](py::tuple t) { // __setstate__
699                if (t.size() != 2)
700                    throw std::runtime_error("Invalid state!");
701
702                /* Create a new C++ instance */
703                Pickleable p(t[0].cast<std::string>());
704
705                /* Assign any additional state */
706                p.setExtra(t[1].cast<int>());
707
708                return p;
709            }
710        ));
711
712The ``__setstate__`` part of the ``py::picke()`` definition follows the same
713rules as the single-argument version of ``py::init()``. The return type can be
714a value, pointer or holder type. See :ref:`custom_constructors` for details.
715
716An instance can now be pickled as follows:
717
718.. code-block:: python
719
720    try:
721        import cPickle as pickle  # Use cPickle on Python 2.7
722    except ImportError:
723        import pickle
724
725    p = Pickleable("test_value")
726    p.setExtra(15)
727    data = pickle.dumps(p, 2)
728
729Note that only the cPickle module is supported on Python 2.7. The second
730argument to ``dumps`` is also crucial: it selects the pickle protocol version
7312, since the older version 1 is not supported. Newer versions are also fine—for
732instance, specify ``-1`` to always use the latest available version. Beware:
733failure to follow these instructions will cause important pybind11 memory
734allocation routines to be skipped during unpickling, which will likely lead to
735memory corruption and/or segmentation faults.
736
737.. seealso::
738
739    The file :file:`tests/test_pickling.cpp` contains a complete example
740    that demonstrates how to pickle and unpickle types using pybind11 in more
741    detail.
742
743.. [#f3] http://docs.python.org/3/library/pickle.html#pickling-class-instances
744
745Multiple Inheritance
746====================
747
748pybind11 can create bindings for types that derive from multiple base types
749(aka. *multiple inheritance*). To do so, specify all bases in the template
750arguments of the ``class_`` declaration:
751
752.. code-block:: cpp
753
754    py::class_<MyType, BaseType1, BaseType2, BaseType3>(m, "MyType")
755       ...
756
757The base types can be specified in arbitrary order, and they can even be
758interspersed with alias types and holder types (discussed earlier in this
759document)---pybind11 will automatically find out which is which. The only
760requirement is that the first template argument is the type to be declared.
761
762It is also permitted to inherit multiply from exported C++ classes in Python,
763as well as inheriting from multiple Python and/or pybind-exported classes.
764
765There is one caveat regarding the implementation of this feature:
766
767When only one base type is specified for a C++ type that actually has multiple
768bases, pybind11 will assume that it does not participate in multiple
769inheritance, which can lead to undefined behavior. In such cases, add the tag
770``multiple_inheritance`` to the class constructor:
771
772.. code-block:: cpp
773
774    py::class_<MyType, BaseType2>(m, "MyType", py::multiple_inheritance());
775
776The tag is redundant and does not need to be specified when multiple base types
777are listed.
778
779.. _module_local:
780
781Module-local class bindings
782===========================
783
784When creating a binding for a class, pybind by default makes that binding
785"global" across modules.  What this means is that a type defined in one module
786can be returned from any module resulting in the same Python type.  For
787example, this allows the following:
788
789.. code-block:: cpp
790
791    // In the module1.cpp binding code for module1:
792    py::class_<Pet>(m, "Pet")
793        .def(py::init<std::string>())
794        .def_readonly("name", &Pet::name);
795
796.. code-block:: cpp
797
798    // In the module2.cpp binding code for module2:
799    m.def("create_pet", [](std::string name) { return new Pet(name); });
800
801.. code-block:: pycon
802
803    >>> from module1 import Pet
804    >>> from module2 import create_pet
805    >>> pet1 = Pet("Kitty")
806    >>> pet2 = create_pet("Doggy")
807    >>> pet2.name()
808    'Doggy'
809
810When writing binding code for a library, this is usually desirable: this
811allows, for example, splitting up a complex library into multiple Python
812modules.
813
814In some cases, however, this can cause conflicts.  For example, suppose two
815unrelated modules make use of an external C++ library and each provide custom
816bindings for one of that library's classes.  This will result in an error when
817a Python program attempts to import both modules (directly or indirectly)
818because of conflicting definitions on the external type:
819
820.. code-block:: cpp
821
822    // dogs.cpp
823
824    // Binding for external library class:
825    py::class<pets::Pet>(m, "Pet")
826        .def("name", &pets::Pet::name);
827
828    // Binding for local extension class:
829    py::class<Dog, pets::Pet>(m, "Dog")
830        .def(py::init<std::string>());
831
832.. code-block:: cpp
833
834    // cats.cpp, in a completely separate project from the above dogs.cpp.
835
836    // Binding for external library class:
837    py::class<pets::Pet>(m, "Pet")
838        .def("get_name", &pets::Pet::name);
839
840    // Binding for local extending class:
841    py::class<Cat, pets::Pet>(m, "Cat")
842        .def(py::init<std::string>());
843
844.. code-block:: pycon
845
846    >>> import cats
847    >>> import dogs
848    Traceback (most recent call last):
849      File "<stdin>", line 1, in <module>
850    ImportError: generic_type: type "Pet" is already registered!
851
852To get around this, you can tell pybind11 to keep the external class binding
853localized to the module by passing the ``py::module_local()`` attribute into
854the ``py::class_`` constructor:
855
856.. code-block:: cpp
857
858    // Pet binding in dogs.cpp:
859    py::class<pets::Pet>(m, "Pet", py::module_local())
860        .def("name", &pets::Pet::name);
861
862.. code-block:: cpp
863
864    // Pet binding in cats.cpp:
865    py::class<pets::Pet>(m, "Pet", py::module_local())
866        .def("get_name", &pets::Pet::name);
867
868This makes the Python-side ``dogs.Pet`` and ``cats.Pet`` into distinct classes,
869avoiding the conflict and allowing both modules to be loaded.  C++ code in the
870``dogs`` module that casts or returns a ``Pet`` instance will result in a
871``dogs.Pet`` Python instance, while C++ code in the ``cats`` module will result
872in a ``cats.Pet`` Python instance.
873
874This does come with two caveats, however: First, external modules cannot return
875or cast a ``Pet`` instance to Python (unless they also provide their own local
876bindings).  Second, from the Python point of view they are two distinct classes.
877
878Note that the locality only applies in the C++ -> Python direction.  When
879passing such a ``py::module_local`` type into a C++ function, the module-local
880classes are still considered.  This means that if the following function is
881added to any module (including but not limited to the ``cats`` and ``dogs``
882modules above) it will be callable with either a ``dogs.Pet`` or ``cats.Pet``
883argument:
884
885.. code-block:: cpp
886
887    m.def("pet_name", [](const pets::Pet &pet) { return pet.name(); });
888
889For example, suppose the above function is added to each of ``cats.cpp``,
890``dogs.cpp`` and ``frogs.cpp`` (where ``frogs.cpp`` is some other module that
891does *not* bind ``Pets`` at all).
892
893.. code-block:: pycon
894
895    >>> import cats, dogs, frogs  # No error because of the added py::module_local()
896    >>> mycat, mydog = cats.Cat("Fluffy"), dogs.Dog("Rover")
897    >>> (cats.pet_name(mycat), dogs.pet_name(mydog))
898    ('Fluffy', 'Rover')
899    >>> (cats.pet_name(mydog), dogs.pet_name(mycat), frogs.pet_name(mycat))
900    ('Rover', 'Fluffy', 'Fluffy')
901
902It is possible to use ``py::module_local()`` registrations in one module even
903if another module registers the same type globally: within the module with the
904module-local definition, all C++ instances will be cast to the associated bound
905Python type.  In other modules any such values are converted to the global
906Python type created elsewhere.
907
908.. note::
909
910    STL bindings (as provided via the optional :file:`pybind11/stl_bind.h`
911    header) apply ``py::module_local`` by default when the bound type might
912    conflict with other modules; see :ref:`stl_bind` for details.
913
914.. note::
915
916    The localization of the bound types is actually tied to the shared object
917    or binary generated by the compiler/linker.  For typical modules created
918    with ``PYBIND11_MODULE()``, this distinction is not significant.  It is
919    possible, however, when :ref:`embedding` to embed multiple modules in the
920    same binary (see :ref:`embedding_modules`).  In such a case, the
921    localization will apply across all embedded modules within the same binary.
922
923.. seealso::
924
925    The file :file:`tests/test_local_bindings.cpp` contains additional examples
926    that demonstrate how ``py::module_local()`` works.
927
928Binding protected member functions
929==================================
930
931It's normally not possible to expose ``protected`` member functions to Python:
932
933.. code-block:: cpp
934
935    class A {
936    protected:
937        int foo() const { return 42; }
938    };
939
940    py::class_<A>(m, "A")
941        .def("foo", &A::foo); // error: 'foo' is a protected member of 'A'
942
943On one hand, this is good because non-``public`` members aren't meant to be
944accessed from the outside. But we may want to make use of ``protected``
945functions in derived Python classes.
946
947The following pattern makes this possible:
948
949.. code-block:: cpp
950
951    class A {
952    protected:
953        int foo() const { return 42; }
954    };
955
956    class Publicist : public A { // helper type for exposing protected functions
957    public:
958        using A::foo; // inherited with different access modifier
959    };
960
961    py::class_<A>(m, "A") // bind the primary class
962        .def("foo", &Publicist::foo); // expose protected methods via the publicist
963
964This works because ``&Publicist::foo`` is exactly the same function as
965``&A::foo`` (same signature and address), just with a different access
966modifier. The only purpose of the ``Publicist`` helper class is to make
967the function name ``public``.
968
969If the intent is to expose ``protected`` ``virtual`` functions which can be
970overridden in Python, the publicist pattern can be combined with the previously
971described trampoline:
972
973.. code-block:: cpp
974
975    class A {
976    public:
977        virtual ~A() = default;
978
979    protected:
980        virtual int foo() const { return 42; }
981    };
982
983    class Trampoline : public A {
984    public:
985        int foo() const override { PYBIND11_OVERLOAD(int, A, foo, ); }
986    };
987
988    class Publicist : public A {
989    public:
990        using A::foo;
991    };
992
993    py::class_<A, Trampoline>(m, "A") // <-- `Trampoline` here
994        .def("foo", &Publicist::foo); // <-- `Publicist` here, not `Trampoline`!
995
996.. note::
997
998    MSVC 2015 has a compiler bug (fixed in version 2017) which
999    requires a more explicit function binding in the form of
1000    ``.def("foo", static_cast<int (A::*)() const>(&Publicist::foo));``
1001    where ``int (A::*)() const`` is the type of ``A::foo``.
1002