CellMacros.cc revision 10447
110447Snilay@cs.wisc.edu#include "model/std_cells/CellMacros.h" 210447Snilay@cs.wisc.edu 310447Snilay@cs.wisc.edu#include <cmath> 410447Snilay@cs.wisc.edu#include <vector> 510447Snilay@cs.wisc.edu 610447Snilay@cs.wisc.edu#include "model/std_cells/StdCell.h" 710447Snilay@cs.wisc.edu#include "model/timing_graph/ElectricalNet.h" 810447Snilay@cs.wisc.edu#include "model/timing_graph/ElectricalDriver.h" 910447Snilay@cs.wisc.edu#include "model/timing_graph/ElectricalLoad.h" 1010447Snilay@cs.wisc.edu 1110447Snilay@cs.wisc.edunamespace DSENT 1210447Snilay@cs.wisc.edu{ 1310447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 1410447Snilay@cs.wisc.edu // NOR2 Macro (TODO: Generalize to N-input macro once leakage calc is done) 1510447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 1610447Snilay@cs.wisc.edu void CellMacros::addNor2(StdCell* cell_, const String& name_, 1710447Snilay@cs.wisc.edu bool sizable_, bool a1_to_zn_path_, bool a2_to_zn_path_, 1810447Snilay@cs.wisc.edu const String& a1_net_, const String& a2_net_, const String& zn_net_) 1910447Snilay@cs.wisc.edu { 2010447Snilay@cs.wisc.edu //Create electrical timing model for the nand 2110447Snilay@cs.wisc.edu // Construct loads and drivers 2210447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CgA1"); 2310447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CgA2"); 2410447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CdZN"); 2510447Snilay@cs.wisc.edu cell_->createDriver(name_ + "_RonZN", sizable_); 2610447Snilay@cs.wisc.edu 2710447Snilay@cs.wisc.edu //Get references to loads and drivers 2810447Snilay@cs.wisc.edu ElectricalLoad* gate_a1_load = cell_->getLoad(name_ + "_CgA1"); 2910447Snilay@cs.wisc.edu ElectricalLoad* gate_a2_load = cell_->getLoad(name_ + "_CgA2"); 3010447Snilay@cs.wisc.edu ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN"); 3110447Snilay@cs.wisc.edu ElectricalDriver* zn_drive = cell_->getDriver(name_ + "_RonZN"); 3210447Snilay@cs.wisc.edu ElectricalNet* a1_net = cell_->getNet(a1_net_); 3310447Snilay@cs.wisc.edu ElectricalNet* a2_net = cell_->getNet(a2_net_); 3410447Snilay@cs.wisc.edu ElectricalNet* zn_net = cell_->getNet(zn_net_); 3510447Snilay@cs.wisc.edu 3610447Snilay@cs.wisc.edu //Add loads and drivers to the specified nets 3710447Snilay@cs.wisc.edu a1_net->addDownstreamNode(gate_a1_load); 3810447Snilay@cs.wisc.edu a2_net->addDownstreamNode(gate_a2_load); 3910447Snilay@cs.wisc.edu zn_net->addDownstreamNode(drain_load); 4010447Snilay@cs.wisc.edu if (a1_to_zn_path_) gate_a1_load->addDownstreamNode(zn_drive); 4110447Snilay@cs.wisc.edu if (a2_to_zn_path_) gate_a2_load->addDownstreamNode(zn_drive); 4210447Snilay@cs.wisc.edu zn_drive->addDownstreamNode(zn_net); 4310447Snilay@cs.wisc.edu 4410447Snilay@cs.wisc.edu return; 4510447Snilay@cs.wisc.edu } 4610447Snilay@cs.wisc.edu 4710447Snilay@cs.wisc.edu void CellMacros::updateNor2(StdCell* cell_, const String& name_, double normalized_size_) 4810447Snilay@cs.wisc.edu { 4910447Snilay@cs.wisc.edu ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() + 5010447Snilay@cs.wisc.edu " -> Cannot update a macro with a negative normalized size!"); 5110447Snilay@cs.wisc.edu 5210447Snilay@cs.wisc.edu //Grab pointer to tech model 5310447Snilay@cs.wisc.edu const TechModel* tech = cell_->getTechModel(); 5410447Snilay@cs.wisc.edu 5510447Snilay@cs.wisc.edu // Get technology parameters 5610447Snilay@cs.wisc.edu double vdd = tech->get("Vdd"); 5710447Snilay@cs.wisc.edu double gate_cap = tech->get("Gate->CapPerWidth"); 5810447Snilay@cs.wisc.edu double drain_cap = tech->get("Drain->CapPerWidth"); 5910447Snilay@cs.wisc.edu double nmos_eff_res = tech->get("Nmos->EffResWidth"); 6010447Snilay@cs.wisc.edu double pmos_eff_res = tech->get("Pmos->EffResWidth"); 6110447Snilay@cs.wisc.edu double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio"); 6210447Snilay@cs.wisc.edu double gate_pitch_contacted = tech->get("Gate->PitchContacted"); 6310447Snilay@cs.wisc.edu double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth"); 6410447Snilay@cs.wisc.edu 6510447Snilay@cs.wisc.edu //Calculate number of folds and gate pitches needed 6610447Snilay@cs.wisc.edu unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_); 6710447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds); 6810447Snilay@cs.wisc.edu 6910447Snilay@cs.wisc.edu //Calculate widths, making sure they are above the minimum width 7010447Snilay@cs.wisc.edu double nmos_width = std::max(calculateNmosWidth(cell_, 1, 2, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); 7110447Snilay@cs.wisc.edu double pmos_width = std::max(calculatePmosWidth(cell_, 1, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); 7210447Snilay@cs.wisc.edu 7310447Snilay@cs.wisc.edu //Calculate leakage power for each given input state 7410447Snilay@cs.wisc.edu double leakage_power_00 = vdd * folds * 2 * tech->calculateNmosLeakageCurrent(1, nmos_width, 0x0); 7510447Snilay@cs.wisc.edu double leakage_power_01 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x1); 7610447Snilay@cs.wisc.edu double leakage_power_10 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x2); 7710447Snilay@cs.wisc.edu double leakage_power_11 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x3); 7810447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_00", leakage_power_00); 7910447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_01", leakage_power_01); 8010447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_10", leakage_power_10); 8110447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_11", leakage_power_11); 8210447Snilay@cs.wisc.edu 8310447Snilay@cs.wisc.edu //Calculate R_on and capacitances 8410447Snilay@cs.wisc.edu double pmos_stack2_balance = 1.0 + pmos_eff_res_stack_ratio; 8510447Snilay@cs.wisc.edu double c_g = (nmos_width + pmos_width) * gate_cap * folds; 8610447Snilay@cs.wisc.edu double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds; 8710447Snilay@cs.wisc.edu double r_on = (nmos_eff_res / nmos_width + pmos_stack2_balance * pmos_eff_res / pmos_width) / (folds * 2.0); 8810447Snilay@cs.wisc.edu 8910447Snilay@cs.wisc.edu // Estimate the wire cap and add them all at the output 9010447Snilay@cs.wisc.edu double cell_height = cell_->getTotalHeight(); 9110447Snilay@cs.wisc.edu double wire_width = metal1_wire_min_width; 9210447Snilay@cs.wisc.edu double wire_spacing = gate_pitch_contacted - metal1_wire_min_width; 9310447Snilay@cs.wisc.edu double wire_length = 2.0 * folds * cell_height; 9410447Snilay@cs.wisc.edu double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length); 9510447Snilay@cs.wisc.edu 9610447Snilay@cs.wisc.edu // Construct equivalent load and drive strength 9710447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CgA1")->setLoadCap(c_g); 9810447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CgA2")->setLoadCap(c_g); 9910447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap); 10010447Snilay@cs.wisc.edu cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on); 10110447Snilay@cs.wisc.edu 10210447Snilay@cs.wisc.edu // Calculate flip energies 10310447Snilay@cs.wisc.edu double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd; 10410447Snilay@cs.wisc.edu double a1_flip_energy = 0.5 * c_g * vdd * vdd; 10510447Snilay@cs.wisc.edu double a2_flip_energy = 0.5 * c_g * vdd * vdd; 10610447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy); 10710447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_A1_Flip", a1_flip_energy); 10810447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_A2_Flip", a2_flip_energy); 10910447Snilay@cs.wisc.edu } 11010447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 11110447Snilay@cs.wisc.edu 11210447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 11310447Snilay@cs.wisc.edu // NAND2 Macro (TODO: Generalize to N-input macro once leakage calc is done) 11410447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 11510447Snilay@cs.wisc.edu //Adds a NAND2 to the standard cell, normalized to some size 11610447Snilay@cs.wisc.edu void CellMacros::addNand2(StdCell* cell_, const String& name_, 11710447Snilay@cs.wisc.edu bool sizable_, bool a1_to_zn_path_, bool a2_to_zn_path_, 11810447Snilay@cs.wisc.edu const String& a1_net_, const String& a2_net_, const String& zn_net_) 11910447Snilay@cs.wisc.edu { 12010447Snilay@cs.wisc.edu //Create electrical timing model for the nor 12110447Snilay@cs.wisc.edu // Construct loads and drivers 12210447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CgA1"); 12310447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CgA2"); 12410447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CdZN"); 12510447Snilay@cs.wisc.edu cell_->createDriver(name_ + "_RonZN", sizable_); 12610447Snilay@cs.wisc.edu 12710447Snilay@cs.wisc.edu //Get references to loads and drivers 12810447Snilay@cs.wisc.edu ElectricalLoad* gate_a1_load = cell_->getLoad(name_ + "_CgA1"); 12910447Snilay@cs.wisc.edu ElectricalLoad* gate_a2_load = cell_->getLoad(name_ + "_CgA2"); 13010447Snilay@cs.wisc.edu ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN"); 13110447Snilay@cs.wisc.edu ElectricalDriver* zn_drive = cell_->getDriver(name_ + "_RonZN"); 13210447Snilay@cs.wisc.edu ElectricalNet* a1_net = cell_->getNet(a1_net_); 13310447Snilay@cs.wisc.edu ElectricalNet* a2_net = cell_->getNet(a2_net_); 13410447Snilay@cs.wisc.edu ElectricalNet* zn_net = cell_->getNet(zn_net_); 13510447Snilay@cs.wisc.edu 13610447Snilay@cs.wisc.edu a1_net->addDownstreamNode(gate_a1_load); 13710447Snilay@cs.wisc.edu a2_net->addDownstreamNode(gate_a2_load); 13810447Snilay@cs.wisc.edu zn_net->addDownstreamNode(drain_load); 13910447Snilay@cs.wisc.edu if (a1_to_zn_path_) gate_a1_load->addDownstreamNode(zn_drive); 14010447Snilay@cs.wisc.edu if (a2_to_zn_path_) gate_a2_load->addDownstreamNode(zn_drive); 14110447Snilay@cs.wisc.edu zn_drive->addDownstreamNode(zn_net); 14210447Snilay@cs.wisc.edu 14310447Snilay@cs.wisc.edu return; 14410447Snilay@cs.wisc.edu } 14510447Snilay@cs.wisc.edu 14610447Snilay@cs.wisc.edu //Updates a NAND2 to to the standard cell, normalized to some size 14710447Snilay@cs.wisc.edu void CellMacros::updateNand2(StdCell* cell_, const String& name_, double normalized_size_) 14810447Snilay@cs.wisc.edu { 14910447Snilay@cs.wisc.edu ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() + 15010447Snilay@cs.wisc.edu " -> Cannot update a macro with a negative normalized size!"); 15110447Snilay@cs.wisc.edu 15210447Snilay@cs.wisc.edu //Grab pointer to tech model 15310447Snilay@cs.wisc.edu const TechModel* tech = cell_->getTechModel(); 15410447Snilay@cs.wisc.edu 15510447Snilay@cs.wisc.edu // Get technology parameters 15610447Snilay@cs.wisc.edu double vdd = tech->get("Vdd"); 15710447Snilay@cs.wisc.edu double gate_cap = tech->get("Gate->CapPerWidth"); 15810447Snilay@cs.wisc.edu double drain_cap = tech->get("Drain->CapPerWidth"); 15910447Snilay@cs.wisc.edu double nmos_eff_res = tech->get("Nmos->EffResWidth"); 16010447Snilay@cs.wisc.edu double pmos_eff_res = tech->get("Pmos->EffResWidth"); 16110447Snilay@cs.wisc.edu double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio"); 16210447Snilay@cs.wisc.edu double gate_pitch_contacted = tech->get("Gate->PitchContacted"); 16310447Snilay@cs.wisc.edu double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth"); 16410447Snilay@cs.wisc.edu 16510447Snilay@cs.wisc.edu //Calculate number of folds needed 16610447Snilay@cs.wisc.edu unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_); 16710447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds); 16810447Snilay@cs.wisc.edu 16910447Snilay@cs.wisc.edu //Calculate widths, making sure they are above the minimum width 17010447Snilay@cs.wisc.edu double nmos_width = std::max(calculateNmosWidth(cell_, 2, 1, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); 17110447Snilay@cs.wisc.edu double pmos_width = std::max(calculatePmosWidth(cell_, 2, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); 17210447Snilay@cs.wisc.edu 17310447Snilay@cs.wisc.edu // Leakage power calculation 17410447Snilay@cs.wisc.edu double leakage_power_00 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x0); 17510447Snilay@cs.wisc.edu double leakage_power_01 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x1); 17610447Snilay@cs.wisc.edu double leakage_power_10 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x2); 17710447Snilay@cs.wisc.edu double leakage_power_11 = vdd * folds * 2 * tech->calculatePmosLeakageCurrent(1, pmos_width, ~0x3); 17810447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_00", leakage_power_00); 17910447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_01", leakage_power_01); 18010447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_10", leakage_power_10); 18110447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_11", leakage_power_11); 18210447Snilay@cs.wisc.edu 18310447Snilay@cs.wisc.edu // Get input parameters 18410447Snilay@cs.wisc.edu double nmos_stack2_balance = 1.0 + nmos_eff_res_stack_ratio; 18510447Snilay@cs.wisc.edu 18610447Snilay@cs.wisc.edu //Calculate caps 18710447Snilay@cs.wisc.edu double c_g = (nmos_width + pmos_width) * gate_cap * folds; 18810447Snilay@cs.wisc.edu double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds; 18910447Snilay@cs.wisc.edu double r_on = (nmos_stack2_balance * nmos_eff_res / nmos_width + pmos_eff_res / pmos_width) / (folds * 2.0); 19010447Snilay@cs.wisc.edu 19110447Snilay@cs.wisc.edu // Estimate the wire cap and add them all at the output 19210447Snilay@cs.wisc.edu double cell_height = cell_->getTotalHeight(); 19310447Snilay@cs.wisc.edu double wire_width = metal1_wire_min_width; 19410447Snilay@cs.wisc.edu double wire_spacing = gate_pitch_contacted - metal1_wire_min_width; 19510447Snilay@cs.wisc.edu double wire_length = 2.0 * folds * cell_height; 19610447Snilay@cs.wisc.edu double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length); 19710447Snilay@cs.wisc.edu 19810447Snilay@cs.wisc.edu // Construct equivalent load and drive strength 19910447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CgA1")->setLoadCap(c_g); 20010447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CgA2")->setLoadCap(c_g); 20110447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap); 20210447Snilay@cs.wisc.edu cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on); 20310447Snilay@cs.wisc.edu 20410447Snilay@cs.wisc.edu // Calculate flip energies 20510447Snilay@cs.wisc.edu double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd; 20610447Snilay@cs.wisc.edu double a1_flip_energy = 0.5 * c_g * vdd * vdd; 20710447Snilay@cs.wisc.edu double a2_flip_energy = 0.5 * c_g * vdd * vdd; 20810447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy); 20910447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_A1_Flip", a1_flip_energy); 21010447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_A2_Flip", a2_flip_energy); 21110447Snilay@cs.wisc.edu } 21210447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 21310447Snilay@cs.wisc.edu 21410447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 21510447Snilay@cs.wisc.edu // INV Macro 21610447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 21710447Snilay@cs.wisc.edu //Adds an inverter to the model, normalized to some size 21810447Snilay@cs.wisc.edu void CellMacros::addInverter(StdCell* cell_, const String& name_, 21910447Snilay@cs.wisc.edu bool sizable_, bool a_to_zn_path_, 22010447Snilay@cs.wisc.edu const String& a_net_, const String& zn_net_) 22110447Snilay@cs.wisc.edu { 22210447Snilay@cs.wisc.edu //Create electrical timing model for the inverter 22310447Snilay@cs.wisc.edu // Construct loads and drivers 22410447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CgA"); 22510447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CdZN"); 22610447Snilay@cs.wisc.edu cell_->createDriver(name_ + "_RonZN", sizable_); 22710447Snilay@cs.wisc.edu 22810447Snilay@cs.wisc.edu //Get references to loads and drivers 22910447Snilay@cs.wisc.edu ElectricalLoad* gate_load = cell_->getLoad(name_ + "_CgA"); 23010447Snilay@cs.wisc.edu ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN"); 23110447Snilay@cs.wisc.edu ElectricalDriver* out_drive = cell_->getDriver(name_ + "_RonZN"); 23210447Snilay@cs.wisc.edu ElectricalNet* a_net = cell_->getNet(a_net_); 23310447Snilay@cs.wisc.edu ElectricalNet* zn_net = cell_->getNet(zn_net_); 23410447Snilay@cs.wisc.edu 23510447Snilay@cs.wisc.edu // Setup connectivity of loads and drivers 23610447Snilay@cs.wisc.edu a_net->addDownstreamNode(gate_load); 23710447Snilay@cs.wisc.edu if (a_to_zn_path_) gate_load->addDownstreamNode(out_drive); 23810447Snilay@cs.wisc.edu zn_net->addDownstreamNode(drain_load); 23910447Snilay@cs.wisc.edu out_drive->addDownstreamNode(zn_net); 24010447Snilay@cs.wisc.edu 24110447Snilay@cs.wisc.edu return; 24210447Snilay@cs.wisc.edu } 24310447Snilay@cs.wisc.edu 24410447Snilay@cs.wisc.edu //Updates the numbers of an inverter for some normalized size 24510447Snilay@cs.wisc.edu void CellMacros::updateInverter(StdCell* cell_, const String& name_, double normalized_size_) 24610447Snilay@cs.wisc.edu { 24710447Snilay@cs.wisc.edu ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() + 24810447Snilay@cs.wisc.edu " -> Cannot update a macro with a negative normalized size!"); 24910447Snilay@cs.wisc.edu 25010447Snilay@cs.wisc.edu //Grab pointer to tech model 25110447Snilay@cs.wisc.edu const TechModel* tech = cell_->getTechModel(); 25210447Snilay@cs.wisc.edu 25310447Snilay@cs.wisc.edu //Get values from technology library 25410447Snilay@cs.wisc.edu double vdd = tech->get("Vdd"); 25510447Snilay@cs.wisc.edu double gate_cap = tech->get("Gate->CapPerWidth"); 25610447Snilay@cs.wisc.edu double drain_cap = tech->get("Drain->CapPerWidth"); 25710447Snilay@cs.wisc.edu double nmos_eff_res = tech->get("Nmos->EffResWidth"); 25810447Snilay@cs.wisc.edu double pmos_eff_res = tech->get("Pmos->EffResWidth"); 25910447Snilay@cs.wisc.edu double gate_pitch_contacted = tech->get("Gate->PitchContacted"); 26010447Snilay@cs.wisc.edu double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth"); 26110447Snilay@cs.wisc.edu 26210447Snilay@cs.wisc.edu //Calculate number of folds needed 26310447Snilay@cs.wisc.edu unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_); 26410447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_GatePitches", folds); 26510447Snilay@cs.wisc.edu 26610447Snilay@cs.wisc.edu //Calculate widths, making sure they are above the minimum width 26710447Snilay@cs.wisc.edu double nmos_width = std::max(calculateNmosWidth(cell_, 1, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); 26810447Snilay@cs.wisc.edu double pmos_width = std::max(calculatePmosWidth(cell_, 1, 1, 1) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); 26910447Snilay@cs.wisc.edu 27010447Snilay@cs.wisc.edu //Calculate leakage power for each given input state 27110447Snilay@cs.wisc.edu double leakage_power_0 = vdd * folds * tech->calculateNmosLeakageCurrent(1, nmos_width, 0x0); 27210447Snilay@cs.wisc.edu double leakage_power_1 = vdd * folds * tech->calculatePmosLeakageCurrent(1, pmos_width, ~0x1); 27310447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_0", leakage_power_0); 27410447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_1", leakage_power_1); 27510447Snilay@cs.wisc.edu 27610447Snilay@cs.wisc.edu //Calculate caps 27710447Snilay@cs.wisc.edu double c_g = (nmos_width + pmos_width) * gate_cap * folds; 27810447Snilay@cs.wisc.edu double c_d = (pmos_width + nmos_width) * drain_cap * folds; 27910447Snilay@cs.wisc.edu double r_on = (nmos_eff_res / nmos_width + pmos_eff_res / pmos_width) / (folds * 2.0); 28010447Snilay@cs.wisc.edu 28110447Snilay@cs.wisc.edu // Estimate the wire cap and add them all at the output 28210447Snilay@cs.wisc.edu double cell_height = cell_->getTotalHeight(); 28310447Snilay@cs.wisc.edu double wire_width = metal1_wire_min_width; 28410447Snilay@cs.wisc.edu double wire_spacing = gate_pitch_contacted - metal1_wire_min_width; 28510447Snilay@cs.wisc.edu double wire_length = folds * cell_height; 28610447Snilay@cs.wisc.edu double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length); 28710447Snilay@cs.wisc.edu 28810447Snilay@cs.wisc.edu // Construct equivalent load and drive strength 28910447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CgA")->setLoadCap(c_g); 29010447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap); 29110447Snilay@cs.wisc.edu cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on); 29210447Snilay@cs.wisc.edu 29310447Snilay@cs.wisc.edu // Calculate flip energy (output flip) 29410447Snilay@cs.wisc.edu // Calculate flip energies 29510447Snilay@cs.wisc.edu double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd; 29610447Snilay@cs.wisc.edu double a_flip_energy = 0.5 * c_g * vdd * vdd; 29710447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy); 29810447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_A_Flip", a_flip_energy); 29910447Snilay@cs.wisc.edu 30010447Snilay@cs.wisc.edu return; 30110447Snilay@cs.wisc.edu } 30210447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 30310447Snilay@cs.wisc.edu 30410447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 30510447Snilay@cs.wisc.edu // INVZ Macro 30610447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 30710447Snilay@cs.wisc.edu //Adds a tristated inverter to the model, normalized to some size 30810447Snilay@cs.wisc.edu void CellMacros::addTristate(StdCell* cell_, const String& name_, 30910447Snilay@cs.wisc.edu bool sizable_, bool a_to_zn_path_, bool oe_to_zn_path_, bool oen_to_zn_path_, 31010447Snilay@cs.wisc.edu const String& a_net_, const String& oe_net_, const String& oen_net_, const String& zn_net_) 31110447Snilay@cs.wisc.edu { 31210447Snilay@cs.wisc.edu // Construct loads and drivers 31310447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CgA"); 31410447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CgOE"); 31510447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CgOEN"); 31610447Snilay@cs.wisc.edu cell_->createLoad(name_ + "_CdZN"); 31710447Snilay@cs.wisc.edu cell_->createDriver(name_ + "_RonZN", sizable_); 31810447Snilay@cs.wisc.edu 31910447Snilay@cs.wisc.edu // Get references to loads, nets and drivers 32010447Snilay@cs.wisc.edu ElectricalLoad* gate_a_load = cell_->getLoad(name_ + "_CgA"); 32110447Snilay@cs.wisc.edu ElectricalLoad* gate_oe_load = cell_->getLoad(name_ + "_CgOE"); 32210447Snilay@cs.wisc.edu ElectricalLoad* gate_oen_load = cell_->getLoad(name_ + "_CgOEN"); 32310447Snilay@cs.wisc.edu ElectricalLoad* drain_load = cell_->getLoad(name_ + "_CdZN"); 32410447Snilay@cs.wisc.edu ElectricalDriver* out_drive = cell_->getDriver(name_ + "_RonZN"); 32510447Snilay@cs.wisc.edu ElectricalNet* a_net = cell_->getNet(a_net_); 32610447Snilay@cs.wisc.edu ElectricalNet* oe_net = cell_->getNet(oe_net_); 32710447Snilay@cs.wisc.edu ElectricalNet* oen_net = cell_->getNet(oen_net_); 32810447Snilay@cs.wisc.edu ElectricalNet* zn_net = cell_->getNet(zn_net_); 32910447Snilay@cs.wisc.edu 33010447Snilay@cs.wisc.edu // Setup connectivity of loads and drivers 33110447Snilay@cs.wisc.edu a_net->addDownstreamNode(gate_a_load); 33210447Snilay@cs.wisc.edu oe_net->addDownstreamNode(gate_oe_load); 33310447Snilay@cs.wisc.edu oen_net->addDownstreamNode(gate_oen_load); 33410447Snilay@cs.wisc.edu if (a_to_zn_path_) gate_a_load->addDownstreamNode(out_drive); 33510447Snilay@cs.wisc.edu if (oe_to_zn_path_) gate_oe_load->addDownstreamNode(out_drive); 33610447Snilay@cs.wisc.edu if (oen_to_zn_path_) gate_oen_load->addDownstreamNode(out_drive); 33710447Snilay@cs.wisc.edu zn_net->addDownstreamNode(drain_load); 33810447Snilay@cs.wisc.edu out_drive->addDownstreamNode(zn_net); 33910447Snilay@cs.wisc.edu 34010447Snilay@cs.wisc.edu return; 34110447Snilay@cs.wisc.edu } 34210447Snilay@cs.wisc.edu 34310447Snilay@cs.wisc.edu //Updates the numbers of an inverter for some normalized size 34410447Snilay@cs.wisc.edu void CellMacros::updateTristate(StdCell* cell_, const String& name_, double normalized_size_) 34510447Snilay@cs.wisc.edu { 34610447Snilay@cs.wisc.edu ASSERT(normalized_size_ >= 0.0, "[Error] " + cell_->getInstanceName() + 34710447Snilay@cs.wisc.edu " -> Cannot update a macro with a negative normalized size!"); 34810447Snilay@cs.wisc.edu 34910447Snilay@cs.wisc.edu //Grab pointer to tech model 35010447Snilay@cs.wisc.edu const TechModel* tech = cell_->getTechModel(); 35110447Snilay@cs.wisc.edu 35210447Snilay@cs.wisc.edu //Get values from technology library 35310447Snilay@cs.wisc.edu double vdd = tech->get("Vdd"); 35410447Snilay@cs.wisc.edu double gate_cap = tech->get("Gate->CapPerWidth"); 35510447Snilay@cs.wisc.edu double drain_cap = tech->get("Drain->CapPerWidth"); 35610447Snilay@cs.wisc.edu double nmos_eff_res = tech->get("Nmos->EffResWidth"); 35710447Snilay@cs.wisc.edu double pmos_eff_res = tech->get("Pmos->EffResWidth"); 35810447Snilay@cs.wisc.edu double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio"); 35910447Snilay@cs.wisc.edu double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio"); 36010447Snilay@cs.wisc.edu double gate_pitch_contacted = tech->get("Gate->PitchContacted"); 36110447Snilay@cs.wisc.edu double metal1_wire_min_width = tech->get("Wire->Metal1->MinWidth"); 36210447Snilay@cs.wisc.edu 36310447Snilay@cs.wisc.edu //Calculate number of folds and gate pitches needed 36410447Snilay@cs.wisc.edu unsigned int folds = (normalized_size_ < 1.0) ? 1 : (unsigned int)ceil(normalized_size_); 36510447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_GatePitches", 2 * folds); 36610447Snilay@cs.wisc.edu 36710447Snilay@cs.wisc.edu //Calculate widths, making sure they are above the minimum width 36810447Snilay@cs.wisc.edu double nmos_width = std::max(calculateNmosWidth(cell_, 2, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); 36910447Snilay@cs.wisc.edu double pmos_width = std::max(calculatePmosWidth(cell_, 2, 2, 2) * normalized_size_ / folds, (double) tech->get("Gate->MinWidth")); 37010447Snilay@cs.wisc.edu 37110447Snilay@cs.wisc.edu //Calculate leakage power for each given input state 37210447Snilay@cs.wisc.edu //if output_enable = 0, then it is possible that the PMOS may leak (if output = 0), 37310447Snilay@cs.wisc.edu //or the NMOS will leak (if output = 1) 37410447Snilay@cs.wisc.edu 37510447Snilay@cs.wisc.edu //OE OEN A _ ZN 37610447Snilay@cs.wisc.edu double leakage_power_010_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x2); 37710447Snilay@cs.wisc.edu double leakage_power_010_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x0); 37810447Snilay@cs.wisc.edu double leakage_power_011_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x3); 37910447Snilay@cs.wisc.edu double leakage_power_011_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x1); 38010447Snilay@cs.wisc.edu double leakage_power_100_1 = vdd * folds * tech->calculateNmosLeakageCurrent(2, nmos_width, 0x2); 38110447Snilay@cs.wisc.edu double leakage_power_101_0 = vdd * folds * tech->calculatePmosLeakageCurrent(2, pmos_width, ~0x1); 38210447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_010_0", leakage_power_010_0); 38310447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_010_1", leakage_power_010_1); 38410447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_011_0", leakage_power_011_0); 38510447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_011_1", leakage_power_011_1); 38610447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_100_1", leakage_power_100_1); 38710447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_LeakagePower_101_0", leakage_power_101_0); 38810447Snilay@cs.wisc.edu 38910447Snilay@cs.wisc.edu //Caculate stack balance 39010447Snilay@cs.wisc.edu double pmos_stack2_balance = 1.0 + pmos_eff_res_stack_ratio; 39110447Snilay@cs.wisc.edu double nmos_stack2_balance = 1.0 + nmos_eff_res_stack_ratio; 39210447Snilay@cs.wisc.edu 39310447Snilay@cs.wisc.edu //Calculate caps 39410447Snilay@cs.wisc.edu double c_g_a = (nmos_width + pmos_width) * gate_cap * folds; 39510447Snilay@cs.wisc.edu double c_g_oe = nmos_width * gate_cap * folds; 39610447Snilay@cs.wisc.edu double c_g_oen = pmos_width * gate_cap * folds; 39710447Snilay@cs.wisc.edu double c_d = (2 * pmos_width + 2 * nmos_width) * drain_cap * folds; 39810447Snilay@cs.wisc.edu double r_on = (nmos_stack2_balance * nmos_eff_res / nmos_width + pmos_stack2_balance * pmos_eff_res / pmos_width) / (folds * 2.0); 39910447Snilay@cs.wisc.edu 40010447Snilay@cs.wisc.edu // Estimate the wire cap and add them all at the output 40110447Snilay@cs.wisc.edu double cell_height = cell_->getTotalHeight(); 40210447Snilay@cs.wisc.edu double wire_width = metal1_wire_min_width; 40310447Snilay@cs.wisc.edu double wire_spacing = gate_pitch_contacted - metal1_wire_min_width; 40410447Snilay@cs.wisc.edu double wire_length = 2.0 * folds * cell_height; 40510447Snilay@cs.wisc.edu double wire_cap = tech->calculateWireCapacitance("Metal1", wire_width, wire_spacing, wire_length); 40610447Snilay@cs.wisc.edu 40710447Snilay@cs.wisc.edu // Construct equivalent load and drive strength 40810447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CgA")->setLoadCap(c_g_a); 40910447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CgOE")->setLoadCap(c_g_oe); 41010447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CgOEN")->setLoadCap(c_g_oen); 41110447Snilay@cs.wisc.edu cell_->getLoad(name_ + "_CdZN")->setLoadCap(c_d + wire_cap); 41210447Snilay@cs.wisc.edu cell_->getDriver(name_ + "_RonZN")->setOutputRes(r_on); 41310447Snilay@cs.wisc.edu 41410447Snilay@cs.wisc.edu // Calculate flip energy (output flip) 41510447Snilay@cs.wisc.edu double zn_flip_energy = 0.5 * (c_d + wire_cap) * vdd * vdd; 41610447Snilay@cs.wisc.edu double a_flip_energy = 0.5 * c_g_a * vdd * vdd; 41710447Snilay@cs.wisc.edu double oe_flip_energy = 0.5 * c_g_oe * vdd * vdd; 41810447Snilay@cs.wisc.edu double oen_flip_energy = 0.5 * c_g_oen * vdd * vdd; 41910447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_ZN_Flip", zn_flip_energy); 42010447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_A_Flip", a_flip_energy); 42110447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_OE_Flip", oe_flip_energy); 42210447Snilay@cs.wisc.edu cell_->getGenProperties()->set(name_ + "_OEN_Flip", oen_flip_energy); 42310447Snilay@cs.wisc.edu return; 42410447Snilay@cs.wisc.edu } 42510447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 42610447Snilay@cs.wisc.edu 42710447Snilay@cs.wisc.edu 42810447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 42910447Snilay@cs.wisc.edu // Helper Functions 43010447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 43110447Snilay@cs.wisc.edu //Returns the width of NMOS transistors, given the NMOS and PMOS stacking 43210447Snilay@cs.wisc.edu double CellMacros::calculateNmosWidth(const StdCell* cell_, unsigned int max_stacked_nmos_, unsigned int max_stacked_pmos_, unsigned int current_stacked_nmos_) 43310447Snilay@cs.wisc.edu { 43410447Snilay@cs.wisc.edu //Grab pointer to tech model 43510447Snilay@cs.wisc.edu const TechModel* tech = cell_->getTechModel(); 43610447Snilay@cs.wisc.edu 43710447Snilay@cs.wisc.edu double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio"); 43810447Snilay@cs.wisc.edu double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio"); 43910447Snilay@cs.wisc.edu 44010447Snilay@cs.wisc.edu double nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (max_stacked_nmos_ - 1); 44110447Snilay@cs.wisc.edu double pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (max_stacked_pmos_ - 1); 44210447Snilay@cs.wisc.edu double current_nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (current_stacked_nmos_ - 1); 44310447Snilay@cs.wisc.edu 44410447Snilay@cs.wisc.edu double pn_ratio = cell_->getPToNRatio(); 44510447Snilay@cs.wisc.edu double active_height = cell_->getActiveHeight(); 44610447Snilay@cs.wisc.edu 44710447Snilay@cs.wisc.edu //Calculate the width of the current device 44810447Snilay@cs.wisc.edu double nmos_width = active_height * current_nmos_stack_balance / (nmos_stack_balance + pn_ratio * pmos_stack_balance); 44910447Snilay@cs.wisc.edu 45010447Snilay@cs.wisc.edu return nmos_width; 45110447Snilay@cs.wisc.edu } 45210447Snilay@cs.wisc.edu 45310447Snilay@cs.wisc.edu //Returns the width of PMOS transistors, given the NMOS and PMOS stacking 45410447Snilay@cs.wisc.edu double CellMacros::calculatePmosWidth(const StdCell* cell_, unsigned int max_stacked_nmos_, unsigned int max_stacked_pmos_, unsigned int current_stacked_pmos_) 45510447Snilay@cs.wisc.edu { 45610447Snilay@cs.wisc.edu //Grab pointer to tech model 45710447Snilay@cs.wisc.edu const TechModel* tech = cell_->getTechModel(); 45810447Snilay@cs.wisc.edu 45910447Snilay@cs.wisc.edu double nmos_eff_res_stack_ratio = tech->get("Nmos->EffResStackRatio"); 46010447Snilay@cs.wisc.edu double pmos_eff_res_stack_ratio = tech->get("Pmos->EffResStackRatio"); 46110447Snilay@cs.wisc.edu 46210447Snilay@cs.wisc.edu double nmos_stack_balance = 1.0 + nmos_eff_res_stack_ratio * (double) (max_stacked_nmos_ - 1); 46310447Snilay@cs.wisc.edu double pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (max_stacked_pmos_ - 1); 46410447Snilay@cs.wisc.edu double current_pmos_stack_balance = 1.0 + pmos_eff_res_stack_ratio * (double) (current_stacked_pmos_ - 1); 46510447Snilay@cs.wisc.edu 46610447Snilay@cs.wisc.edu double pn_ratio = cell_->getPToNRatio(); 46710447Snilay@cs.wisc.edu double active_height = cell_->getActiveHeight(); 46810447Snilay@cs.wisc.edu 46910447Snilay@cs.wisc.edu //Calculate the width of the current device 47010447Snilay@cs.wisc.edu double pmos_width = active_height * current_pmos_stack_balance * pn_ratio / (nmos_stack_balance + pn_ratio * pmos_stack_balance); 47110447Snilay@cs.wisc.edu 47210447Snilay@cs.wisc.edu return pmos_width; 47310447Snilay@cs.wisc.edu } 47410447Snilay@cs.wisc.edu //------------------------------------------------------------------------- 47510447Snilay@cs.wisc.edu 47610447Snilay@cs.wisc.edu} // namespace DSENT 47710447Snilay@cs.wisc.edu 478