ADDF.cc revision 10447:a465576671d4
1#include "model/std_cells/ADDF.h"
2
3#include <cmath>
4
5#include "model/PortInfo.h"
6#include "model/EventInfo.h"
7#include "model/TransitionInfo.h"
8#include "model/std_cells/StdCellLib.h"
9#include "model/std_cells/CellMacros.h"
10#include "model/timing_graph/ElectricalNet.h"
11#include "model/timing_graph/ElectricalDriver.h"
12#include "model/timing_graph/ElectricalLoad.h"
13#include "model/timing_graph/ElectricalDelay.h"
14
15namespace DSENT
16{
17    using std::ceil;
18    using std::max;
19
20    ADDF::ADDF(const String& instance_name_, const TechModel* tech_model_)
21        : StdCell(instance_name_, tech_model_)
22    {
23        initParameters();
24        initProperties();
25    }
26
27    ADDF::~ADDF()
28    {}
29
30    void ADDF::initProperties()
31    {
32        return;
33    }
34
35    void ADDF::constructModel()
36    {
37        // All constructModel should do is create Area/NDDPower/Energy Results as
38        // well as instantiate any sub-instances using only the hard parameters
39
40        createInputPort("A");
41        createInputPort("B");
42        createInputPort("CI");
43        createOutputPort("S");
44        createOutputPort("CO");
45
46        createLoad("A_Cap");
47        createLoad("B_Cap");
48        createLoad("CI_Cap");
49        createDelay("A_to_S_delay");
50        createDelay("B_to_S_delay");
51        createDelay("CI_to_S_delay");
52        createDelay("A_to_CO_delay");
53        createDelay("B_to_CO_delay");
54        createDelay("CI_to_CO_delay");
55        createDriver("S_Ron", true);
56        createDriver("CO_Ron", true);
57
58        ElectricalLoad* a_cap = getLoad("A_Cap");
59        ElectricalLoad* b_cap = getLoad("B_Cap");
60        ElectricalLoad* ci_cap = getLoad("CI_Cap");
61        ElectricalDelay* a_to_s_delay = getDelay("A_to_S_delay");
62        ElectricalDelay* b_to_s_delay = getDelay("B_to_S_delay");
63        ElectricalDelay* ci_to_s_delay = getDelay("CI_to_S_delay");
64        ElectricalDelay* a_to_co_delay = getDelay("A_to_CO_delay");
65        ElectricalDelay* b_to_co_delay = getDelay("B_to_CO_delay");
66        ElectricalDelay* ci_to_co_delay = getDelay("CI_to_CO_delay");
67        ElectricalDriver* s_ron = getDriver("S_Ron");
68        ElectricalDriver* co_ron = getDriver("CO_Ron");
69
70        getNet("A")->addDownstreamNode(a_cap);
71        getNet("B")->addDownstreamNode(b_cap);
72        getNet("CI")->addDownstreamNode(ci_cap);
73        a_cap->addDownstreamNode(a_to_s_delay);
74        b_cap->addDownstreamNode(b_to_s_delay);
75        ci_cap->addDownstreamNode(ci_to_s_delay);
76        a_cap->addDownstreamNode(a_to_co_delay);
77        b_cap->addDownstreamNode(b_to_co_delay);
78        ci_cap->addDownstreamNode(ci_to_co_delay);
79
80        a_to_s_delay->addDownstreamNode(s_ron);
81        b_to_s_delay->addDownstreamNode(s_ron);
82        ci_to_s_delay->addDownstreamNode(s_ron);
83        a_to_co_delay->addDownstreamNode(co_ron);
84        b_to_co_delay->addDownstreamNode(co_ron);
85        ci_to_co_delay->addDownstreamNode(co_ron);
86
87        s_ron->addDownstreamNode(getNet("S"));
88        co_ron->addDownstreamNode(getNet("CO"));
89
90        // Create Area result
91        // Create NDD Power result
92        createElectricalAtomicResults();
93        // Create ADDF Event Energy Result
94        createElectricalEventAtomicResult("ADDF");
95
96        getEventInfo("Idle")->setStaticTransitionInfos();
97
98        return;
99    }
100
101    void ADDF::updateModel()
102    {
103        // Get parameters
104        double drive_strength = getDrivingStrength();
105        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
106
107        // Standard cell cache string
108        String cell_name = "ADDF_X" + (String) drive_strength;
109
110        // Get timing parameters
111        getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
112        getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
113        getLoad("CI_Cap")->setLoadCap(cache->get(cell_name + "->Cap->CI"));
114
115        getDelay("A_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_S"));
116        getDelay("B_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_S"));
117        getDelay("CI_to_S_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_S"));
118        getDelay("A_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_CO"));
119        getDelay("B_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_CO"));
120        getDelay("CI_to_CO_delay")->setDelay(cache->get(cell_name + "->Delay->CI_to_CO"));
121
122        getDriver("S_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->S"));
123        getDriver("CO_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->CO"));
124
125        // Set the cell area
126        getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active"));
127        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire"));
128
129        return;
130    }
131
132    void ADDF::evaluateModel()
133    {
134        return;
135    }
136
137    void ADDF::useModel()
138    {
139        // Get parameters
140        double drive_strength = getDrivingStrength();
141        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
142
143        // Standard cell cache string
144        String cell_name = "ADDF_X" + (String) drive_strength;
145
146        // Propagate the transition info and get the 0->1 transition count
147        propagateTransitionInfo();
148        double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
149        double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
150        double P_CI = getInputPort("CI")->getTransitionInfo().getProbability1();
151        double A_num_trans_01 = getInputPort("A")->getTransitionInfo().getNumberTransitions01();
152        double B_num_trans_01 = getInputPort("B")->getTransitionInfo().getNumberTransitions01();
153        double CI_num_trans_01 = getInputPort("CI")->getTransitionInfo().getNumberTransitions01();
154        double P_num_trans_01 = m_trans_P_.getNumberTransitions01();
155        double G_num_trans_01 = m_trans_G_.getNumberTransitions01();
156        double CP_num_trans_01 = m_trans_CP_.getNumberTransitions01();
157        double S_num_trans_01 = getOutputPort("S")->getTransitionInfo().getNumberTransitions01();
158        double CO_num_trans_01 = getOutputPort("CO")->getTransitionInfo().getNumberTransitions01();
159
160        // Calculate leakage
161        double leakage = 0;
162        leakage += cache->get(cell_name + "->Leakage->!A!B!CI") * (1 - P_A) * (1 - P_B) * (1 - P_CI);
163        leakage += cache->get(cell_name + "->Leakage->!A!BCI") * (1 - P_A) * (1 - P_B) * P_CI;
164        leakage += cache->get(cell_name + "->Leakage->!AB!CI") * (1 - P_A) * P_B * (1 - P_CI);
165        leakage += cache->get(cell_name + "->Leakage->!ABCI") * (1 - P_A) * P_B * P_CI;
166        leakage += cache->get(cell_name + "->Leakage->A!B!CI") * P_A * (1 - P_B) * (1 - P_CI);
167        leakage += cache->get(cell_name + "->Leakage->A!BCI") * P_A * (1 - P_B) * P_CI;
168        leakage += cache->get(cell_name + "->Leakage->AB!CI") * P_A * P_B * (1 - P_CI);
169        leakage += cache->get(cell_name + "->Leakage->ABCI") * P_A * P_B * P_CI;
170        getNddPowerResult("Leakage")->setValue(leakage);
171
172        // Get VDD
173        double vdd = getTechModel()->get("Vdd");
174
175        // Get capacitances
176        double a_b_cap = cache->get(cell_name + "->Cap->A_b");
177        double b_b_cap = cache->get(cell_name + "->Cap->B_b");
178        double ci_b_cap = cache->get(cell_name + "->Cap->CI_b");
179        double p_cap = cache->get(cell_name + "->Cap->P");
180        double p_b_cap = cache->get(cell_name + "->Cap->P_b");
181        double s_cap = cache->get(cell_name + "->Cap->S");
182        double cp_cap = cache->get(cell_name + "->Cap->CP");
183        double g_cap = cache->get(cell_name + "->Cap->G");
184        double co_cap = cache->get(cell_name + "->Cap->CO");
185        double s_load_cap = getNet("S")->getTotalDownstreamCap();
186        double co_load_cap = getNet("CO")->getTotalDownstreamCap();
187
188        // Calculate ADDF Event energy
189        double addf_event_energy = 0.0;
190        addf_event_energy += a_b_cap * A_num_trans_01;
191        addf_event_energy += b_b_cap * B_num_trans_01;
192        addf_event_energy += ci_b_cap * CI_num_trans_01;
193        addf_event_energy += (p_cap + p_b_cap) * P_num_trans_01;
194        addf_event_energy += (s_cap + s_load_cap) * S_num_trans_01;
195        addf_event_energy += cp_cap * CP_num_trans_01;
196        addf_event_energy += g_cap * G_num_trans_01;
197        addf_event_energy += (co_cap + co_load_cap) * CO_num_trans_01;
198        addf_event_energy *= vdd * vdd;
199        getEventResult("ADDF")->setValue(addf_event_energy);
200
201        return;
202    }
203
204    void ADDF::propagateTransitionInfo()
205    {
206        const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
207        const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
208        const TransitionInfo& trans_CI = getInputPort("CI")->getTransitionInfo();
209
210        double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_CI.getFrequencyMultiplier());
211        const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
212        const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
213        const TransitionInfo& scaled_trans_CI = trans_CI.scaleFrequencyMultiplier(max_freq_mult);
214
215        double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
216        double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
217        double A_prob_10 = A_prob_01;
218        double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
219        double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
220        double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
221        double B_prob_10 = B_prob_01;
222        double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
223        double CI_prob_00 = scaled_trans_CI.getNumberTransitions00() / max_freq_mult;
224        double CI_prob_01 = scaled_trans_CI.getNumberTransitions01() / max_freq_mult;
225        double CI_prob_10 = CI_prob_01;
226        double CI_prob_11 = scaled_trans_CI.getNumberTransitions11() / max_freq_mult;
227
228        // Set P transition info
229        double P_prob_00 = A_prob_00 * B_prob_00 +
230                                A_prob_01 * B_prob_01 +
231                                A_prob_10 * B_prob_10 +
232                                A_prob_11 * B_prob_11;
233        double P_prob_01 = A_prob_00 * B_prob_01 +
234                                A_prob_01 * B_prob_00 +
235                                A_prob_10 * B_prob_11 +
236                                A_prob_11 * B_prob_10;
237        double P_prob_10 = P_prob_01;
238        double P_prob_11 = A_prob_00 * B_prob_11 +
239                                A_prob_01 * B_prob_10 +
240                                A_prob_10 * B_prob_01 +
241                                A_prob_11 * B_prob_00;
242
243        // Set G transition info
244        double G_prob_00 = A_prob_11 * B_prob_11;
245        double G_prob_01 = A_prob_11 * B_prob_10 +
246                            A_prob_10 * (B_prob_11 + B_prob_10);
247        double G_prob_10 = G_prob_01;
248        double G_prob_11 = A_prob_00 +
249                            A_prob_01 * (B_prob_00 + B_prob_10) +
250                            A_prob_10 * (B_prob_00 + B_prob_01) +
251                            A_prob_11 * B_prob_00;
252
253        // Set CP transition info
254        double CP_prob_00 = P_prob_11 * CI_prob_11;
255        double CP_prob_01 = P_prob_11 * CI_prob_10 +
256                            P_prob_10 * (CI_prob_11 + CI_prob_10);
257        double CP_prob_10 = CP_prob_01;
258        double CP_prob_11 = P_prob_00 +
259                            P_prob_01 * (CI_prob_00 + CI_prob_10) +
260                            P_prob_10 * (CI_prob_00 + CI_prob_01) +
261                            P_prob_11 * CI_prob_00;
262
263        // Set S transition info
264        double S_prob_00 = P_prob_00 * CI_prob_00 +
265                                P_prob_01 * CI_prob_01 +
266                                P_prob_10 * CI_prob_10 +
267                                P_prob_11 * CI_prob_11;
268        double S_prob_01 = P_prob_00 * CI_prob_01 +
269                                P_prob_01 * CI_prob_00 +
270                                P_prob_10 * CI_prob_11 +
271                                P_prob_11 * CI_prob_10;
272        double S_prob_11 = P_prob_00 * CI_prob_11 +
273                                P_prob_01 * CI_prob_10 +
274                                P_prob_10 * CI_prob_01 +
275                                P_prob_11 * CI_prob_00;
276
277        // Set CO transition info
278        double CO_prob_00 = G_prob_11 * CP_prob_11;
279        double CO_prob_01 = G_prob_11 * CP_prob_10 +
280                            G_prob_10 * (CP_prob_11 + CP_prob_10);
281        double CO_prob_11 = G_prob_00 +
282                            G_prob_01 * (CP_prob_00 + CP_prob_10) +
283                            G_prob_10 * (CP_prob_00 + CP_prob_01) +
284                            G_prob_11 * CP_prob_00;
285
286        m_trans_P_ = TransitionInfo(P_prob_00 * max_freq_mult, P_prob_01 * max_freq_mult, P_prob_11 * max_freq_mult);
287        m_trans_G_ = TransitionInfo(G_prob_00 * max_freq_mult, G_prob_01 * max_freq_mult, G_prob_11 * max_freq_mult);
288        m_trans_CP_ = TransitionInfo(CP_prob_00 * max_freq_mult, CP_prob_01 * max_freq_mult, CP_prob_11 * max_freq_mult);
289
290        // Check that probabilities add up to 1.0 with some finite tolerance
291        ASSERT(LibUtil::Math::isEqual((S_prob_00 + S_prob_01 + S_prob_01 + S_prob_11), 1.0),
292            "[Error] " + getInstanceName() +  "Output S transition probabilities must add up to 1 (" +
293            (String) S_prob_00 + ", " + (String) S_prob_01 + ", " + (String) S_prob_11 + ")!");
294
295        // Check that probabilities add up to 1.0 with some finite tolerance
296        ASSERT(LibUtil::Math::isEqual((CO_prob_00 + CO_prob_01 + CO_prob_01 + CO_prob_11), 1.0),
297            "[Error] " + getInstanceName() +  "Output S transition probabilities must add up to 1 (" +
298            (String) CO_prob_00 + ", " + (String) CO_prob_01 + ", " + (String) CO_prob_11 + ")!");
299
300        // Turn probability of transitions per cycle into number of transitions per time unit
301        TransitionInfo trans_S(S_prob_00 * max_freq_mult, S_prob_01 * max_freq_mult, S_prob_11 * max_freq_mult);
302        getOutputPort("S")->setTransitionInfo(trans_S);
303        TransitionInfo trans_CO(CO_prob_00 * max_freq_mult, CO_prob_01 * max_freq_mult, CO_prob_11 * max_freq_mult);
304        getOutputPort("CO")->setTransitionInfo(trans_CO);
305        return;
306    }
307
308    // Creates the standard cell, characterizes and abstracts away the details
309    void ADDF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
310    {
311        // Get parameters
312        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
313        Map<double>* cache = cell_lib_->getStdCellCache();
314
315        // Standard cell cache string
316        String cell_name = "ADDF_X" + (String) drive_strength_;
317
318        Log::printLine("=== " + cell_name + " ===");
319
320        // Now actually build the full standard cell model
321        createInputPort("A");
322        createInputPort("B");
323        createInputPort("CI");
324        createOutputPort("S");
325        createOutputPort("CO");
326
327        createNet("A_b");
328        createNet("B_b");
329        createNet("CI_b");
330        createNet("P");
331        createNet("P_b");
332        createNet("G");             //actually G_b since it is NAND'ed
333        createNet("CP");            //actually (CP)_b since it is NAND'ed
334
335        // Adds macros
336        CellMacros::addInverter(this, "INV1", false, true, "A", "A_b");
337        CellMacros::addInverter(this, "INV2", false, true, "B", "B_b");
338        CellMacros::addInverter(this, "INV3", false, true, "CI", "CI_b");
339        CellMacros::addInverter(this, "INV4", false, true, "P", "P_b");
340        CellMacros::addTristate(this, "INVZ1", false, true, true, true, "B", "A", "A_b", "P");
341        CellMacros::addTristate(this, "INVZ2", false, true, true, true, "B_b", "A_b", "A", "P");
342        CellMacros::addTristate(this, "INVZ3", true, true, true, true, "P", "CI", "CI_b", "S");
343        CellMacros::addTristate(this, "INVZ4", true, true, true, true, "P_b", "CI_b", "CI", "S");
344        CellMacros::addNand2(this, "NAND1", false, true, true, "CI", "P", "CP");
345        CellMacros::addNand2(this, "NAND2", false, true, true, "A", "B", "G");
346        CellMacros::addNand2(this, "NAND3", true, true, true, "CP", "G", "CO");
347
348        // I have no idea how to size each of the parts haha
349        CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250);
350        CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.250);
351        CellMacros::updateInverter(this, "INV3", drive_strength_ * 0.250);
352        CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.500);
353        CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.250);
354        CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.250);
355        CellMacros::updateTristate(this, "INVZ3", drive_strength_ * 0.500);
356        CellMacros::updateTristate(this, "INVZ4", drive_strength_ * 0.500);
357        CellMacros::updateNand2(this, "NAND1", drive_strength_ * 0.500);
358        CellMacros::updateNand2(this, "NAND2", drive_strength_ * 0.500);
359        CellMacros::updateNand2(this, "NAND3", drive_strength_ * 1.000);
360
361        // Cache area result
362        double area = 0.0;
363        area += gate_pitch * getTotalHeight() * 1;
364        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
365        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
366        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble();
367        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble();
368        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
369        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
370        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ3_GatePitches").toDouble();
371        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ4_GatePitches").toDouble();
372        area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND1_GatePitches").toDouble();
373        area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND2_GatePitches").toDouble();
374        area += gate_pitch * getTotalHeight() * getGenProperties()->get("NAND3_GatePitches").toDouble();
375        cache->set(cell_name + "->Area->Active", area);
376        cache->set(cell_name + "->Area->Metal1Wire", area);
377        Log::printLine(cell_name + "->Area->Active=" + (String) area);
378        Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area);
379
380        // --------------------------------------------------------------------
381        // Leakage Model Calculation
382        // --------------------------------------------------------------------
383        // Cache leakage power results (for every single signal combination)
384        double leakage_000 = 0;         //!A, !B, !CI
385        double leakage_001 = 0;         //!A, !B, CI
386        double leakage_010 = 0;         //!A, B, !CI
387        double leakage_011 = 0;         //!A, B, CI
388        double leakage_100 = 0;         //A, !B, !CI
389        double leakage_101 = 0;         //A, !B, CI
390        double leakage_110 = 0;         //A, B, !CI
391        double leakage_111 = 0;         //A, B, CI
392
393        //This is so painful...
394        leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
395        leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
396        leakage_000 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
397        leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
398        leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
399        leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
400        leakage_000 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
401        leakage_000 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
402        leakage_000 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble();
403        leakage_000 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble();
404        leakage_000 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
405
406        leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
407        leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
408        leakage_001 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
409        leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
410        leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
411        leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
412        leakage_001 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
413        leakage_001 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble();
414        leakage_001 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble();
415        leakage_001 += getGenProperties()->get("NAND2_LeakagePower_00").toDouble();
416        leakage_001 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
417
418        leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
419        leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
420        leakage_010 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
421        leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
422        leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
423        leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
424        leakage_010 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
425        leakage_010 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
426        leakage_010 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble();
427        leakage_010 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble();
428        leakage_010 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
429
430        leakage_011 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
431        leakage_011 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
432        leakage_011 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
433        leakage_011 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
434        leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
435        leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
436        leakage_011 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
437        leakage_011 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble();
438        leakage_011 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble();
439        leakage_011 += getGenProperties()->get("NAND2_LeakagePower_01").toDouble();
440        leakage_011 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble();
441
442        leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
443        leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
444        leakage_100 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
445        leakage_100 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
446        leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
447        leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
448        leakage_100 += getGenProperties()->get("INVZ3_LeakagePower_011_1").toDouble();
449        leakage_100 += getGenProperties()->get("INVZ4_LeakagePower_100_1").toDouble();
450        leakage_100 += getGenProperties()->get("NAND1_LeakagePower_01").toDouble();
451        leakage_100 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble();
452        leakage_100 += getGenProperties()->get("NAND3_LeakagePower_11").toDouble();
453
454        leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
455        leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
456        leakage_101 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
457        leakage_101 += getGenProperties()->get("INV4_LeakagePower_1").toDouble();
458        leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
459        leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
460        leakage_101 += getGenProperties()->get("INVZ3_LeakagePower_101_0").toDouble();
461        leakage_101 += getGenProperties()->get("INVZ4_LeakagePower_010_0").toDouble();
462        leakage_101 += getGenProperties()->get("NAND1_LeakagePower_11").toDouble();
463        leakage_101 += getGenProperties()->get("NAND2_LeakagePower_10").toDouble();
464        leakage_101 += getGenProperties()->get("NAND3_LeakagePower_01").toDouble();
465
466        leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
467        leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
468        leakage_110 += getGenProperties()->get("INV3_LeakagePower_0").toDouble();
469        leakage_110 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
470        leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
471        leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
472        leakage_110 += getGenProperties()->get("INVZ3_LeakagePower_010_0").toDouble();
473        leakage_110 += getGenProperties()->get("INVZ4_LeakagePower_101_0").toDouble();
474        leakage_110 += getGenProperties()->get("NAND1_LeakagePower_00").toDouble();
475        leakage_110 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble();
476        leakage_110 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble();
477
478        leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
479        leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
480        leakage_111 += getGenProperties()->get("INV3_LeakagePower_1").toDouble();
481        leakage_111 += getGenProperties()->get("INV4_LeakagePower_0").toDouble();
482        leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
483        leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
484        leakage_111 += getGenProperties()->get("INVZ3_LeakagePower_100_1").toDouble();
485        leakage_111 += getGenProperties()->get("INVZ4_LeakagePower_011_1").toDouble();
486        leakage_111 += getGenProperties()->get("NAND1_LeakagePower_10").toDouble();
487        leakage_111 += getGenProperties()->get("NAND2_LeakagePower_11").toDouble();
488        leakage_111 += getGenProperties()->get("NAND3_LeakagePower_10").toDouble();
489
490        cache->set(cell_name + "->Leakage->!A!B!CI", leakage_000);
491        cache->set(cell_name + "->Leakage->!A!BCI", leakage_001);
492        cache->set(cell_name + "->Leakage->!AB!CI", leakage_010);
493        cache->set(cell_name + "->Leakage->!ABCI", leakage_011);
494        cache->set(cell_name + "->Leakage->A!B!CI", leakage_100);
495        cache->set(cell_name + "->Leakage->A!BCI", leakage_101);
496        cache->set(cell_name + "->Leakage->AB!CI", leakage_110);
497        cache->set(cell_name + "->Leakage->ABCI", leakage_111);
498        Log::printLine(cell_name + "->Leakage->!A!B!CI=" + (String) leakage_000);
499        Log::printLine(cell_name + "->Leakage->!A!BCI=" + (String) leakage_001);
500        Log::printLine(cell_name + "->Leakage->!AB!CI=" + (String) leakage_010);
501        Log::printLine(cell_name + "->Leakage->!ABCI=" + (String) leakage_011);
502        Log::printLine(cell_name + "->Leakage->A!B!CI=" + (String) leakage_100);
503        Log::printLine(cell_name + "->Leakage->A!BCI=" + (String) leakage_101);
504        Log::printLine(cell_name + "->Leakage->AB!CI=" + (String) leakage_110);
505        Log::printLine(cell_name + "->Leakage->ABCI=" + (String) leakage_111);
506        // --------------------------------------------------------------------
507
508        /*
509        // Cache event energy results
510        double event_a_flip = 0.0;
511        event_a_flip += getGenProperties()->get("INV1_A_Flip").toDouble() + getGenProperties()->get("INV1_ZN_Flip").toDouble();
512        event_a_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
513        event_a_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
514        event_a_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble();
515        cache->set(cell_name + "->Event_A_Flip", event_a_flip);
516        Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
517
518        double event_b_flip = 0.0;
519        event_b_flip += getGenProperties()->get("INV2_A_Flip").toDouble() + getGenProperties()->get("INV2_ZN_Flip").toDouble();
520        event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
521        event_b_flip += getGenProperties()->get("INVZ2_A_Flip").toDouble();
522        event_b_flip += getGenProperties()->get("NAND2_A1_Flip").toDouble();
523        cache->set(cell_name + "->Event_B_Flip", event_b_flip);
524        Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
525
526        double event_ci_flip = 0.0;
527        event_ci_flip += getGenProperties()->get("INV3_A_Flip").toDouble() + getGenProperties()->get("INV3_ZN_Flip").toDouble();
528        event_ci_flip += getGenProperties()->get("INVZ3_OE_Flip").toDouble() + getGenProperties()->get("INVZ3_OEN_Flip").toDouble();
529        event_ci_flip += getGenProperties()->get("INVZ4_OE_Flip").toDouble() + getGenProperties()->get("INVZ4_OEN_Flip").toDouble();
530        event_ci_flip += getGenProperties()->get("NAND1_A1_Flip").toDouble();
531        cache->set(cell_name + "->Event_CI_Flip", event_ci_flip);
532        Log::printLine(cell_name + "->Event_CI_Flip=" + (String) event_ci_flip);
533
534        double event_p_flip = 0.0;
535        event_p_flip += getGenProperties()->get("INV4_A_Flip").toDouble() + getGenProperties()->get("INV4_ZN_Flip").toDouble();
536        event_p_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
537        event_p_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
538        event_p_flip += getGenProperties()->get("NAND1_A2_Flip").toDouble();
539        cache->set(cell_name + "->Event_P_Flip", event_p_flip);
540        Log::printLine(cell_name + "->Event_P_Flip=" + (String) event_p_flip);
541
542        double event_s_flip = 0.0;
543        event_s_flip += getGenProperties()->get("INVZ3_ZN_Flip").toDouble();
544        event_s_flip += getGenProperties()->get("INVZ4_ZN_Flip").toDouble();
545        cache->set(cell_name + "->Event_S_Flip", event_s_flip);
546        Log::printLine(cell_name + "->Event_S_Flip=" + (String) event_s_flip);
547
548        double event_cp_flip = 0.0;
549        event_cp_flip += getGenProperties()->get("NAND1_ZN_Flip").toDouble();
550        event_cp_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble();
551        cache->set(cell_name + "->Event_CP_Flip", event_cp_flip);
552        Log::printLine(cell_name + "->Event_CP_Flip=" + (String) event_cp_flip);
553
554        double event_g_flip = 0.0;
555        event_g_flip += getGenProperties()->get("NAND2_ZN_Flip").toDouble();
556        event_g_flip += getGenProperties()->get("NAND3_A2_Flip").toDouble();
557        cache->set(cell_name + "->Event_G_Flip", event_g_flip);
558        Log::printLine(cell_name + "->Event_G_Flip=" + (String) event_g_flip);
559
560        double event_co_flip = 0.0;
561        event_co_flip += getGenProperties()->get("NAND3_ZN_Flip").toDouble();
562        cache->set(cell_name + "->Event_CO_Flip", event_co_flip);
563        Log::printLine(cell_name + "->Event_CO_Flip=" + (String) event_co_flip);
564        */
565        // --------------------------------------------------------------------
566        // Get Node Capacitances
567        // --------------------------------------------------------------------
568        double a_cap = getNet("A")->getTotalDownstreamCap();
569        double b_cap = getNet("B")->getTotalDownstreamCap();
570        double ci_cap = getNet("CI")->getTotalDownstreamCap();
571        double a_b_cap = getNet("A_b")->getTotalDownstreamCap();
572        double b_b_cap = getNet("B_b")->getTotalDownstreamCap();
573        double ci_b_cap = getNet("CI_b")->getTotalDownstreamCap();
574        double p_cap = getNet("P")->getTotalDownstreamCap();
575        double p_b_cap = getNet("P_b")->getTotalDownstreamCap();
576        double s_cap = getNet("S")->getTotalDownstreamCap();
577        double cp_cap = getNet("CP")->getTotalDownstreamCap();
578        double g_cap = getNet("G")->getTotalDownstreamCap();
579        double co_cap = getNet("CO")->getTotalDownstreamCap();
580
581        cache->set(cell_name + "->Cap->A", a_cap);
582        cache->set(cell_name + "->Cap->B", b_cap);
583        cache->set(cell_name + "->Cap->CI", ci_cap);
584        cache->set(cell_name + "->Cap->A_b", a_b_cap);
585        cache->set(cell_name + "->Cap->B_b", b_b_cap);
586        cache->set(cell_name + "->Cap->CI_b", ci_b_cap);
587        cache->set(cell_name + "->Cap->P", p_cap);
588        cache->set(cell_name + "->Cap->P_b", p_b_cap);
589        cache->set(cell_name + "->Cap->S", s_cap);
590        cache->set(cell_name + "->Cap->CP", cp_cap);
591        cache->set(cell_name + "->Cap->G", g_cap);
592        cache->set(cell_name + "->Cap->CO", co_cap);
593
594        Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
595        Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
596        Log::printLine(cell_name + "->Cap->CI=" + (String) ci_cap);
597        Log::printLine(cell_name + "->Cap->A_b=" + (String) a_b_cap);
598        Log::printLine(cell_name + "->Cap->B_b=" + (String) b_b_cap);
599        Log::printLine(cell_name + "->Cap->CI_b=" + (String) ci_b_cap);
600        Log::printLine(cell_name + "->Cap->P=" + (String) p_cap);
601        Log::printLine(cell_name + "->Cap->P_b=" + (String) p_b_cap);
602        Log::printLine(cell_name + "->Cap->S=" + (String) s_cap);
603        Log::printLine(cell_name + "->Cap->CP=" + (String) cp_cap);
604        Log::printLine(cell_name + "->Cap->G=" + (String) g_cap);
605        Log::printLine(cell_name + "->Cap->CO=" + (String) co_cap);
606        // --------------------------------------------------------------------
607
608        // --------------------------------------------------------------------
609        // Build Internal Delay Model
610        // --------------------------------------------------------------------
611        // Build abstracted timing model
612        double s_ron = (getDriver("INVZ3_RonZN")->getOutputRes() + getDriver("INVZ4_RonZN")->getOutputRes()) / 2;
613        double co_ron = getDriver("NAND3_RonZN")->getOutputRes();
614
615        double a_to_s_delay = 0.0;
616        a_to_s_delay += getDriver("INV1_RonZN")->calculateDelay();
617        a_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay());
618        a_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay());
619
620        double b_to_s_delay = 0.0;
621        b_to_s_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay());
622        b_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INV4_RonZN")->calculateDelay() + getDriver("INVZ4_RonZN")->calculateDelay());
623
624        double ci_to_s_delay = 0.0;
625        ci_to_s_delay += getDriver("INV3_RonZN")->calculateDelay();
626        ci_to_s_delay += max(getDriver("INVZ3_RonZN")->calculateDelay(), getDriver("INVZ4_RonZN")->calculateDelay());
627
628        double a_to_co_delay = 0.0;
629        a_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(),              //Generate path
630                            getDriver("INV1_RonZN")->calculateDelay() +             //Carry propagate path
631                            max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ2_RonZN")->calculateDelay()) +
632                            getDriver("NAND1_RonZN")->calculateDelay());
633        a_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
634
635        double b_to_co_delay = 0.0;
636        b_to_co_delay += max(getDriver("NAND2_RonZN")->calculateDelay(),              //Generate path
637                            max(getDriver("INVZ1_RonZN")->calculateDelay(),         //Carry propagate path
638                                getDriver("INV2_RonZN")->calculateDelay() + getDriver("INVZ2_RonZN")->calculateDelay()) +
639                                getDriver("NAND1_RonZN")->calculateDelay());
640        b_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
641
642        double ci_to_co_delay = 0.0;
643        ci_to_co_delay += getDriver("NAND1_RonZN")->calculateDelay();
644        ci_to_co_delay += getDriver("NAND3_RonZN")->calculateDelay();
645
646        cache->set(cell_name + "->DriveRes->S", s_ron);
647        cache->set(cell_name + "->DriveRes->CO", co_ron);
648
649        cache->set(cell_name + "->Delay->A_to_S", a_to_s_delay);
650        cache->set(cell_name + "->Delay->B_to_S", b_to_s_delay);
651        cache->set(cell_name + "->Delay->CI_to_S", ci_to_s_delay);
652        cache->set(cell_name + "->Delay->A_to_CO", a_to_co_delay);
653        cache->set(cell_name + "->Delay->B_to_CO", b_to_co_delay);
654        cache->set(cell_name + "->Delay->CI_to_CO", ci_to_co_delay);
655
656        Log::printLine(cell_name + "->DriveRes->S=" + (String) s_ron);
657        Log::printLine(cell_name + "->DriveRes->CO=" + (String) co_ron);
658        Log::printLine(cell_name + "->Delay->A_to_S=" + (String) a_to_s_delay);
659        Log::printLine(cell_name + "->Delay->B_to_S=" + (String) b_to_s_delay);
660        Log::printLine(cell_name + "->Delay->CI_to_S=" + (String) ci_to_s_delay);
661        Log::printLine(cell_name + "->Delay->A_to_CO=" + (String) a_to_co_delay);
662        Log::printLine(cell_name + "->Delay->B_to_CO=" + (String) b_to_co_delay);
663        Log::printLine(cell_name + "->Delay->CI_to_CO=" + (String) ci_to_co_delay);
664        // --------------------------------------------------------------------
665
666        return;
667
668    }
669
670} // namespace DSENT
671
672