OpticalLinkBackendTx.cc revision 10447:a465576671d4
1#include "model/optical/OpticalLinkBackendTx.h"
2
3#include "util/Constants.h"
4#include "model/PortInfo.h"
5#include "model/TransitionInfo.h"
6#include "model/EventInfo.h"
7#include "model/electrical/MuxTreeSerializer.h"
8#include "model/electrical/BarrelShifter.h"
9#include "model/electrical/Multiplexer.h"
10#include <cmath>
11
12namespace DSENT
13{
14    // TODO: Kind of don't like the way thermal tuning is written here. Maybe will switch
15    // to curve fitting the CICC paper, which uses results from a monte-carlo sim
16
17    OpticalLinkBackendTx::OpticalLinkBackendTx(const String& instance_name_, const TechModel* tech_model_)
18        : ElectricalModel(instance_name_, tech_model_)
19    {
20        initParameters();
21        initProperties();
22    }
23
24    OpticalLinkBackendTx::~OpticalLinkBackendTx()
25    {}
26
27    void OpticalLinkBackendTx::initParameters()
28    {
29        addParameterName("InBits");
30        addParameterName("CoreDataRate");
31        addParameterName("LinkDataRate");
32        addParameterName("RingTuningMethod");
33        addParameterName("BitDuplicate");
34        return;
35    }
36
37    void OpticalLinkBackendTx::initProperties()
38    {
39        return;
40    }
41
42    void OpticalLinkBackendTx::constructModel()
43    {
44        unsigned int in_bits = getParameter("InBits");
45        double core_data_rate = getParameter("CoreDataRate");
46        double link_data_rate = getParameter("LinkDataRate");
47        const String& tuning_method = getParameter("RingTuningMethod");;
48        bool bit_duplicate = getParameter("BitDuplicate");
49
50        // Calculate serialization ratio
51        unsigned int serialization_ratio = (unsigned int) floor(link_data_rate / core_data_rate);
52        ASSERT(serialization_ratio == link_data_rate / core_data_rate,
53            "[Error] " + getInstanceName() + " -> Cannot have non-integer serialization ratios " +
54            "(" + (String) (core_data_rate / link_data_rate) + ")!");
55
56        // Calculate output width
57        ASSERT(floor((double) in_bits / serialization_ratio) == (double) in_bits / serialization_ratio,
58            "[Error] " + getInstanceName() + " -> Input width (" + (String) in_bits + ") " +
59            "must be a multiple of the serialization ratio (" + (String) serialization_ratio + ")!");
60        unsigned int out_bits = in_bits / serialization_ratio;
61
62        getGenProperties()->set("SerializationRatio", serialization_ratio);
63        getGenProperties()->set("OutBits", out_bits);
64
65        // Create ports
66        createInputPort("In", makeNetIndex(0, in_bits-1));
67        createInputPort("LinkCK");
68        createOutputPort("Out", makeNetIndex(0, out_bits-1));
69
70        //Create energy, power, and area results
71        createElectricalResults();
72        // Create ring heating power cost
73        addNddPowerResult(new AtomicResult("RingTuning"));
74        // Create process bits event
75        createElectricalEventResult("ProcessBits");
76        getEventInfo("ProcessBits")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0));
77        // Set conditions during idle state
78        getEventInfo("Idle")->setStaticTransitionInfos();
79        getEventInfo("Idle")->setTransitionInfo("LinkCK", TransitionInfo(0.0, (double) serialization_ratio / 2.0, 0.0));
80
81        // Create serializer
82        const String& serializer_name = "Serializer";
83        MuxTreeSerializer* serializer = new MuxTreeSerializer(serializer_name, getTechModel());
84        serializer->setParameter("InBits", in_bits);
85        serializer->setParameter("InDataRate", core_data_rate);
86        serializer->setParameter("OutDataRate", link_data_rate);
87        serializer->setParameter("BitDuplicate", bit_duplicate);
88        serializer->construct();
89
90        addSubInstances(serializer, 1.0);
91        addElectricalSubResults(serializer, 1.0);
92        getEventResult("ProcessBits")->addSubResult(serializer->getEventResult("Serialize"), serializer_name, 1.0);
93
94        if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
95        {
96            // If a bit reshuffling backend is present, create the reshuffling backend
97            unsigned int reorder_degree = getBitReorderDegree();
98
99            // Create intermediate nets
100            createNet("SerializerIn", makeNetIndex(0, in_bits-1));
101            createNet("ReorderIn", makeNetIndex(0, out_bits+reorder_degree-1));
102            assign("ReorderIn", makeNetIndex(out_bits, out_bits+reorder_degree-1), "ReorderIn", makeNetIndex(0, reorder_degree-1));
103
104            // Create barrelshifter
105            unsigned int shift_index_min = (unsigned int)ceil(log2(serialization_ratio));
106            unsigned int shift_index_max = std::max(shift_index_min, (unsigned int) ceil(log2(in_bits)) - 1);
107
108            // Remember some things
109            getGenProperties()->set("ReorderDegree", reorder_degree);
110            getGenProperties()->set("ShiftIndexMin", shift_index_min);
111            getGenProperties()->set("ShiftIndexMax", shift_index_max);
112
113            const String& barrel_shift_name = "BarrelShifter";
114            BarrelShifter* barrel_shift = new BarrelShifter(barrel_shift_name, getTechModel());
115            barrel_shift->setParameter("NumberBits", in_bits);
116            barrel_shift->setParameter("ShiftIndexMax", shift_index_max);
117            barrel_shift->setParameter("ShiftIndexMin", shift_index_min);
118            barrel_shift->setParameter("BitDuplicate", bit_duplicate);
119            barrel_shift->construct();
120
121            // Create bit reorder muxes
122            const String& reorder_mux_name = "ReorderMux";
123            Multiplexer* reorder_mux = new Multiplexer(reorder_mux_name, getTechModel());
124            reorder_mux->setParameter("NumberBits", out_bits);
125            reorder_mux->setParameter("NumberInputs", reorder_degree);
126            reorder_mux->setParameter("BitDuplicate", bit_duplicate);
127            reorder_mux->construct();
128
129            // Connect barrelshifter
130            // TODO: Connect barrelshift shifts!
131            portConnect(barrel_shift, "In", "In");
132            portConnect(barrel_shift, "Out", "SerializerIn");
133
134            // Connect serializer
135            portConnect(serializer, "In", "SerializerIn");
136            portConnect(serializer, "Out", "ReorderIn", makeNetIndex(0, out_bits-1));
137            portConnect(serializer, "OutCK", "LinkCK");
138
139            // Connect bit reorder muxes
140            // TODO: Connect re-order multiplex select signals!
141            for (unsigned int i = 0; i < reorder_degree; i++)
142                portConnect(reorder_mux, "In" + (String) i, "ReorderIn", makeNetIndex(i, i+out_bits-1));
143            portConnect(reorder_mux, "Out", "Out");
144
145            addSubInstances(barrel_shift, 1.0);
146            addSubInstances(reorder_mux, 1.0);
147            addElectricalSubResults(barrel_shift, 1.0);
148            addElectricalSubResults(reorder_mux, 1.0);
149            getEventResult("ProcessBits")->addSubResult(barrel_shift->getEventResult("BarrelShift"), barrel_shift_name, 1.0);
150            getEventResult("ProcessBits")->addSubResult(reorder_mux->getEventResult("Mux"), reorder_mux_name, 1.0);      // This happens multiple times
151        }
152        else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
153        {
154            // If no bit reshuffling backend is present, then just connect serializer up
155            portConnect(serializer, "In", "In");
156            portConnect(serializer, "Out", "Out");
157            portConnect(serializer, "OutCK", "LinkCK");
158        }
159        else
160        {
161            ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
162        }
163
164        return;
165    }
166
167    void OpticalLinkBackendTx::updateModel()
168    {
169        // Update everyone
170        Model::updateModel();
171        // Update ring tuning power
172        getNddPowerResult("RingTuning")->setValue(getRingTuningPower());
173        return;
174    }
175
176    void OpticalLinkBackendTx::propagateTransitionInfo()
177    {
178        // Get parameters
179        const String& tuning_method = getParameter("RingTuningMethod");
180
181        // Update the serializer
182        if ((tuning_method == "ThermalWithBitReshuffle") || (tuning_method == "ElectricalAssistWithBitReshuffle"))
183        {
184            // Get generated properties
185            unsigned int reorder_degree = getGenProperties()->get("ReorderDegree").toUInt();
186            unsigned int shift_index_min = getGenProperties()->get("ShiftIndexMin").toUInt();
187            unsigned int shift_index_max = getGenProperties()->get("ShiftIndexMax").toUInt();
188
189            // Update barrel shifter
190            const String& barrel_shift_name = "BarrelShifter";
191            ElectricalModel* barrel_shift = (ElectricalModel*) getSubInstance(barrel_shift_name);
192            propagatePortTransitionInfo(barrel_shift, "In", "In");
193            // Set shift transitions to be very low (since it is affected by slow temperature time constants)
194            for (unsigned int i = shift_index_min; i <= shift_index_max; ++i)
195                barrel_shift->getInputPort("Shift" + (String) i)->setTransitionInfo(TransitionInfo(0.499, 0.001, 0.499));
196            barrel_shift->use();
197
198            // Set serializer transition info
199            ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer");
200            propagatePortTransitionInfo(serializer, "In", barrel_shift, "Out");
201            propagatePortTransitionInfo(serializer, "OutCK", "LinkCK");
202            serializer->use();
203
204            // Reorder mux shift select bits
205            unsigned int reorder_sel_bits = (unsigned int)ceil(log2(reorder_degree));
206
207            // Reorder mux probabilities
208            const String& reorder_mux_name = "ReorderMux";
209            ElectricalModel* reorder_mux = (ElectricalModel*) getSubInstance(reorder_mux_name);
210            for (unsigned int i = 0; i < reorder_degree; ++i)
211                propagatePortTransitionInfo(reorder_mux, "In" + (String) i, serializer, "Out");
212            // Set select transitions to be 0, since these are statically configured
213            for (unsigned int i = 0; i < reorder_sel_bits; ++i)
214                reorder_mux->getInputPort("Sel" + (String) i)->setTransitionInfo(TransitionInfo(0.5, 0.0, 0.5));
215            reorder_mux->use();
216
217            // Set output transition info
218            propagatePortTransitionInfo("Out", reorder_mux, "Out");
219        }
220        else if ((tuning_method == "FullThermal") || (tuning_method == "AthermalWithTrim"))
221        {
222            // Set serializer transition info
223            ElectricalModel* serializer = (ElectricalModel*) getSubInstance("Serializer");
224            propagatePortTransitionInfo(serializer, "In", "In");
225            propagatePortTransitionInfo(serializer, "OutCK", "LinkCK");
226            serializer->use();
227
228            // Set output transition info
229            propagatePortTransitionInfo("Out", serializer, "Out");
230        }
231
232        return;
233    }
234
235    double OpticalLinkBackendTx::getRingTuningPower()
236    {
237        // Get properties
238        const String& tuning_method = getParameter("RingTuningMethod");;
239        unsigned int number_rings = getGenProperties()->get("OutBits");
240
241        // Get tech model parameters
242        double R = getTechModel()->get("Ring->Radius");
243        double n_g = getTechModel()->get("Ring->GroupIndex");
244        double heating_efficiency = getTechModel()->get("Ring->HeatingEfficiency");
245        // This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
246        double tuning_efficiency = getTechModel()->get("Ring->TuningEfficiency");
247        double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
248        double sigma_r_systematic = getTechModel()->get("Ring->SystematicVariationSigma");
249        double T_max = getTechModel()->get("Ring->TemperatureMax");
250        double T_min = getTechModel()->get("Ring->TemperatureMin");
251        double T = getTechModel()->get("Temperature");
252
253        // Get constants
254        double c = Constants::c;
255        double pi = Constants::pi;
256
257        double tuning_power = 0.0;
258
259        if (tuning_method == "ThermalWithBitReshuffle")
260        {
261            // When an electrical backend is present, rings only have to tune to the nearest channel
262            // This can be approximated as each ring tuning to something exactly 1 channel away
263
264            // Setup calculations
265            double L = 2 * pi * R;                  // Optical length
266            double FSR = c / (n_g * L);             // Free spectral range
267            double freq_sep = FSR / number_rings;   // Channel separation
268
269            // Calculate tuning power
270            tuning_power = number_rings * freq_sep / (tuning_efficiency * heating_efficiency);
271        }
272        else if (tuning_method == "ElectricalAssistWithBitReshuffle")
273        {
274            // Electrical assistance allows for a fraction of the tuning range to be
275            // covered electrically. This is most pronounced when the tuning range is small,
276            // such is the case when bit reshuffling is applied. The electrically
277            // assisted part of it pretty much comes for free...
278
279            // Get electrically tunable range
280            double max_assist = getTechModel()->get("Ring->MaxElectricallyTunableFreq");
281
282            // Setup calculations
283            double L = 2 * pi * R;                  // Optical length
284            double FSR = c / (n_g * L);             // Free spectral range
285            double freq_sep = FSR / number_rings;   // Channel separation
286            double heating_range = std::max(0.0, freq_sep - max_assist);  // The distance needed to bridge using heaters
287
288            // Calculate tuning power, which is really only the power spent on heating since
289            // distance tuned electrically is pretty much free
290            tuning_power = number_rings * heating_range / (tuning_efficiency * heating_efficiency);
291        }
292        else if (tuning_method == "FullThermal")
293        {
294            // If there is no bit reshuffling backend, each ring must tune to an
295            // absolute channel frequency. Since we can only heat rings (and not cool),
296            // we can only red-shift (decrease frequency). Thus, a fabrication bias
297            // must be applied such that under any process and temperature corner, the
298            // ring resonance remains above channel resonance
299            // I'll use 3 sigmas of sigma_r_local and sigma_r_systematic, and bias against
300            // the full temperature range
301            double fabrication_bias_freq = 3.0 * sqrt(pow(sigma_r_local, 2) + pow(sigma_r_systematic, 2)) +
302                (T_max - T_min) * tuning_efficiency;
303
304            // The local/systematic variations are 0 on average. Thus, the tuning distance can be calculated as
305            double tuning_distance = fabrication_bias_freq - (T - T_min) * tuning_efficiency;
306
307            // Tuning power needed is just the number of rings * tuning distance / (tuning and heating efficiencies)
308            tuning_power = number_rings * tuning_distance / (tuning_efficiency * heating_efficiency);
309        }
310        else if (tuning_method == "AthermalWithTrim")
311        {
312            // Athermal! Each ring's process variations are trimmed! Everything is free!
313            // Basically an ideal scenario
314            tuning_power = 0;
315        }
316        else
317        {
318            ASSERT(false, "[Error] " + getInstanceName() + " -> Unknown ring tuning method '" + tuning_method + "'!");
319        }
320
321        return tuning_power;
322    }
323
324    unsigned int OpticalLinkBackendTx::getBitReorderDegree()
325    {
326        // Get properties
327        unsigned int number_rings = getGenProperties()->get("OutBits");
328
329        // Get tech model parameters
330        double R = getTechModel()->get("Ring->Radius");
331        double n_g = getTechModel()->get("Ring->GroupIndex");
332        // This can actually be derived if we know thermo-optic coefficient (delta n / delta T)
333        double sigma_r_local = getTechModel()->get("Ring->LocalVariationSigma");
334
335        // Get constants
336        double c = Constants::c;
337        double pi = Constants::pi;
338
339        // Calculates the degree of bit re-order multiplexing needed for bit-reshuffling backend
340        // Bit reshuffling tuning is largely unaffected by sigma_r_systematic. However, sigma_r_local
341        // Can potentially throw each ring to a channel several channels away. This just calculates
342        // the degree of bit reorder muxing needed to realign bits in the correct order
343
344        // Setup calculations
345        double L = 2 * pi * R;                  // Optical length
346        double FSR = c / (n_g * L);             // Free spectral range
347        double freq_sep = FSR / number_rings;   // Channel separation
348        // Using 4 sigmas as the worst re-ordering case (must double to get both sides)
349        unsigned int worst_case_channels = (unsigned int)ceil(2.0 * 4.0 * sigma_r_local / freq_sep);
350
351        return worst_case_channels;
352    }
353
354} // namespace DSENT
355
356