MemoryPowerModel.cc revision 10428:0caf62b57dfd
1/*
2 * Copyright (c) 2012-2014, TU Delft
3 * Copyright (c) 2012-2014, TU Eindhoven
4 * Copyright (c) 2012-2014, TU Kaiserslautern
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * 3. Neither the name of the copyright holder nor the names of its
19 * contributors may be used to endorse or promote products derived from
20 * this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
23 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
25 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
28 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * Authors: Karthik Chandrasekar, Matthias Jung, Omar Naji
35 *
36 */
37
38#include "MemoryPowerModel.h"
39
40#include <cmath>  // For pow
41
42#include <stdint.h>
43
44
45using namespace std;
46using namespace Data;
47
48// Calculate energy and average power consumption for the given command trace
49
50void MemoryPowerModel::power_calc(MemorySpecification memSpec,
51                                  const CommandAnalysis& counters,
52                                  int term)
53{
54  MemTimingSpec& t                 = memSpec.memTimingSpec;
55  MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
56  MemPowerSpec&  mps               = memSpec.memPowerSpec;
57
58  energy.act_energy          = 0.0;
59  energy.pre_energy          = 0.0;
60  energy.read_energy         = 0.0;
61  energy.write_energy        = 0.0;
62  energy.ref_energy          = 0.0;
63  energy.act_stdby_energy    = 0.0;
64  energy.pre_stdby_energy    = 0.0;
65  energy.idle_energy_act     = 0.0;
66  energy.idle_energy_pre     = 0.0;
67  energy.total_energy        = 0.0;
68  energy.f_act_pd_energy     = 0.0;
69  energy.f_pre_pd_energy     = 0.0;
70  energy.s_act_pd_energy     = 0.0;
71  energy.s_pre_pd_energy     = 0.0;
72  energy.sref_energy         = 0.0;
73  energy.sref_ref_energy     = 0.0;
74  energy.sref_ref_act_energy = 0.0;
75  energy.sref_ref_pre_energy = 0.0;
76  energy.spup_energy         = 0.0;
77  energy.spup_ref_energy     = 0.0;
78  energy.spup_ref_act_energy = 0.0;
79  energy.spup_ref_pre_energy = 0.0;
80  energy.pup_act_energy      = 0.0;
81  energy.pup_pre_energy      = 0.0;
82  power.IO_power             = 0.0;
83  power.WR_ODT_power         = 0.0;
84  power.TermRD_power         = 0.0;
85  power.TermWR_power         = 0.0;
86  energy.read_io_energy      = 0.0;
87  energy.write_term_energy   = 0.0;
88  energy.read_oterm_energy   = 0.0;
89  energy.write_oterm_energy  = 0.0;
90  energy.io_term_energy      = 0.0;
91
92  // How long a single burst takes, measured in command-clock cycles.
93  int64_t burstCc = memArchSpec.burstLength / memArchSpec.dataRate;
94
95  // IO and Termination Power measures are included, if required.
96  if (term) {
97    io_term_power(memSpec);
98
99    // memArchSpec.width represents the number of data (dq) pins.
100    // 1 DQS pin is associated with every data byte
101    int64_t dqPlusDqsBits = memArchSpec.width + memArchSpec.width / 8;
102    // 1 DQS and 1 DM pin is associated with every data byte
103    int64_t dqPlusDqsPlusMaskBits = memArchSpec.width + memArchSpec.width / 8 + memArchSpec.width / 8;
104    // Size of one clock period for the data bus.
105    double ddrPeriod = t.clkPeriod / memArchSpec.dataRate;
106
107    // Read IO power is consumed by each DQ (data) and DQS (data strobe) pin
108    energy.read_io_energy = calcIoTermEnergy(counters.numberofreads * memArchSpec.burstLength,
109                                             ddrPeriod,
110                                             power.IO_power,
111                                             dqPlusDqsBits);
112
113    // Write ODT power is consumed by each DQ (data), DQS (data strobe) and DM
114    energy.write_term_energy = calcIoTermEnergy(counters.numberofwrites * memArchSpec.burstLength,
115                                                ddrPeriod,
116                                                power.WR_ODT_power,
117                                                dqPlusDqsPlusMaskBits);
118
119    if (memArchSpec.nbrOfRanks > 1) {
120      // Termination power consumed in the idle rank during reads on the active
121      // rank by each DQ (data) and DQS (data strobe) pin.
122      energy.read_oterm_energy = calcIoTermEnergy(counters.numberofreads * memArchSpec.burstLength,
123                                                  ddrPeriod,
124                                                  power.TermRD_power,
125                                                  dqPlusDqsBits);
126
127      // Termination power consumed in the idle rank during writes on the active
128      // rank by each DQ (data), DQS (data strobe) and DM (data mask) pin.
129      energy.write_oterm_energy = calcIoTermEnergy(counters.numberofwrites * memArchSpec.burstLength,
130                                                   ddrPeriod,
131                                                   power.TermWR_power,
132                                                   dqPlusDqsPlusMaskBits);
133    }
134
135    // Sum of all IO and termination energy
136    energy.io_term_energy = energy.read_io_energy + energy.write_term_energy
137                            + energy.read_oterm_energy + energy.write_oterm_energy;
138  }
139
140  total_cycles = counters.actcycles + counters.precycles +
141                 counters.f_act_pdcycles + counters.f_pre_pdcycles +
142                 counters.s_act_pdcycles + counters.s_pre_pdcycles + counters.sref_cycles
143                 + counters.sref_ref_act_cycles + counters.sref_ref_pre_cycles +
144                 counters.spup_ref_act_cycles + counters.spup_ref_pre_cycles;
145
146  EnergyDomain vdd0Domain(mps.vdd, t.clkPeriod);
147
148  energy.act_energy       = vdd0Domain.calcTivEnergy(counters.numberofacts   * t.RAS          , mps.idd0 - mps.idd3n);
149  energy.pre_energy       = vdd0Domain.calcTivEnergy(counters.numberofpres   * (t.RC - t.RAS) , mps.idd0 - mps.idd2n);
150  energy.read_energy      = vdd0Domain.calcTivEnergy(counters.numberofreads  * burstCc        , mps.idd4r - mps.idd3n);
151  energy.write_energy     = vdd0Domain.calcTivEnergy(counters.numberofwrites * burstCc        , mps.idd4w - mps.idd3n);
152  energy.ref_energy       = vdd0Domain.calcTivEnergy(counters.numberofrefs   * t.RFC          , mps.idd5 - mps.idd3n);
153  energy.pre_stdby_energy = vdd0Domain.calcTivEnergy(counters.precycles, mps.idd2n);
154  energy.act_stdby_energy = vdd0Domain.calcTivEnergy(counters.actcycles, mps.idd3n);
155  // Idle energy in the active standby clock cycles
156  energy.idle_energy_act  = vdd0Domain.calcTivEnergy(counters.idlecycles_act, mps.idd3n);
157  // Idle energy in the precharge standby clock cycles
158  energy.idle_energy_pre  = vdd0Domain.calcTivEnergy(counters.idlecycles_pre, mps.idd2n);
159  // fast-exit active power-down cycles energy
160  energy.f_act_pd_energy  = vdd0Domain.calcTivEnergy(counters.f_act_pdcycles, mps.idd3p1);
161  // fast-exit precharged power-down cycles energy
162  energy.f_pre_pd_energy  = vdd0Domain.calcTivEnergy(counters.f_pre_pdcycles, mps.idd2p1);
163  // slow-exit active power-down cycles energy
164  energy.s_act_pd_energy  = vdd0Domain.calcTivEnergy(counters.s_act_pdcycles, mps.idd3p0);
165  // slow-exit precharged power-down cycles energy
166  energy.s_pre_pd_energy  = vdd0Domain.calcTivEnergy(counters.s_pre_pdcycles, mps.idd2p0);
167
168  // self-refresh cycles energy including a refresh per self-refresh entry
169  energy.sref_energy = engy_sref(mps.idd6, mps.idd3n,
170                                 mps.idd5, mps.vdd,
171                                 static_cast<double>(counters.sref_cycles), static_cast<double>(counters.sref_ref_act_cycles),
172                                 static_cast<double>(counters.sref_ref_pre_cycles), static_cast<double>(counters.spup_ref_act_cycles),
173                                 static_cast<double>(counters.spup_ref_pre_cycles), t.clkPeriod);
174
175  // background energy during active auto-refresh cycles in self-refresh
176  energy.sref_ref_act_energy = vdd0Domain.calcTivEnergy(counters.sref_ref_act_cycles, mps.idd3p0);
177  // background energy during precharged auto-refresh cycles in self-refresh
178  energy.sref_ref_pre_energy = vdd0Domain.calcTivEnergy(counters.sref_ref_pre_cycles, mps.idd2p0);
179  // background energy during active auto-refresh cycles in self-refresh exit
180  energy.spup_ref_act_energy = vdd0Domain.calcTivEnergy(counters.spup_ref_act_cycles, mps.idd3n);
181  // background energy during precharged auto-refresh cycles in self-refresh exit
182  energy.spup_ref_pre_energy = vdd0Domain.calcTivEnergy(counters.spup_ref_pre_cycles, mps.idd2n);
183  // self-refresh power-up cycles energy -- included
184  energy.spup_energy         = vdd0Domain.calcTivEnergy(counters.spup_cycles, mps.idd2n);
185  // active power-up cycles energy - same as active standby -- included
186  energy.pup_act_energy      = vdd0Domain.calcTivEnergy(counters.pup_act_cycles, mps.idd3n);
187  // precharged power-up cycles energy - same as precharged standby -- included
188  energy.pup_pre_energy      = vdd0Domain.calcTivEnergy(counters.pup_pre_cycles, mps.idd2n);
189
190  // similar equations as before to support multiple voltage domains in LPDDR2
191  // and WIDEIO memories
192  if (memArchSpec.twoVoltageDomains) {
193    EnergyDomain vdd2Domain(mps.vdd2, t.clkPeriod);
194
195    energy.act_energy       += vdd2Domain.calcTivEnergy(counters.numberofacts   * t.RAS          , mps.idd02 - mps.idd3n2);
196    energy.pre_energy       += vdd2Domain.calcTivEnergy(counters.numberofpres   * (t.RC - t.RAS) , mps.idd02 - mps.idd2n2);
197    energy.read_energy      += vdd2Domain.calcTivEnergy(counters.numberofreads  * burstCc        , mps.idd4r2 - mps.idd3n2);
198    energy.write_energy     += vdd2Domain.calcTivEnergy(counters.numberofwrites * burstCc        , mps.idd4w2 - mps.idd3n2);
199    energy.ref_energy       += vdd2Domain.calcTivEnergy(counters.numberofrefs   * t.RFC          , mps.idd52 - mps.idd3n2);
200    energy.pre_stdby_energy += vdd2Domain.calcTivEnergy(counters.precycles, mps.idd2n2);
201    energy.act_stdby_energy += vdd2Domain.calcTivEnergy(counters.actcycles, mps.idd3n2);
202    // Idle energy in the active standby clock cycles
203    energy.idle_energy_act  += vdd2Domain.calcTivEnergy(counters.idlecycles_act, mps.idd3n2);
204    // Idle energy in the precharge standby clock cycles
205    energy.idle_energy_pre  += vdd2Domain.calcTivEnergy(counters.idlecycles_pre, mps.idd2n2);
206    // fast-exit active power-down cycles energy
207    energy.f_act_pd_energy  += vdd2Domain.calcTivEnergy(counters.f_act_pdcycles, mps.idd3p12);
208    // fast-exit precharged power-down cycles energy
209    energy.f_pre_pd_energy  += vdd2Domain.calcTivEnergy(counters.f_pre_pdcycles, mps.idd2p12);
210    // slow-exit active power-down cycles energy
211    energy.s_act_pd_energy  += vdd2Domain.calcTivEnergy(counters.s_act_pdcycles, mps.idd3p02);
212    // slow-exit precharged power-down cycles energy
213    energy.s_pre_pd_energy  += vdd2Domain.calcTivEnergy(counters.s_pre_pdcycles, mps.idd2p02);
214
215    energy.sref_energy      += engy_sref(mps.idd62, mps.idd3n2,
216                                         mps.idd52, mps.vdd2,
217                                         static_cast<double>(counters.sref_cycles), static_cast<double>(counters.sref_ref_act_cycles),
218                                         static_cast<double>(counters.sref_ref_pre_cycles), static_cast<double>(counters.spup_ref_act_cycles),
219                                         static_cast<double>(counters.spup_ref_pre_cycles), t.clkPeriod);
220
221    // background energy during active auto-refresh cycles in self-refresh
222    energy.sref_ref_act_energy += vdd2Domain.calcTivEnergy(counters.sref_ref_act_cycles, mps.idd3p02);
223    // background energy during precharged auto-refresh cycles in self-refresh
224    energy.sref_ref_pre_energy += vdd2Domain.calcTivEnergy(counters.sref_ref_pre_cycles, mps.idd2p02);
225    // background energy during active auto-refresh cycles in self-refresh exit
226    energy.spup_ref_act_energy += vdd2Domain.calcTivEnergy(counters.spup_ref_act_cycles, mps.idd3n2);
227    // background energy during precharged auto-refresh cycles in self-refresh exit
228    energy.spup_ref_pre_energy += vdd2Domain.calcTivEnergy(counters.spup_ref_pre_cycles, mps.idd2n2);
229    // self-refresh power-up cycles energy -- included
230    energy.spup_energy         += vdd2Domain.calcTivEnergy(counters.spup_cycles, mps.idd2n2);
231    // active power-up cycles energy - same as active standby -- included
232    energy.pup_act_energy      += vdd2Domain.calcTivEnergy(counters.pup_act_cycles, mps.idd3n2);
233    // precharged power-up cycles energy - same as precharged standby -- included
234    energy.pup_pre_energy      += vdd2Domain.calcTivEnergy(counters.pup_pre_cycles, mps.idd2n2);
235  }
236
237  // auto-refresh energy during self-refresh cycles
238  energy.sref_ref_energy = energy.sref_ref_act_energy + energy.sref_ref_pre_energy;
239
240  // auto-refresh energy during self-refresh exit cycles
241  energy.spup_ref_energy = energy.spup_ref_act_energy + energy.spup_ref_pre_energy;
242
243  // adding all energy components for the active rank and all background and idle
244  // energy components for both ranks (in a dual-rank system)
245  energy.total_energy = energy.act_energy + energy.pre_energy + energy.read_energy +
246                        energy.write_energy + energy.ref_energy + energy.io_term_energy +
247                        memArchSpec.nbrOfRanks * (energy.act_stdby_energy +
248                                                  energy.pre_stdby_energy + energy.sref_energy +
249                                                  energy.f_act_pd_energy + energy.f_pre_pd_energy + energy.s_act_pd_energy
250                                                  + energy.s_pre_pd_energy + energy.sref_ref_energy + energy.spup_ref_energy);
251
252  // Calculate the average power consumption
253  power.average_power = energy.total_energy / (static_cast<double>(total_cycles) * t.clkPeriod);
254} // MemoryPowerModel::power_calc
255
256void MemoryPowerModel::power_print(MemorySpecification memSpec, int term, const CommandAnalysis& counters) const
257{
258  MemTimingSpec& memTimingSpec     = memSpec.memTimingSpec;
259  MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
260
261  cout.precision(0);
262  cout << "* Trace Details:" << endl;
263  cout << "Number of Activates: " << fixed << counters.numberofacts << endl;
264  cout << "Number of Reads: " << counters.numberofreads << endl;
265  cout << "Number of Writes: " << counters.numberofwrites << endl;
266  cout << "Number of Precharges: " << counters.numberofpres << endl;
267  cout << "Number of Refreshes: " << counters.numberofrefs << endl;
268  cout << "Number of Active Cycles: " << counters.actcycles << endl;
269  cout << "  Number of Active Idle Cycles: " << counters.idlecycles_act << endl;
270  cout << "  Number of Active Power-Up Cycles: " << counters.pup_act_cycles << endl;
271  cout << "    Number of Auto-Refresh Active cycles during Self-Refresh " <<
272    "Power-Up: " << counters.spup_ref_act_cycles << endl;
273  cout << "Number of Precharged Cycles: " << counters.precycles << endl;
274  cout << "  Number of Precharged Idle Cycles: " << counters.idlecycles_pre << endl;
275  cout << "  Number of Precharged Power-Up Cycles: " << counters.pup_pre_cycles
276       << endl;
277  cout << "    Number of Auto-Refresh Precharged cycles during Self-Refresh"
278       << " Power-Up: " << counters.spup_ref_pre_cycles << endl;
279  cout << "  Number of Self-Refresh Power-Up Cycles: " << counters.spup_cycles
280       << endl;
281  cout << "Total Idle Cycles (Active + Precharged): " <<
282    counters.idlecycles_act + counters.idlecycles_pre << endl;
283  cout << "Number of Power-Downs: " << counters.f_act_pdns +
284    counters.s_act_pdns + counters.f_pre_pdns + counters.s_pre_pdns << endl;
285  cout << "  Number of Active Fast-exit Power-Downs: " << counters.f_act_pdns
286       << endl;
287  cout << "  Number of Active Slow-exit Power-Downs: " << counters.s_act_pdns
288       << endl;
289  cout << "  Number of Precharged Fast-exit Power-Downs: " <<
290    counters.f_pre_pdns << endl;
291  cout << "  Number of Precharged Slow-exit Power-Downs: " <<
292    counters.s_pre_pdns << endl;
293  cout << "Number of Power-Down Cycles: " << counters.f_act_pdcycles +
294    counters.s_act_pdcycles + counters.f_pre_pdcycles + counters.s_pre_pdcycles << endl;
295  cout << "  Number of Active Fast-exit Power-Down Cycles: " <<
296    counters.f_act_pdcycles << endl;
297  cout << "  Number of Active Slow-exit Power-Down Cycles: " <<
298    counters.s_act_pdcycles << endl;
299  cout << "    Number of Auto-Refresh Active cycles during Self-Refresh: " <<
300    counters.sref_ref_act_cycles << endl;
301  cout << "  Number of Precharged Fast-exit Power-Down Cycles: " <<
302    counters.f_pre_pdcycles << endl;
303  cout << "  Number of Precharged Slow-exit Power-Down Cycles: " <<
304    counters.s_pre_pdcycles << endl;
305  cout << "    Number of Auto-Refresh Precharged cycles during Self-Refresh: " <<
306    counters.sref_ref_pre_cycles << endl;
307  cout << "Number of Auto-Refresh Cycles: " << counters.numberofrefs *
308    memTimingSpec.RFC << endl;
309  cout << "Number of Self-Refreshes: " << counters.numberofsrefs << endl;
310  cout << "Number of Self-Refresh Cycles: " << counters.sref_cycles << endl;
311  cout << "----------------------------------------" << endl;
312  cout << "Total Trace Length (clock cycles): " << total_cycles << endl;
313  cout << "----------------------------------------" << endl;
314  cout.precision(2);
315
316  cout << "\n* Trace Power and Energy Estimates:" << endl;
317  cout << "ACT Cmd Energy: " << energy.act_energy << " pJ" << endl;
318  cout << "PRE Cmd Energy: " << energy.pre_energy << " pJ" << endl;
319  cout << "RD Cmd Energy: " << energy.read_energy << " pJ" << endl;
320  cout << "WR Cmd Energy: " << energy.write_energy << " pJ" << endl;
321  if (term) {
322    cout << "RD I/O Energy: " << energy.read_io_energy << " pJ" << endl;
323    // No Termination for LPDDR/2/3 and DDR memories
324    if (memSpec.memArchSpec.termination) {
325      cout << "WR Termination Energy: " << energy.write_term_energy << " pJ" << endl;
326    }
327
328    if ((memArchSpec.nbrOfRanks > 1) && memSpec.memArchSpec.termination) {
329      cout << "RD Termination Energy (Idle rank): " << energy.read_oterm_energy
330           << " pJ" << endl;
331      cout << "WR Termination Energy (Idle rank): " << energy.write_oterm_energy
332           << " pJ" << endl;
333    }
334  }
335  cout << "ACT Stdby Energy: " << memArchSpec.nbrOfRanks * energy.act_stdby_energy <<
336    " pJ" << endl;
337  cout << "  Active Idle Energy: " << memArchSpec.nbrOfRanks * energy.idle_energy_act <<
338    " pJ" << endl;
339  cout << "  Active Power-Up Energy: " << memArchSpec.nbrOfRanks * energy.pup_act_energy <<
340    " pJ" << endl;
341  cout << "    Active Stdby Energy during Auto-Refresh cycles in Self-Refresh"
342       << " Power-Up: " << memArchSpec.nbrOfRanks * energy.spup_ref_act_energy <<
343    " pJ" << endl;
344  cout << "PRE Stdby Energy: " << memArchSpec.nbrOfRanks * energy.pre_stdby_energy <<
345    " pJ" << endl;
346  cout << "  Precharge Idle Energy: " << memArchSpec.nbrOfRanks * energy.idle_energy_pre <<
347    " pJ" << endl;
348  cout << "  Precharged Power-Up Energy: " << memArchSpec.nbrOfRanks * energy.pup_pre_energy <<
349    " pJ" << endl;
350  cout << "    Precharge Stdby Energy during Auto-Refresh cycles " <<
351    "in Self-Refresh Power-Up: " << memArchSpec.nbrOfRanks * energy.spup_ref_pre_energy <<
352    " pJ" << endl;
353  cout << "  Self-Refresh Power-Up Energy: " << memArchSpec.nbrOfRanks * energy.spup_energy <<
354    " pJ" << endl;
355  cout << "Total Idle Energy (Active + Precharged): " << memArchSpec.nbrOfRanks *
356  (energy.idle_energy_act + energy.idle_energy_pre) << " pJ" << endl;
357  cout << "Total Power-Down Energy: " << memArchSpec.nbrOfRanks * (energy.f_act_pd_energy +
358                                                                   energy.f_pre_pd_energy + energy.s_act_pd_energy + energy.s_pre_pd_energy) << " pJ" << endl;
359  cout << "  Fast-Exit Active Power-Down Energy: " << memArchSpec.nbrOfRanks *
360    energy.f_act_pd_energy << " pJ" << endl;
361  cout << "  Slow-Exit Active Power-Down Energy: " << memArchSpec.nbrOfRanks *
362    energy.s_act_pd_energy << " pJ" << endl;
363  cout << "    Slow-Exit Active Power-Down Energy during Auto-Refresh cycles "
364       << "in Self-Refresh: " << memArchSpec.nbrOfRanks * energy.sref_ref_act_energy <<
365    " pJ" << endl;
366  cout << "  Fast-Exit Precharged Power-Down Energy: " << memArchSpec.nbrOfRanks *
367    energy.f_pre_pd_energy << " pJ" << endl;
368  cout << "  Slow-Exit Precharged Power-Down Energy: " << memArchSpec.nbrOfRanks *
369    energy.s_pre_pd_energy << " pJ" << endl;
370  cout << "    Slow-Exit Precharged Power-Down Energy during Auto-Refresh " <<
371    "cycles in Self-Refresh: " << memArchSpec.nbrOfRanks * energy.sref_ref_pre_energy <<
372    " pJ" << endl;
373  cout << "Auto-Refresh Energy: " << energy.ref_energy << " pJ" << endl;
374  cout << "Self-Refresh Energy: " << memArchSpec.nbrOfRanks * energy.sref_energy <<
375    " pJ" << endl;
376  cout << "----------------------------------------" << endl;
377  cout << "Total Trace Energy: " << energy.total_energy << " pJ" << endl;
378  cout << "Average Power: " << power.average_power << " mW" << endl;
379  cout << "----------------------------------------" << endl;
380} // MemoryPowerModel::power_print
381
382// Self-refresh active energy estimation (not including background energy)
383double MemoryPowerModel::engy_sref(double idd6, double idd3n, double idd5,
384                                   double vdd, double sref_cycles, double sref_ref_act_cycles,
385                                   double sref_ref_pre_cycles, double spup_ref_act_cycles,
386                                   double spup_ref_pre_cycles, double clk)
387{
388  double sref_energy;
389
390  sref_energy = ((idd6 * sref_cycles) + ((idd5 - idd3n) * (sref_ref_act_cycles
391                                                           + spup_ref_act_cycles + sref_ref_pre_cycles + spup_ref_pre_cycles)))
392                * vdd * clk;
393  return sref_energy;
394}
395
396// IO and Termination power calculation based on Micron Power Calculators
397// Absolute power measures are obtained from Micron Power Calculator (mentioned in mW)
398void MemoryPowerModel::io_term_power(MemorySpecification memSpec)
399{
400  MemTimingSpec& memTimingSpec     = memSpec.memTimingSpec;
401  MemArchitectureSpec& memArchSpec = memSpec.memArchSpec;
402  MemPowerSpec&  memPowerSpec      = memSpec.memPowerSpec;
403
404  power.IO_power     = memPowerSpec.ioPower;    // in mW
405  power.WR_ODT_power = memPowerSpec.wrOdtPower; // in mW
406
407  if (memArchSpec.nbrOfRanks > 1) {
408    power.TermRD_power = memPowerSpec.termRdPower; // in mW
409    power.TermWR_power = memPowerSpec.termWrPower; // in mW
410  }
411
412  if (memPowerSpec.capacitance != 0.0) {
413    // If capacity is given, then IO Power depends on DRAM clock frequency.
414    power.IO_power = memPowerSpec.capacitance * 0.5 * pow(memPowerSpec.vdd2, 2.0) * memTimingSpec.clkMhz * 1000000;
415  }
416} // MemoryPowerModel::io_term_power
417
418
419double MemoryPowerModel::calcIoTermEnergy(int64_t cycles, double period, double power, int64_t numBits) const
420{
421  return static_cast<double>(cycles) * period * power * static_cast<double>(numBits);
422}
423
424// time (t) * current (I) * voltage (V) energy calculation
425double EnergyDomain::calcTivEnergy(int64_t cycles, double current) const
426{
427  return static_cast<double>(cycles) * clkPeriod * current * voltage;
428}
429