barchart.py revision 2117
16899SN/A# Copyright (c) 2005-2006 The Regents of The University of Michigan
26899SN/A# All rights reserved.
37553SN/A#
46899SN/A# Redistribution and use in source and binary forms, with or without
56899SN/A# modification, are permitted provided that the following conditions are
66899SN/A# met: redistributions of source code must retain the above copyright
76899SN/A# notice, this list of conditions and the following disclaimer;
86899SN/A# redistributions in binary form must reproduce the above copyright
96899SN/A# notice, this list of conditions and the following disclaimer in the
106899SN/A# documentation and/or other materials provided with the distribution;
116899SN/A# neither the name of the copyright holders nor the names of its
126899SN/A# contributors may be used to endorse or promote products derived from
136899SN/A# this software without specific prior written permission.
146899SN/A#
156899SN/A# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
166899SN/A# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
176899SN/A# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
186899SN/A# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
196899SN/A# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
206899SN/A# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
216899SN/A# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
226899SN/A# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
236899SN/A# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
246899SN/A# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
256899SN/A# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
266899SN/A#
276899SN/A# Authors: Nathan Binkert
286899SN/A#          Lisa Hsu
296899SN/A
307553SN/Aimport matplotlib, pylab
317553SN/Afrom matplotlib.font_manager import FontProperties
326899SN/Afrom matplotlib.numerix import array, arange, reshape, shape, transpose, zeros
337055SN/Afrom matplotlib.numerix import Float
348229Snate@binkert.org
357454SN/Amatplotlib.interactive(False)
367055SN/A
377053SN/Afrom chart import ChartOptions
387053SN/A
3911017Snilay@cs.wisc.educlass BarChart(ChartOptions):
408229Snate@binkert.org    def __init__(self, default=None, **kwargs):
418229Snate@binkert.org        super(BarChart, self).__init__(default, **kwargs)
427553SN/A        self.inputdata = None
436899SN/A        self.chartdata = None
447553SN/A
457553SN/A    def gen_colors(self, count):
467553SN/A        cmap = matplotlib.cm.get_cmap(self.colormap)
476899SN/A        if count == 1:
487053SN/A            return cmap([ 0.5 ])
498922Swilliam.wang@arm.com        else:
507053SN/A            return cmap(arange(count) / float(count - 1))
517053SN/A
527553SN/A    # The input data format does not match the data format that the
536899SN/A    # graph function takes because it is intuitive.  The conversion
547053SN/A    # from input data format to chart data format depends on the
558854Sandreas.hansson@arm.com    # dimensionality of the input data.  Check here for the
569031Sandreas.hansson@arm.com    # dimensionality and correctness of the input data
578965Sandreas.hansson@arm.com    def set_data(self, data):
587053SN/A        if data is None:
596899SN/A            self.inputdata = None
607053SN/A            self.chartdata = None
618975Sandreas.hansson@arm.com            return
6210713Sandreas.hansson@arm.com
638922Swilliam.wang@arm.com        data = array(data)
647053SN/A        dim = len(shape(data))
656899SN/A        if dim not in (1, 2, 3):
667553SN/A            raise AttributeError, "Input data must be a 1, 2, or 3d matrix"
677553SN/A        self.inputdata = data
687553SN/A
696899SN/A        # If the input data is a 1d matrix, then it describes a
709294Sandreas.hansson@arm.com        # standard bar chart.
719294Sandreas.hansson@arm.com        if dim == 1:
726899SN/A            self.chartdata = array([[data]])
738922Swilliam.wang@arm.com
746899SN/A        # If the input data is a 2d matrix, then it describes a bar
757053SN/A        # chart with groups. The matrix being an array of groups of
766899SN/A        # bars.
777053SN/A        if dim == 2:
786899SN/A            self.chartdata = transpose([data], axes=(2,0,1))
797553SN/A            print shape(self.chartdata)
806899SN/A
817055SN/A        # If the input data is a 3d matrix, then it describes an array
827053SN/A        # of groups of bars with each bar being an array of stacked
837055SN/A        # values.
846899SN/A        if dim == 3:
857055SN/A            self.chartdata = transpose(data, axes=(1,2,0))
866899SN/A            print shape(self.chartdata)
877053SN/A
887553SN/A    def get_data(self):
897053SN/A        return self.inputdata
907053SN/A
917553SN/A    data = property(get_data, set_data)
926899SN/A
937053SN/A    # Graph the chart data.
947553SN/A    # Input is a 3d matrix that describes a plot that has multiple
957053SN/A    # groups, multiple bars in each group, and multiple values stacked
967053SN/A    # in each bar.  The underlying bar() function expects a sequence of
977053SN/A    # bars in the same stack location and same group location, so the
987553SN/A    # organization of the matrix is that the inner most sequence
997053SN/A    # represents one of these bar groups, then those are grouped
1007053SN/A    # together to make one full stack of bars in each group, and then
1017553SN/A    # the outer most layer describes the groups.  Here is an example
1027053SN/A    # data set and how it gets plotted as a result.
1036899SN/A    #
1047553SN/A    # e.g. data = [[[10,11,12], [13,14,15],  [16,17,18], [19,20,21]],
1056899SN/A    #              [[22,23,24], [25,26,27],  [28,29,30], [31,32,33]]]
1067053SN/A    #
1076899SN/A    # will plot like this:
1087053SN/A    #
1097553SN/A    #    19 31    20 32    21 33
1107553SN/A    #    16 28    17 29    18 30
1116899SN/A    #    13 25    14 26    15 27
11211061Snilay@cs.wisc.edu    #    10 22    11 23    12 24
1138950Sandreas.hansson@arm.com    #
11411061Snilay@cs.wisc.edu    # Because this arrangement is rather conterintuitive, the rearrange
1157553SN/A    # function takes various matricies and arranges them to fit this
1166899SN/A    # profile.
1176899SN/A    #
1187553SN/A    # This code deals with one of the dimensions in the matrix being
119    # one wide.
120    #
121    def graph(self):
122        if self.chartdata is None:
123            raise AttributeError, "Data not set for bar chart!"
124
125        need_subticks = True
126
127        dim = len(shape(self.inputdata))
128        cshape = shape(self.chartdata)
129        print cshape
130        if dim == 1:
131            colors = self.gen_colors(cshape[2])
132            colors = [ [ colors ] * cshape[1] ] * cshape[0]
133            need_subticks = False
134
135        if dim == 2:
136            colors = self.gen_colors(cshape[0])
137            colors = [ [ [ c ] * cshape[2] ] * cshape[1] for c in colors ]
138
139        if dim == 3:
140            colors = self.gen_colors(cshape[1])
141            colors = [ [ [ c ] * cshape[2] for c in colors ] ] * cshape[0]
142
143        colors = array(colors)
144
145        self.figure = pylab.figure(figsize=self.chart_size)
146
147        outer_axes = None
148        inner_axes = None
149        if need_subticks:
150            self.metaaxes = self.figure.add_axes(self.figure_size)
151            self.metaaxes.set_yticklabels([])
152            self.metaaxes.set_yticks([])
153            size = [0] * 4
154            size[0] = self.figure_size[0]
155            size[1] = self.figure_size[1] + .075
156            size[2] = self.figure_size[2]
157            size[3] = self.figure_size[3] - .075
158            self.axes = self.figure.add_axes(size)
159            outer_axes = self.metaaxes
160            inner_axes = self.axes
161        else:
162            self.axes = self.figure.add_axes(self.figure_size)
163            outer_axes = self.axes
164            inner_axes = self.axes
165
166        bars_in_group = len(self.chartdata)
167        if bars_in_group < 5:
168            width = 1.0 / ( bars_in_group + 1)
169            center = width / 2
170        else:
171            width = .8 / bars_in_group
172            center = .1
173
174        bars = []
175        for i,stackdata in enumerate(self.chartdata):
176            bottom = array([0.0] * len(stackdata[0]), Float)
177            stack = []
178            for j,bardata in enumerate(stackdata):
179                bardata = array(bardata)
180                ind = arange(len(bardata)) + i * width + center
181                bar = self.axes.bar(ind, bardata, width, bottom=bottom,
182                                    color=colors[i][j])
183                if dim != 1:
184                    self.metaaxes.bar(ind, [0] * len(bardata), width)
185                stack.append(bar)
186                bottom += bardata
187            bars.append(stack)
188
189        if self.xlabel is not None:
190            outer_axes.set_xlabel(self.xlabel)
191
192        if self.ylabel is not None:
193            inner_axes.set_ylabel(self.ylabel)
194
195        if self.yticks is not None:
196            ymin, ymax = self.axes.get_ylim()
197            nticks = float(len(self.yticks))
198            ticks = arange(nticks) / (nticks - 1) * (ymax - ymin)  + ymin
199            inner_axes.set_yticks(ticks)
200            inner_axes.set_yticklabels(self.yticks)
201        elif self.ylim is not None:
202            self.inner_axes.set_ylim(self.ylim)
203
204        if self.xticks is not None:
205            outer_axes.set_xticks(arange(cshape[2]) + .5)
206            outer_axes.set_xticklabels(self.xticks)
207        if self.xsubticks is not None:
208            inner_axes.set_xticks(arange((cshape[0] + 1)*cshape[2])*width + 2*center)
209            self.xsubticks.append('')
210            inner_axes.set_xticklabels(self.xsubticks * cshape[0], fontsize=8)
211        if self.legend is not None:
212            if dim == 1:
213                lbars = bars[0][0]
214            if dim == 2:
215                lbars = [ bars[i][0][0] for i in xrange(len(bars))]
216            if dim == 3:
217                number = len(bars[0])
218                lbars = [ bars[0][number - j - 1][0] for j in xrange(number)]
219
220            self.figure.legend(lbars, self.legend, self.legend_loc,
221                               prop=FontProperties(size=self.legend_size))
222
223        if self.title is not None:
224            self.axes.set_title(self.title)
225
226    def savefig(self, name):
227        self.figure.savefig(name)
228
229    def savecsv(self, name):
230        f = file(name, 'w')
231        data = array(self.inputdata)
232        dim = len(data.shape)
233
234        if dim == 1:
235            #if self.xlabel:
236            #    f.write(', '.join(list(self.xlabel)) + '\n')
237            f.write(', '.join([ '%f' % val for val in data]) + '\n')
238        if dim == 2:
239            #if self.xlabel:
240            #    f.write(', '.join([''] + list(self.xlabel)) + '\n')
241            for i,row in enumerate(data):
242                ylabel = []
243                #if self.ylabel:
244                #    ylabel = [ self.ylabel[i] ]
245                f.write(', '.join(ylabel + [ '%f' % val for val in row]) + '\n')
246        if dim == 3:
247            f.write("don't do 3D csv files\n")
248            pass
249
250        f.close()
251
252if __name__ == '__main__':
253    from random import randrange
254    import random, sys
255
256    dim = 3
257    number = 5
258
259    args = sys.argv[1:]
260    if len(args) > 3:
261        sys.exit("invalid number of arguments")
262    elif len(args) > 0:
263        myshape = [ int(x) for x in args ]
264    else:
265        myshape = [ 3, 4, 8 ]
266
267    # generate a data matrix of the given shape
268    size = reduce(lambda x,y: x*y, myshape)
269    #data = [ random.randrange(size - i) + 10 for i in xrange(size) ]
270    data = [ float(i)/100.0 for i in xrange(size) ]
271    data = reshape(data, myshape)
272
273    # setup some test bar charts
274    if True:
275        chart1 = BarChart()
276        chart1.data = data
277
278        chart1.xlabel = 'Benchmark'
279        chart1.ylabel = 'Bandwidth (GBps)'
280        chart1.legend = [ 'x%d' % x for x in xrange(myshape[-1]) ]
281        chart1.xticks = [ 'xtick%d' % x for x in xrange(myshape[0]) ]
282        chart1.title = 'this is the title'
283        chart1.figure_size = [0.1, 0.2, 0.7, 0.85 ]
284        if len(myshape) > 1:
285            chart1.xsubticks = [ '%d' % x for x in xrange(myshape[1]) ]
286        chart1.graph()
287        chart1.savefig('/tmp/test1.png')
288        chart1.savefig('/tmp/test1.ps')
289        chart1.savefig('/tmp/test1.eps')
290        chart1.savecsv('/tmp/test1.csv')
291
292    if False:
293        chart2 = BarChart()
294        chart2.data = data
295        chart2.colormap = 'gray'
296        chart2.graph()
297        chart2.savefig('/tmp/test2.png')
298        chart2.savefig('/tmp/test2.ps')
299
300    pylab.myshow()
301