scheduler.hh revision 13257
1/* 2 * Copyright 2018 Google, Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are 6 * met: redistributions of source code must retain the above copyright 7 * notice, this list of conditions and the following disclaimer; 8 * redistributions in binary form must reproduce the above copyright 9 * notice, this list of conditions and the following disclaimer in the 10 * documentation and/or other materials provided with the distribution; 11 * neither the name of the copyright holders nor the names of its 12 * contributors may be used to endorse or promote products derived from 13 * this software without specific prior written permission. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 18 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 19 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 * Authors: Gabe Black 28 */ 29 30#ifndef __SYSTEMC_CORE_SCHEDULER_HH__ 31#define __SYSTEMC_CORE_SCHEDULER_HH__ 32 33#include <functional> 34#include <map> 35#include <set> 36#include <vector> 37 38#include "base/logging.hh" 39#include "sim/core.hh" 40#include "sim/eventq.hh" 41#include "systemc/core/channel.hh" 42#include "systemc/core/list.hh" 43#include "systemc/core/process.hh" 44#include "systemc/core/sched_event.hh" 45 46class Fiber; 47 48namespace sc_gem5 49{ 50 51class TraceFile; 52 53typedef NodeList<Process> ProcessList; 54typedef NodeList<Channel> ChannelList; 55 56/* 57 * The scheduler supports three different mechanisms, the initialization phase, 58 * delta cycles, and timed notifications. 59 * 60 * INITIALIZATION PHASE 61 * 62 * The initialization phase has three parts: 63 * 1. Run requested channel updates. 64 * 2. Make processes which need to initialize runnable (methods and threads 65 * which didn't have dont_initialize called on them). 66 * 3. Process delta notifications. 67 * 68 * First, the Kernel SimObject calls the update() method during its startup() 69 * callback which handles the requested channel updates. The Kernel also 70 * schedules an event to be run at time 0 with a slightly elevated priority 71 * so that it happens before any "normal" event. 72 * 73 * When that t0 event happens, it calls the schedulers prepareForInit method 74 * which performs step 2 above. That indirectly causes the scheduler's 75 * readyEvent to be scheduled with slightly lowered priority, ensuring it 76 * happens after any "normal" event. 77 * 78 * Because delta notifications are scheduled at the standard priority, all 79 * of those events will happen next, performing step 3 above. Once they finish, 80 * if the readyEvent was scheduled above, there shouldn't be any higher 81 * priority events in front of it. When it runs, it will start the first 82 * evaluate phase of the first delta cycle. 83 * 84 * DELTA CYCLE 85 * 86 * A delta cycle has three phases within it. 87 * 1. The evaluate phase where runnable processes are allowed to run. 88 * 2. The update phase where requested channel updates hapen. 89 * 3. The delta notification phase where delta notifications happen. 90 * 91 * The readyEvent runs all three steps of the delta cycle. It first goes 92 * through the list of runnable processes and executes them until the set is 93 * empty, and then immediately runs the update phase. Since these are all part 94 * of the same event, there's no chance for other events to intervene and 95 * break the required order above. 96 * 97 * During the update phase above, the spec forbids any action which would make 98 * a process runnable. That means that once the update phase finishes, the set 99 * of runnable processes will be empty. There may, however, have been some 100 * delta notifications/timeouts which will have been scheduled during either 101 * the evaluate or update phase above. Those will have been accumulated in the 102 * scheduler, and are now all executed. 103 * 104 * If any processes became runnable during the delta notification phase, the 105 * readyEvent will have been scheduled and will be waiting and ready to run 106 * again, effectively starting the next delta cycle. 107 * 108 * TIMED NOTIFICATION PHASE 109 * 110 * If no processes became runnable, the event queue will continue to process 111 * events until it comes across an event which represents all the timed 112 * notifications which are supposed to happen at a particular time. The object 113 * which tracks them will execute all those notifications, and then destroy 114 * itself. If the readyEvent is now ready to run, the next delta cycle will 115 * start. 116 * 117 * PAUSE/STOP 118 * 119 * To inject a pause from sc_pause which should happen after the current delta 120 * cycle's delta notification phase, an event is scheduled with a lower than 121 * normal priority, but higher than the readyEvent. That ensures that any 122 * delta notifications which are scheduled with normal priority will happen 123 * first, since those are part of the current delta cycle. Then the pause 124 * event will happen before the next readyEvent which would start the next 125 * delta cycle. All of these events are scheduled for the current time, and so 126 * would happen before any timed notifications went off. 127 * 128 * To inject a stop from sc_stop, the delta cycles should stop before even the 129 * delta notifications have happened, but after the evaluate and update phases. 130 * For that, a stop event with slightly higher than normal priority will be 131 * scheduled so that it happens before any of the delta notification events 132 * which are at normal priority. 133 * 134 * MAX RUN TIME 135 * 136 * When sc_start is called, it's possible to pass in a maximum time the 137 * simulation should run to, at which point sc_pause is implicitly called. The 138 * simulation is supposed to run up to the latest timed notification phase 139 * which is less than or equal to the maximum time. In other words it should 140 * run timed notifications at the maximum time, but not the subsequent evaluate 141 * phase. That's implemented by scheduling an event at the max time with a 142 * priority which is lower than all the others except the ready event. Timed 143 * notifications will happen before it fires, but it will override any ready 144 * event and prevent the evaluate phase from starting. 145 */ 146 147class Scheduler 148{ 149 public: 150 typedef std::list<ScEvent *> ScEvents; 151 152 class TimeSlot : public ::Event 153 { 154 public: 155 TimeSlot() : ::Event(Default_Pri, AutoDelete) {} 156 157 ScEvents events; 158 void process(); 159 }; 160 161 typedef std::map<Tick, TimeSlot *> TimeSlots; 162 163 Scheduler(); 164 ~Scheduler(); 165 166 void clear(); 167 168 const std::string name() const { return "systemc_scheduler"; } 169 170 uint64_t numCycles() { return _numCycles; } 171 Process *current() { return _current; } 172 173 void initPhase(); 174 175 // Register a process with the scheduler. 176 void reg(Process *p); 177 178 // Run the next process, if there is one. 179 void yield(); 180 181 // Put a process on the ready list. 182 void ready(Process *p); 183 184 // Mark a process as ready if init is finished, or put it on the list of 185 // processes to be initialized. 186 void resume(Process *p); 187 188 // Remove a process from the ready/init list if it was on one of them, and 189 // return if it was. 190 bool suspend(Process *p); 191 192 // Schedule an update for a given channel. 193 void requestUpdate(Channel *c); 194 195 // Run the given process immediately, preempting whatever may be running. 196 void 197 runNow(Process *p) 198 { 199 // This function may put a process on the wrong list, ie a thread 200 // the method list. That's fine since that's just a performance 201 // optimization, and the important thing here is how the processes are 202 // ordered. 203 204 // If a process is running, schedule it/us to run again. 205 if (_current) 206 readyListMethods.pushFirst(_current); 207 // Schedule p to run first. 208 readyListMethods.pushFirst(p); 209 yield(); 210 } 211 212 // Set an event queue for scheduling events. 213 void setEventQueue(EventQueue *_eq) { eq = _eq; } 214 215 // Get the current time according to gem5. 216 Tick getCurTick() { return eq ? eq->getCurTick() : 0; } 217 218 Tick 219 delayed(const ::sc_core::sc_time &delay) 220 { 221 return getCurTick() + delay.value(); 222 } 223 224 // For scheduling delayed/timed notifications/timeouts. 225 void 226 schedule(ScEvent *event, const ::sc_core::sc_time &delay) 227 { 228 Tick tick = delayed(delay); 229 if (tick < getCurTick()) 230 tick = getCurTick(); 231 232 // Delta notification/timeout. 233 if (delay.value() == 0) { 234 event->schedule(deltas, tick); 235 if (!inEvaluate() && !inUpdate()) 236 scheduleReadyEvent(); 237 return; 238 } 239 240 // Timed notification/timeout. 241 TimeSlot *&ts = timeSlots[tick]; 242 if (!ts) { 243 ts = new TimeSlot; 244 schedule(ts, tick); 245 } 246 event->schedule(ts->events, tick); 247 } 248 249 // For descheduling delayed/timed notifications/timeouts. 250 void 251 deschedule(ScEvent *event) 252 { 253 ScEvents *on = event->scheduledOn(); 254 255 if (on == &deltas) { 256 event->deschedule(); 257 return; 258 } 259 260 // Timed notification/timeout. 261 auto tsit = timeSlots.find(event->when()); 262 panic_if(tsit == timeSlots.end(), 263 "Descheduling event at time with no events."); 264 TimeSlot *ts = tsit->second; 265 ScEvents &events = ts->events; 266 assert(on == &events); 267 event->deschedule(); 268 269 // If no more events are happening at this time slot, get rid of it. 270 if (events.empty()) { 271 deschedule(ts); 272 timeSlots.erase(tsit); 273 } 274 } 275 276 void 277 completeTimeSlot(TimeSlot *ts) 278 { 279 _changeStamp++; 280 assert(ts == timeSlots.begin()->second); 281 timeSlots.erase(timeSlots.begin()); 282 if (!runToTime && starved()) 283 scheduleStarvationEvent(); 284 scheduleTimeAdvancesEvent(); 285 } 286 287 // Pending activity ignores gem5 activity, much like how a systemc 288 // simulation wouldn't know about asynchronous external events (socket IO 289 // for instance) that might happen before time advances in a pure 290 // systemc simulation. Also the spec lists what specific types of pending 291 // activity needs to be counted, which obviously doesn't include gem5 292 // events. 293 294 // Return whether there's pending systemc activity at this time. 295 bool 296 pendingCurr() 297 { 298 return !readyListMethods.empty() || !readyListThreads.empty() || 299 !updateList.empty() || !deltas.empty(); 300 } 301 302 // Return whether there are pending timed notifications or timeouts. 303 bool 304 pendingFuture() 305 { 306 return !timeSlots.empty(); 307 } 308 309 // Return how many ticks there are until the first pending event, if any. 310 Tick 311 timeToPending() 312 { 313 if (pendingCurr()) 314 return 0; 315 if (pendingFuture()) 316 return timeSlots.begin()->first - getCurTick(); 317 return MaxTick - getCurTick(); 318 } 319 320 // Run scheduled channel updates. 321 void runUpdate(); 322 323 // Run delta events. 324 void runDelta(); 325 326 void setScMainFiber(Fiber *sc_main) { scMain = sc_main; } 327 328 void start(Tick max_tick, bool run_to_time); 329 void oneCycle(); 330 331 void schedulePause(); 332 void scheduleStop(bool finish_delta); 333 334 enum Status 335 { 336 StatusOther = 0, 337 StatusEvaluate, 338 StatusUpdate, 339 StatusDelta, 340 StatusTiming, 341 StatusPaused, 342 StatusStopped 343 }; 344 345 bool elaborationDone() { return _elaborationDone; } 346 void elaborationDone(bool b) { _elaborationDone = b; } 347 348 bool paused() { return status() == StatusPaused; } 349 bool stopped() { return status() == StatusStopped; } 350 bool inEvaluate() { return status() == StatusEvaluate; } 351 bool inUpdate() { return status() == StatusUpdate; } 352 bool inDelta() { return status() == StatusDelta; } 353 bool inTiming() { return status() == StatusTiming; } 354 355 uint64_t changeStamp() { return _changeStamp; } 356 357 void throwToScMain(const ::sc_core::sc_report *r=nullptr); 358 359 Status status() { return _status; } 360 void status(Status s) { _status = s; } 361 362 void registerTraceFile(TraceFile *tf) { traceFiles.insert(tf); } 363 void unregisterTraceFile(TraceFile *tf) { traceFiles.erase(tf); } 364 365 private: 366 typedef const EventBase::Priority Priority; 367 static Priority DefaultPriority = EventBase::Default_Pri; 368 369 static Priority StopPriority = DefaultPriority - 1; 370 static Priority PausePriority = DefaultPriority + 1; 371 static Priority MaxTickPriority = DefaultPriority + 2; 372 static Priority ReadyPriority = DefaultPriority + 3; 373 static Priority StarvationPriority = ReadyPriority; 374 static Priority TimeAdvancesPriority = EventBase::Maximum_Pri; 375 376 EventQueue *eq; 377 378 // For gem5 style events. 379 void 380 schedule(::Event *event, Tick tick) 381 { 382 if (initDone) 383 eq->schedule(event, tick); 384 else 385 eventsToSchedule[event] = tick; 386 } 387 388 void schedule(::Event *event) { schedule(event, getCurTick()); } 389 390 void 391 deschedule(::Event *event) 392 { 393 if (initDone) 394 eq->deschedule(event); 395 else 396 eventsToSchedule.erase(event); 397 } 398 399 ScEvents deltas; 400 TimeSlots timeSlots; 401 402 Process * 403 getNextReady() 404 { 405 Process *p = readyListMethods.getNext(); 406 return p ? p : readyListThreads.getNext(); 407 } 408 409 void runReady(); 410 EventWrapper<Scheduler, &Scheduler::runReady> readyEvent; 411 void scheduleReadyEvent(); 412 413 void pause(); 414 void stop(); 415 EventWrapper<Scheduler, &Scheduler::pause> pauseEvent; 416 EventWrapper<Scheduler, &Scheduler::stop> stopEvent; 417 418 Fiber *scMain; 419 const ::sc_core::sc_report *_throwToScMain; 420 421 bool 422 starved() 423 { 424 return (readyListMethods.empty() && readyListThreads.empty() && 425 updateList.empty() && deltas.empty() && 426 (timeSlots.empty() || timeSlots.begin()->first > maxTick) && 427 initList.empty()); 428 } 429 EventWrapper<Scheduler, &Scheduler::pause> starvationEvent; 430 void scheduleStarvationEvent(); 431 432 bool _elaborationDone; 433 bool _started; 434 bool _stopNow; 435 436 Status _status; 437 438 Tick maxTick; 439 Tick lastReadyTick; 440 void 441 maxTickFunc() 442 { 443 if (lastReadyTick != getCurTick()) 444 _changeStamp++; 445 pause(); 446 } 447 EventWrapper<Scheduler, &Scheduler::maxTickFunc> maxTickEvent; 448 449 void timeAdvances() { trace(false); } 450 EventWrapper<Scheduler, &Scheduler::timeAdvances> timeAdvancesEvent; 451 void 452 scheduleTimeAdvancesEvent() 453 { 454 if (!traceFiles.empty() && !timeAdvancesEvent.scheduled()) 455 schedule(&timeAdvancesEvent); 456 } 457 458 uint64_t _numCycles; 459 uint64_t _changeStamp; 460 461 Process *_current; 462 463 bool initDone; 464 bool runToTime; 465 bool runOnce; 466 467 ProcessList initList; 468 469 ProcessList readyListMethods; 470 ProcessList readyListThreads; 471 472 ChannelList updateList; 473 474 std::map<::Event *, Tick> eventsToSchedule; 475 476 std::set<TraceFile *> traceFiles; 477 478 void trace(bool delta); 479}; 480 481extern Scheduler scheduler; 482 483inline void 484Scheduler::TimeSlot::process() 485{ 486 scheduler.status(StatusTiming); 487 488 try { 489 while (!events.empty()) 490 events.front()->run(); 491 } catch (...) { 492 if (events.empty()) 493 scheduler.completeTimeSlot(this); 494 else 495 scheduler.schedule(this); 496 scheduler.throwToScMain(); 497 } 498 499 scheduler.status(StatusOther); 500 scheduler.completeTimeSlot(this); 501} 502 503const ::sc_core::sc_report *reportifyException(); 504 505} // namespace sc_gem5 506 507#endif // __SYSTEMC_CORE_SCHEDULER_H__ 508