scheduler.hh revision 13076:c9e2a8bfe907
112837Sgabeblack@google.com/*
212837Sgabeblack@google.com * Copyright 2018 Google, Inc.
312837Sgabeblack@google.com *
412837Sgabeblack@google.com * Redistribution and use in source and binary forms, with or without
512837Sgabeblack@google.com * modification, are permitted provided that the following conditions are
612837Sgabeblack@google.com * met: redistributions of source code must retain the above copyright
712837Sgabeblack@google.com * notice, this list of conditions and the following disclaimer;
812837Sgabeblack@google.com * redistributions in binary form must reproduce the above copyright
912837Sgabeblack@google.com * notice, this list of conditions and the following disclaimer in the
1012837Sgabeblack@google.com * documentation and/or other materials provided with the distribution;
1112837Sgabeblack@google.com * neither the name of the copyright holders nor the names of its
1212837Sgabeblack@google.com * contributors may be used to endorse or promote products derived from
1312837Sgabeblack@google.com * this software without specific prior written permission.
1412837Sgabeblack@google.com *
1512837Sgabeblack@google.com * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1612837Sgabeblack@google.com * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1712837Sgabeblack@google.com * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1812837Sgabeblack@google.com * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1912837Sgabeblack@google.com * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2012837Sgabeblack@google.com * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2112837Sgabeblack@google.com * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2212837Sgabeblack@google.com * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2312837Sgabeblack@google.com * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2412837Sgabeblack@google.com * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2512837Sgabeblack@google.com * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2612837Sgabeblack@google.com *
2712837Sgabeblack@google.com * Authors: Gabe Black
2812837Sgabeblack@google.com */
2912837Sgabeblack@google.com
3012837Sgabeblack@google.com#ifndef __SYSTEMC_CORE_SCHEDULER_HH__
3113041Sgabeblack@google.com#define __SYSTEMC_CORE_SCHEDULER_HH__
3212837Sgabeblack@google.com
3313251Sgabeblack@google.com#include <functional>
3412837Sgabeblack@google.com#include <map>
3512837Sgabeblack@google.com#include <set>
3612837Sgabeblack@google.com#include <vector>
3712837Sgabeblack@google.com
3812837Sgabeblack@google.com#include "base/logging.hh"
3912837Sgabeblack@google.com#include "sim/core.hh"
4012837Sgabeblack@google.com#include "sim/eventq.hh"
4113251Sgabeblack@google.com#include "systemc/core/channel.hh"
4213041Sgabeblack@google.com#include "systemc/core/list.hh"
4313041Sgabeblack@google.com#include "systemc/core/process.hh"
4412837Sgabeblack@google.com#include "systemc/core/sched_event.hh"
4512837Sgabeblack@google.com
4612837Sgabeblack@google.comclass Fiber;
47
48namespace sc_gem5
49{
50
51typedef NodeList<Process> ProcessList;
52typedef NodeList<Channel> ChannelList;
53
54/*
55 * The scheduler supports three different mechanisms, the initialization phase,
56 * delta cycles, and timed notifications.
57 *
58 * INITIALIZATION PHASE
59 *
60 * The initialization phase has three parts:
61 * 1. Run requested channel updates.
62 * 2. Make processes which need to initialize runnable (methods and threads
63 *    which didn't have dont_initialize called on them).
64 * 3. Process delta notifications.
65 *
66 * First, the Kernel SimObject calls the update() method during its startup()
67 * callback which handles the requested channel updates. The Kernel also
68 * schedules an event to be run at time 0 with a slightly elevated priority
69 * so that it happens before any "normal" event.
70 *
71 * When that t0 event happens, it calls the schedulers prepareForInit method
72 * which performs step 2 above. That indirectly causes the scheduler's
73 * readyEvent to be scheduled with slightly lowered priority, ensuring it
74 * happens after any "normal" event.
75 *
76 * Because delta notifications are scheduled at the standard priority, all
77 * of those events will happen next, performing step 3 above. Once they finish,
78 * if the readyEvent was scheduled above, there shouldn't be any higher
79 * priority events in front of it. When it runs, it will start the first
80 * evaluate phase of the first delta cycle.
81 *
82 * DELTA CYCLE
83 *
84 * A delta cycle has three phases within it.
85 * 1. The evaluate phase where runnable processes are allowed to run.
86 * 2. The update phase where requested channel updates hapen.
87 * 3. The delta notification phase where delta notifications happen.
88 *
89 * The readyEvent runs all three steps of the delta cycle. It first goes
90 * through the list of runnable processes and executes them until the set is
91 * empty, and then immediately runs the update phase. Since these are all part
92 * of the same event, there's no chance for other events to intervene and
93 * break the required order above.
94 *
95 * During the update phase above, the spec forbids any action which would make
96 * a process runnable. That means that once the update phase finishes, the set
97 * of runnable processes will be empty. There may, however, have been some
98 * delta notifications/timeouts which will have been scheduled during either
99 * the evaluate or update phase above. Those will have been accumulated in the
100 * scheduler, and are now all executed.
101 *
102 * If any processes became runnable during the delta notification phase, the
103 * readyEvent will have been scheduled and will be waiting and ready to run
104 * again, effectively starting the next delta cycle.
105 *
106 * TIMED NOTIFICATION PHASE
107 *
108 * If no processes became runnable, the event queue will continue to process
109 * events until it comes across an event which represents all the timed
110 * notifications which are supposed to happen at a particular time. The object
111 * which tracks them will execute all those notifications, and then destroy
112 * itself. If the readyEvent is now ready to run, the next delta cycle will
113 * start.
114 *
115 * PAUSE/STOP
116 *
117 * To inject a pause from sc_pause which should happen after the current delta
118 * cycle's delta notification phase, an event is scheduled with a lower than
119 * normal priority, but higher than the readyEvent. That ensures that any
120 * delta notifications which are scheduled with normal priority will happen
121 * first, since those are part of the current delta cycle. Then the pause
122 * event will happen before the next readyEvent which would start the next
123 * delta cycle. All of these events are scheduled for the current time, and so
124 * would happen before any timed notifications went off.
125 *
126 * To inject a stop from sc_stop, the delta cycles should stop before even the
127 * delta notifications have happened, but after the evaluate and update phases.
128 * For that, a stop event with slightly higher than normal priority will be
129 * scheduled so that it happens before any of the delta notification events
130 * which are at normal priority.
131 *
132 * MAX RUN TIME
133 *
134 * When sc_start is called, it's possible to pass in a maximum time the
135 * simulation should run to, at which point sc_pause is implicitly called. The
136 * simulation is supposed to run up to the latest timed notification phase
137 * which is less than or equal to the maximum time. In other words it should
138 * run timed notifications at the maximum time, but not the subsequent evaluate
139 * phase. That's implemented by scheduling an event at the max time with a
140 * priority which is lower than all the others except the ready event. Timed
141 * notifications will happen before it fires, but it will override any ready
142 * event and prevent the evaluate phase from starting.
143 */
144
145class Scheduler
146{
147  public:
148    typedef std::set<ScEvent *> ScEvents;
149
150    class TimeSlot : public ::Event
151    {
152      public:
153        TimeSlot() : ::Event(Default_Pri, AutoDelete) {}
154
155        ScEvents events;
156        void process();
157    };
158
159    typedef std::map<Tick, TimeSlot *> TimeSlots;
160
161    Scheduler();
162    ~Scheduler();
163
164    void clear();
165
166    const std::string name() const { return "systemc_scheduler"; }
167
168    uint64_t numCycles() { return _numCycles; }
169    Process *current() { return _current; }
170
171    void initPhase();
172
173    // Register a process with the scheduler.
174    void reg(Process *p);
175
176    // Tell the scheduler not to initialize a process.
177    void dontInitialize(Process *p);
178
179    // Run the next process, if there is one.
180    void yield();
181
182    // Put a process on the ready list.
183    void ready(Process *p);
184
185    // Schedule an update for a given channel.
186    void requestUpdate(Channel *c);
187
188    // Run the given process immediately, preempting whatever may be running.
189    void
190    runNow(Process *p)
191    {
192        // If a process is running, schedule it/us to run again.
193        if (_current)
194            readyList.pushFirst(_current);
195        // Schedule p to run first.
196        readyList.pushFirst(p);
197        yield();
198    }
199
200    // Set an event queue for scheduling events.
201    void setEventQueue(EventQueue *_eq) { eq = _eq; }
202
203    // Get the current time according to gem5.
204    Tick getCurTick() { return eq ? eq->getCurTick() : 0; }
205
206    Tick
207    delayed(const ::sc_core::sc_time &delay)
208    {
209        //XXX We're assuming the systemc time resolution is in ps.
210        return getCurTick() + delay.value() * SimClock::Int::ps;
211    }
212
213    // For scheduling delayed/timed notifications/timeouts.
214    void
215    schedule(ScEvent *event, const ::sc_core::sc_time &delay)
216    {
217        Tick tick = delayed(delay);
218        event->schedule(tick);
219
220        // Delta notification/timeout.
221        if (delay.value() == 0) {
222            deltas.insert(event);
223            scheduleReadyEvent();
224            return;
225        }
226
227        // Timed notification/timeout.
228        TimeSlot *&ts = timeSlots[tick];
229        if (!ts) {
230            ts = new TimeSlot;
231            schedule(ts, tick);
232        }
233        ts->events.insert(event);
234    }
235
236    // For descheduling delayed/timed notifications/timeouts.
237    void
238    deschedule(ScEvent *event)
239    {
240        if (event->when() == getCurTick()) {
241            // Remove from delta notifications.
242            deltas.erase(event);
243            event->deschedule();
244            return;
245        }
246
247        // Timed notification/timeout.
248        auto tsit = timeSlots.find(event->when());
249        panic_if(tsit == timeSlots.end(),
250                "Descheduling event at time with no events.");
251        TimeSlot *ts = tsit->second;
252        ScEvents &events = ts->events;
253        events.erase(event);
254        event->deschedule();
255
256        // If no more events are happening at this time slot, get rid of it.
257        if (events.empty()) {
258            deschedule(ts);
259            timeSlots.erase(tsit);
260        }
261    }
262
263    void
264    completeTimeSlot(TimeSlot *ts)
265    {
266        assert(ts == timeSlots.begin()->second);
267        timeSlots.erase(timeSlots.begin());
268    }
269
270    // Pending activity ignores gem5 activity, much like how a systemc
271    // simulation wouldn't know about asynchronous external events (socket IO
272    // for instance) that might happen before time advances in a pure
273    // systemc simulation. Also the spec lists what specific types of pending
274    // activity needs to be counted, which obviously doesn't include gem5
275    // events.
276
277    // Return whether there's pending systemc activity at this time.
278    bool
279    pendingCurr()
280    {
281        return !readyList.empty() || !updateList.empty() || !deltas.empty();
282    }
283
284    // Return whether there are pending timed notifications or timeouts.
285    bool
286    pendingFuture()
287    {
288        return !timeSlots.empty();
289    }
290
291    // Return how many ticks there are until the first pending event, if any.
292    Tick
293    timeToPending()
294    {
295        if (pendingCurr())
296            return 0;
297        if (pendingFuture())
298            return timeSlots.begin()->first - getCurTick();
299        return MaxTick - getCurTick();
300    }
301
302    // Run scheduled channel updates.
303    void update();
304
305    void setScMainFiber(Fiber *sc_main) { scMain = sc_main; }
306
307    void start(Tick max_tick, bool run_to_time);
308    void oneCycle();
309
310    void schedulePause();
311    void scheduleStop(bool finish_delta);
312
313    bool paused() { return _paused; }
314    bool stopped() { return _stopped; }
315
316  private:
317    typedef const EventBase::Priority Priority;
318    static Priority DefaultPriority = EventBase::Default_Pri;
319
320    static Priority StopPriority = DefaultPriority - 1;
321    static Priority PausePriority = DefaultPriority + 1;
322    static Priority MaxTickPriority = DefaultPriority + 2;
323    static Priority ReadyPriority = DefaultPriority + 3;
324    static Priority StarvationPriority = ReadyPriority;
325
326    EventQueue *eq;
327
328    // For gem5 style events.
329    void
330    schedule(::Event *event, Tick tick)
331    {
332        if (initDone)
333            eq->schedule(event, tick);
334        else
335            eventsToSchedule[event] = tick;
336    }
337
338    void schedule(::Event *event) { schedule(event, getCurTick()); }
339
340    void
341    deschedule(::Event *event)
342    {
343        if (initDone)
344            eq->deschedule(event);
345        else
346            eventsToSchedule.erase(event);
347    }
348
349    ScEvents deltas;
350    TimeSlots timeSlots;
351
352    void runReady();
353    EventWrapper<Scheduler, &Scheduler::runReady> readyEvent;
354    void scheduleReadyEvent();
355
356    void pause();
357    void stop();
358    EventWrapper<Scheduler, &Scheduler::pause> pauseEvent;
359    EventWrapper<Scheduler, &Scheduler::stop> stopEvent;
360    Fiber *scMain;
361
362    bool
363    starved()
364    {
365        return (readyList.empty() && updateList.empty() && deltas.empty() &&
366                (timeSlots.empty() || timeSlots.begin()->first > maxTick) &&
367                initList.empty());
368    }
369    EventWrapper<Scheduler, &Scheduler::pause> starvationEvent;
370    void scheduleStarvationEvent();
371
372    bool _started;
373    bool _paused;
374    bool _stopped;
375
376    Tick maxTick;
377    EventWrapper<Scheduler, &Scheduler::pause> maxTickEvent;
378
379    uint64_t _numCycles;
380
381    Process *_current;
382
383    bool initDone;
384    bool runToTime;
385    bool runOnce;
386
387    ProcessList initList;
388    ProcessList toFinalize;
389    ProcessList readyList;
390
391    ChannelList updateList;
392
393    std::map<::Event *, Tick> eventsToSchedule;
394};
395
396extern Scheduler scheduler;
397
398inline void
399Scheduler::TimeSlot::process()
400{
401    for (auto &e: events)
402        e->run();
403    scheduler.completeTimeSlot(this);
404}
405
406} // namespace sc_gem5
407
408#endif // __SYSTEMC_CORE_SCHEDULER_H__
409