dot_writer.py revision 9854:e4a4cdfb1b81
1# Copyright (c) 2012-2013 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Redistribution and use in source and binary forms, with or without
14# modification, are permitted provided that the following conditions are
15# met: redistributions of source code must retain the above copyright
16# notice, this list of conditions and the following disclaimer;
17# redistributions in binary form must reproduce the above copyright
18# notice, this list of conditions and the following disclaimer in the
19# documentation and/or other materials provided with the distribution;
20# neither the name of the copyright holders nor the names of its
21# contributors may be used to endorse or promote products derived from
22# this software without specific prior written permission.
23#
24# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35#
36# Authors: Andreas Hansson
37#          Uri Wiener
38
39#####################################################################
40#
41# System visualization using DOT
42#
43# While config.ini and config.json provide an almost complete listing
44# of a system's components and connectivity, they lack a birds-eye
45# view. The output generated by do_dot() is a DOT-based figure (as a
46# pdf and an editable svg file) and its source dot code. Nodes are
47# components, and edges represent the memory hierarchy: the edges are
48# directed, from a master to slave. Initially all nodes are
49# generated, and then all edges are added. do_dot should be called
50# with the top-most SimObject (namely root but not necessarily), the
51# output folder and the output dot source filename. From the given
52# node, both processes (node and edge creation) is performed
53# recursivly, traversing all children of the given root.
54#
55# pydot is required. When missing, no output will be generated.
56#
57#####################################################################
58
59import m5, os, re
60from m5.SimObject import isRoot, isSimObjectVector
61from m5.util import warn
62try:
63    import pydot
64except:
65    pydot = False
66
67# need to create all nodes (components) before creating edges (memory channels)
68def dot_create_nodes(simNode, callgraph):
69    if isRoot(simNode):
70        label = "root"
71    else:
72        label = simNode._name
73    full_path = re.sub('\.', '_', simNode.path())
74    # add class name under the label
75    label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
76
77    # each component is a sub-graph (cluster)
78    cluster = dot_create_cluster(simNode, full_path, label)
79
80    # create nodes per port
81    for port_name in simNode._ports.keys():
82        port = simNode._port_refs.get(port_name, None)
83        if port != None:
84            full_port_name = full_path + "_" + port_name
85            port_node = dot_create_node(simNode, full_port_name, port_name)
86            cluster.add_node(port_node)
87
88    # recurse to children
89    if simNode._children:
90        for c in simNode._children:
91            child = simNode._children[c]
92            if isSimObjectVector(child):
93                for obj in child:
94                    dot_create_nodes(obj, cluster)
95            else:
96                dot_create_nodes(child, cluster)
97
98    callgraph.add_subgraph(cluster)
99
100# create all edges according to memory hierarchy
101def dot_create_edges(simNode, callgraph):
102    for port_name in simNode._ports.keys():
103        port = simNode._port_refs.get(port_name, None)
104        if port != None:
105            full_path = re.sub('\.', '_', simNode.path())
106            full_port_name = full_path + "_" + port_name
107            port_node = dot_create_node(simNode, full_port_name, port_name)
108            # create edges
109            if type(port) is m5.params.PortRef:
110                dot_add_edge(simNode, callgraph, full_port_name, port)
111            else:
112                for p in port.elements:
113                    dot_add_edge(simNode, callgraph, full_port_name, p)
114
115    # recurse to children
116    if simNode._children:
117        for c in simNode._children:
118            child = simNode._children[c]
119            if isSimObjectVector(child):
120                for obj in child:
121                    dot_create_edges(obj, callgraph)
122            else:
123                dot_create_edges(child, callgraph)
124
125def dot_add_edge(simNode, callgraph, full_port_name, peerPort):
126    if peerPort.role == "MASTER":
127        peer_port_name = re.sub('\.', '_', peerPort.peer.simobj.path() \
128                + "." + peerPort.peer.name)
129        callgraph.add_edge(pydot.Edge(full_port_name, peer_port_name))
130
131def dot_create_cluster(simNode, full_path, label):
132    # get the parameter values of the node and use them as a tooltip
133    ini_strings = []
134    for param in sorted(simNode._params.keys()):
135        value = simNode._values.get(param)
136        if value != None:
137            # parameter name = value in HTML friendly format
138            ini_strings.append(str(param) + "=" +
139                               simNode._values[param].ini_str())
140    # join all the parameters with an HTML newline
141    tooltip = "
".join(ini_strings)
142
143    return pydot.Cluster( \
144                         full_path, \
145                         shape = "Mrecord", \
146                         label = label, \
147                         tooltip = "\"" + tooltip + "\"", \
148                         style = "\"rounded, filled\"", \
149                         color = "#000000", \
150                         fillcolor = dot_gen_colour(simNode), \
151                         fontname = "Arial", \
152                         fontsize = "14", \
153                         fontcolor = "#000000" \
154                         )
155
156def dot_create_node(simNode, full_path, label):
157    return pydot.Node( \
158                         full_path, \
159                         shape = "Mrecord", \
160                         label = label, \
161                         style = "\"rounded, filled\"", \
162                         color = "#000000", \
163                         fillcolor = dot_gen_colour(simNode, True), \
164                         fontname = "Arial", \
165                         fontsize = "14", \
166                         fontcolor = "#000000" \
167                         )
168
169# an enumerator for different kinds of node types, at the moment we
170# discern the majority of node types, with the caches being the
171# notable exception
172class NodeType:
173    SYS = 0
174    CPU = 1
175    BUS = 2
176    MEM = 3
177    DEV = 4
178    OTHER = 5
179
180# based on the sim object, determine the node type
181def get_node_type(simNode):
182    if isinstance(simNode, m5.objects.System):
183        return NodeType.SYS
184    # NULL ISA has no BaseCPU or PioDevice, so check if these names
185    # exists before using them
186    elif 'BaseCPU' in dir(m5.objects) and \
187            isinstance(simNode, m5.objects.BaseCPU):
188        return NodeType.CPU
189    elif 'PioDevice' in dir(m5.objects) and \
190            isinstance(simNode, m5.objects.PioDevice):
191        return NodeType.DEV
192    elif isinstance(simNode, m5.objects.BaseBus):
193        return NodeType.BUS
194    elif isinstance(simNode, m5.objects.AbstractMemory):
195        return NodeType.MEM
196    else:
197        return NodeType.OTHER
198
199# based on the node type, determine the colour as an RGB tuple, the
200# palette is rather arbitrary at this point (some coherent natural
201# tones), and someone that feels artistic should probably have a look
202def get_type_colour(nodeType):
203    if nodeType == NodeType.SYS:
204        return (228, 231, 235)
205    elif nodeType == NodeType.CPU:
206        return (187, 198, 217)
207    elif nodeType == NodeType.BUS:
208        return (111, 121, 140)
209    elif nodeType == NodeType.MEM:
210        return (94, 89, 88)
211    elif nodeType == NodeType.DEV:
212        return (199, 167, 147)
213    elif nodeType == NodeType.OTHER:
214        # use a relatively gray shade
215        return (186, 182, 174)
216
217# generate colour for a node, either corresponding to a sim object or a
218# port
219def dot_gen_colour(simNode, isPort = False):
220    # determine the type of the current node, and also its parent, if
221    # the node is not the same type as the parent then we use the base
222    # colour for its type
223    node_type = get_node_type(simNode)
224    if simNode._parent:
225        parent_type = get_node_type(simNode._parent)
226    else:
227        parent_type = NodeType.OTHER
228
229    # if this node is the same type as the parent, then scale the
230    # colour based on the depth such that the deeper levels in the
231    # hierarchy get darker colours
232    if node_type == parent_type:
233        # start out with a depth of zero
234        depth = 0
235        parent = simNode._parent
236        # find the closes parent that is not the same type
237        while parent and get_node_type(parent) == parent_type:
238            depth = depth + 1
239            parent = parent._parent
240        node_colour = get_type_colour(parent_type)
241        # slightly arbitrary, but assume that the depth is less than
242        # five levels
243        r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour)
244    else:
245        node_colour = get_type_colour(node_type)
246        r, g, b = node_colour
247
248    # if we are colouring a port, then make it a slightly darker shade
249    # than the node that encapsulates it, once again use a magic constant
250    if isPort:
251        r, g, b = map(lambda x: 0.8 * x, (r, g, b))
252
253    return dot_rgb_to_html(r, g, b)
254
255def dot_rgb_to_html(r, g, b):
256    return "#%.2x%.2x%.2x" % (r, g, b)
257
258def do_dot(root, outdir, dotFilename):
259    if not pydot:
260        return
261    # * use ranksep > 1.0 for for vertical separation between nodes
262    # especially useful if you need to annotate edges using e.g. visio
263    # which accepts svg format
264    # * no need for hoizontal separation as nothing moves horizonally
265    callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
266    dot_create_nodes(root, callgraph)
267    dot_create_edges(root, callgraph)
268    dot_filename = os.path.join(outdir, dotFilename)
269    callgraph.write(dot_filename)
270    try:
271        # dot crashes if the figure is extremely wide.
272        # So avoid terminating simulation unnecessarily
273        callgraph.write_svg(dot_filename + ".svg")
274        callgraph.write_pdf(dot_filename + ".pdf")
275    except:
276        warn("failed to generate dot output from %s", dot_filename)
277