SimObject.py revision 9983
1# Copyright (c) 2012 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Copyright (c) 2004-2006 The Regents of The University of Michigan
14# Copyright (c) 2010-20013 Advanced Micro Devices, Inc.
15# Copyright (c) 2013 Mark D. Hill and David A. Wood
16# All rights reserved.
17#
18# Redistribution and use in source and binary forms, with or without
19# modification, are permitted provided that the following conditions are
20# met: redistributions of source code must retain the above copyright
21# notice, this list of conditions and the following disclaimer;
22# redistributions in binary form must reproduce the above copyright
23# notice, this list of conditions and the following disclaimer in the
24# documentation and/or other materials provided with the distribution;
25# neither the name of the copyright holders nor the names of its
26# contributors may be used to endorse or promote products derived from
27# this software without specific prior written permission.
28#
29# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40#
41# Authors: Steve Reinhardt
42#          Nathan Binkert
43#          Andreas Hansson
44
45import sys
46from types import FunctionType, MethodType, ModuleType
47
48import m5
49from m5.util import *
50
51# Have to import params up top since Param is referenced on initial
52# load (when SimObject class references Param to create a class
53# variable, the 'name' param)...
54from m5.params import *
55# There are a few things we need that aren't in params.__all__ since
56# normal users don't need them
57from m5.params import ParamDesc, VectorParamDesc, \
58     isNullPointer, SimObjectVector, Port
59
60from m5.proxy import *
61from m5.proxy import isproxy
62
63#####################################################################
64#
65# M5 Python Configuration Utility
66#
67# The basic idea is to write simple Python programs that build Python
68# objects corresponding to M5 SimObjects for the desired simulation
69# configuration.  For now, the Python emits a .ini file that can be
70# parsed by M5.  In the future, some tighter integration between M5
71# and the Python interpreter may allow bypassing the .ini file.
72#
73# Each SimObject class in M5 is represented by a Python class with the
74# same name.  The Python inheritance tree mirrors the M5 C++ tree
75# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
76# SimObjects inherit from a single SimObject base class).  To specify
77# an instance of an M5 SimObject in a configuration, the user simply
78# instantiates the corresponding Python object.  The parameters for
79# that SimObject are given by assigning to attributes of the Python
80# object, either using keyword assignment in the constructor or in
81# separate assignment statements.  For example:
82#
83# cache = BaseCache(size='64KB')
84# cache.hit_latency = 3
85# cache.assoc = 8
86#
87# The magic lies in the mapping of the Python attributes for SimObject
88# classes to the actual SimObject parameter specifications.  This
89# allows parameter validity checking in the Python code.  Continuing
90# the example above, the statements "cache.blurfl=3" or
91# "cache.assoc='hello'" would both result in runtime errors in Python,
92# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
93# parameter requires an integer, respectively.  This magic is done
94# primarily by overriding the special __setattr__ method that controls
95# assignment to object attributes.
96#
97# Once a set of Python objects have been instantiated in a hierarchy,
98# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
99# will generate a .ini file.
100#
101#####################################################################
102
103# list of all SimObject classes
104allClasses = {}
105
106# dict to look up SimObjects based on path
107instanceDict = {}
108
109# Did any of the SimObjects lack a header file?
110noCxxHeader = False
111
112def public_value(key, value):
113    return key.startswith('_') or \
114               isinstance(value, (FunctionType, MethodType, ModuleType,
115                                  classmethod, type))
116
117# The metaclass for SimObject.  This class controls how new classes
118# that derive from SimObject are instantiated, and provides inherited
119# class behavior (just like a class controls how instances of that
120# class are instantiated, and provides inherited instance behavior).
121class MetaSimObject(type):
122    # Attributes that can be set only at initialization time
123    init_keywords = { 'abstract' : bool,
124                      'cxx_class' : str,
125                      'cxx_type' : str,
126                      'cxx_header' : str,
127                      'type' : str,
128                      'cxx_bases' : list }
129    # Attributes that can be set any time
130    keywords = { 'check' : FunctionType }
131
132    # __new__ is called before __init__, and is where the statements
133    # in the body of the class definition get loaded into the class's
134    # __dict__.  We intercept this to filter out parameter & port assignments
135    # and only allow "private" attributes to be passed to the base
136    # __new__ (starting with underscore).
137    def __new__(mcls, name, bases, dict):
138        assert name not in allClasses, "SimObject %s already present" % name
139
140        # Copy "private" attributes, functions, and classes to the
141        # official dict.  Everything else goes in _init_dict to be
142        # filtered in __init__.
143        cls_dict = {}
144        value_dict = {}
145        for key,val in dict.items():
146            if public_value(key, val):
147                cls_dict[key] = val
148            else:
149                # must be a param/port setting
150                value_dict[key] = val
151        if 'abstract' not in value_dict:
152            value_dict['abstract'] = False
153        if 'cxx_bases' not in value_dict:
154            value_dict['cxx_bases'] = []
155        cls_dict['_value_dict'] = value_dict
156        cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
157        if 'type' in value_dict:
158            allClasses[name] = cls
159        return cls
160
161    # subclass initialization
162    def __init__(cls, name, bases, dict):
163        # calls type.__init__()... I think that's a no-op, but leave
164        # it here just in case it's not.
165        super(MetaSimObject, cls).__init__(name, bases, dict)
166
167        # initialize required attributes
168
169        # class-only attributes
170        cls._params = multidict() # param descriptions
171        cls._ports = multidict()  # port descriptions
172
173        # class or instance attributes
174        cls._values = multidict()   # param values
175        cls._children = multidict() # SimObject children
176        cls._port_refs = multidict() # port ref objects
177        cls._instantiated = False # really instantiated, cloned, or subclassed
178
179        # We don't support multiple inheritance of sim objects.  If you want
180        # to, you must fix multidict to deal with it properly. Non sim-objects
181        # are ok, though
182        bTotal = 0
183        for c in bases:
184            if isinstance(c, MetaSimObject):
185                bTotal += 1
186            if bTotal > 1:
187                raise TypeError, "SimObjects do not support multiple inheritance"
188
189        base = bases[0]
190
191        # Set up general inheritance via multidicts.  A subclass will
192        # inherit all its settings from the base class.  The only time
193        # the following is not true is when we define the SimObject
194        # class itself (in which case the multidicts have no parent).
195        if isinstance(base, MetaSimObject):
196            cls._base = base
197            cls._params.parent = base._params
198            cls._ports.parent = base._ports
199            cls._values.parent = base._values
200            cls._children.parent = base._children
201            cls._port_refs.parent = base._port_refs
202            # mark base as having been subclassed
203            base._instantiated = True
204        else:
205            cls._base = None
206
207        # default keyword values
208        if 'type' in cls._value_dict:
209            if 'cxx_class' not in cls._value_dict:
210                cls._value_dict['cxx_class'] = cls._value_dict['type']
211
212            cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
213
214            if 'cxx_header' not in cls._value_dict:
215                global noCxxHeader
216                noCxxHeader = True
217                warn("No header file specified for SimObject: %s", name)
218
219        # Export methods are automatically inherited via C++, so we
220        # don't want the method declarations to get inherited on the
221        # python side (and thus end up getting repeated in the wrapped
222        # versions of derived classes).  The code below basicallly
223        # suppresses inheritance by substituting in the base (null)
224        # versions of these methods unless a different version is
225        # explicitly supplied.
226        for method_name in ('export_methods', 'export_method_cxx_predecls',
227                            'export_method_swig_predecls'):
228            if method_name not in cls.__dict__:
229                base_method = getattr(MetaSimObject, method_name)
230                m = MethodType(base_method, cls, MetaSimObject)
231                setattr(cls, method_name, m)
232
233        # Now process the _value_dict items.  They could be defining
234        # new (or overriding existing) parameters or ports, setting
235        # class keywords (e.g., 'abstract'), or setting parameter
236        # values or port bindings.  The first 3 can only be set when
237        # the class is defined, so we handle them here.  The others
238        # can be set later too, so just emulate that by calling
239        # setattr().
240        for key,val in cls._value_dict.items():
241            # param descriptions
242            if isinstance(val, ParamDesc):
243                cls._new_param(key, val)
244
245            # port objects
246            elif isinstance(val, Port):
247                cls._new_port(key, val)
248
249            # init-time-only keywords
250            elif cls.init_keywords.has_key(key):
251                cls._set_keyword(key, val, cls.init_keywords[key])
252
253            # default: use normal path (ends up in __setattr__)
254            else:
255                setattr(cls, key, val)
256
257    def _set_keyword(cls, keyword, val, kwtype):
258        if not isinstance(val, kwtype):
259            raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
260                  (keyword, type(val), kwtype)
261        if isinstance(val, FunctionType):
262            val = classmethod(val)
263        type.__setattr__(cls, keyword, val)
264
265    def _new_param(cls, name, pdesc):
266        # each param desc should be uniquely assigned to one variable
267        assert(not hasattr(pdesc, 'name'))
268        pdesc.name = name
269        cls._params[name] = pdesc
270        if hasattr(pdesc, 'default'):
271            cls._set_param(name, pdesc.default, pdesc)
272
273    def _set_param(cls, name, value, param):
274        assert(param.name == name)
275        try:
276            value = param.convert(value)
277        except Exception, e:
278            msg = "%s\nError setting param %s.%s to %s\n" % \
279                  (e, cls.__name__, name, value)
280            e.args = (msg, )
281            raise
282        cls._values[name] = value
283        # if param value is a SimObject, make it a child too, so that
284        # it gets cloned properly when the class is instantiated
285        if isSimObjectOrVector(value) and not value.has_parent():
286            cls._add_cls_child(name, value)
287
288    def _add_cls_child(cls, name, child):
289        # It's a little funky to have a class as a parent, but these
290        # objects should never be instantiated (only cloned, which
291        # clears the parent pointer), and this makes it clear that the
292        # object is not an orphan and can provide better error
293        # messages.
294        child.set_parent(cls, name)
295        cls._children[name] = child
296
297    def _new_port(cls, name, port):
298        # each port should be uniquely assigned to one variable
299        assert(not hasattr(port, 'name'))
300        port.name = name
301        cls._ports[name] = port
302
303    # same as _get_port_ref, effectively, but for classes
304    def _cls_get_port_ref(cls, attr):
305        # Return reference that can be assigned to another port
306        # via __setattr__.  There is only ever one reference
307        # object per port, but we create them lazily here.
308        ref = cls._port_refs.get(attr)
309        if not ref:
310            ref = cls._ports[attr].makeRef(cls)
311            cls._port_refs[attr] = ref
312        return ref
313
314    # Set attribute (called on foo.attr = value when foo is an
315    # instance of class cls).
316    def __setattr__(cls, attr, value):
317        # normal processing for private attributes
318        if public_value(attr, value):
319            type.__setattr__(cls, attr, value)
320            return
321
322        if cls.keywords.has_key(attr):
323            cls._set_keyword(attr, value, cls.keywords[attr])
324            return
325
326        if cls._ports.has_key(attr):
327            cls._cls_get_port_ref(attr).connect(value)
328            return
329
330        if isSimObjectOrSequence(value) and cls._instantiated:
331            raise RuntimeError, \
332                  "cannot set SimObject parameter '%s' after\n" \
333                  "    class %s has been instantiated or subclassed" \
334                  % (attr, cls.__name__)
335
336        # check for param
337        param = cls._params.get(attr)
338        if param:
339            cls._set_param(attr, value, param)
340            return
341
342        if isSimObjectOrSequence(value):
343            # If RHS is a SimObject, it's an implicit child assignment.
344            cls._add_cls_child(attr, coerceSimObjectOrVector(value))
345            return
346
347        # no valid assignment... raise exception
348        raise AttributeError, \
349              "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
350
351    def __getattr__(cls, attr):
352        if attr == 'cxx_class_path':
353            return cls.cxx_class.split('::')
354
355        if attr == 'cxx_class_name':
356            return cls.cxx_class_path[-1]
357
358        if attr == 'cxx_namespaces':
359            return cls.cxx_class_path[:-1]
360
361        if cls._values.has_key(attr):
362            return cls._values[attr]
363
364        if cls._children.has_key(attr):
365            return cls._children[attr]
366
367        raise AttributeError, \
368              "object '%s' has no attribute '%s'" % (cls.__name__, attr)
369
370    def __str__(cls):
371        return cls.__name__
372
373    # See ParamValue.cxx_predecls for description.
374    def cxx_predecls(cls, code):
375        code('#include "params/$cls.hh"')
376
377    # See ParamValue.swig_predecls for description.
378    def swig_predecls(cls, code):
379        code('%import "python/m5/internal/param_$cls.i"')
380
381    # Hook for exporting additional C++ methods to Python via SWIG.
382    # Default is none, override using @classmethod in class definition.
383    def export_methods(cls, code):
384        pass
385
386    # Generate the code needed as a prerequisite for the C++ methods
387    # exported via export_methods() to be compiled in the _wrap.cc
388    # file.  Typically generates one or more #include statements.  If
389    # any methods are exported, typically at least the C++ header
390    # declaring the relevant SimObject class must be included.
391    def export_method_cxx_predecls(cls, code):
392        pass
393
394    # Generate the code needed as a prerequisite for the C++ methods
395    # exported via export_methods() to be processed by SWIG.
396    # Typically generates one or more %include or %import statements.
397    # If any methods are exported, typically at least the C++ header
398    # declaring the relevant SimObject class must be included.
399    def export_method_swig_predecls(cls, code):
400        pass
401
402    # Generate the declaration for this object for wrapping with SWIG.
403    # Generates code that goes into a SWIG .i file.  Called from
404    # src/SConscript.
405    def swig_decl(cls, code):
406        class_path = cls.cxx_class.split('::')
407        classname = class_path[-1]
408        namespaces = class_path[:-1]
409
410        # The 'local' attribute restricts us to the params declared in
411        # the object itself, not including inherited params (which
412        # will also be inherited from the base class's param struct
413        # here).
414        params = cls._params.local.values()
415        ports = cls._ports.local
416
417        code('%module(package="m5.internal") param_$cls')
418        code()
419        code('%{')
420        code('#include "sim/sim_object.hh"')
421        code('#include "params/$cls.hh"')
422        for param in params:
423            param.cxx_predecls(code)
424        code('#include "${{cls.cxx_header}}"')
425        cls.export_method_cxx_predecls(code)
426        code('''\
427/**
428  * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
429  * headers like vector, string, etc. used to automatically pull in
430  * the cstddef header but starting with gcc 4.6.1 they no longer do.
431  * This leads to swig generated a file that does not compile so we
432  * explicitly include cstddef. Additionally, including version 2.0.4,
433  * swig uses ptrdiff_t without the std:: namespace prefix which is
434  * required with gcc 4.6.1. We explicitly provide access to it.
435  */
436#include <cstddef>
437using std::ptrdiff_t;
438''')
439        code('%}')
440        code()
441
442        for param in params:
443            param.swig_predecls(code)
444        cls.export_method_swig_predecls(code)
445
446        code()
447        if cls._base:
448            code('%import "python/m5/internal/param_${{cls._base}}.i"')
449        code()
450
451        for ns in namespaces:
452            code('namespace $ns {')
453
454        if namespaces:
455            code('// avoid name conflicts')
456            sep_string = '_COLONS_'
457            flat_name = sep_string.join(class_path)
458            code('%rename($flat_name) $classname;')
459
460        code()
461        code('// stop swig from creating/wrapping default ctor/dtor')
462        code('%nodefault $classname;')
463        code('class $classname')
464        if cls._base:
465            bases = [ cls._base.cxx_class ] + cls.cxx_bases
466        else:
467            bases = cls.cxx_bases
468        base_first = True
469        for base in bases:
470            if base_first:
471                code('    : public ${{base}}')
472                base_first = False
473            else:
474                code('    , public ${{base}}')
475
476        code('{')
477        code('  public:')
478        cls.export_methods(code)
479        code('};')
480
481        for ns in reversed(namespaces):
482            code('} // namespace $ns')
483
484        code()
485        code('%include "params/$cls.hh"')
486
487
488    # Generate the C++ declaration (.hh file) for this SimObject's
489    # param struct.  Called from src/SConscript.
490    def cxx_param_decl(cls, code):
491        # The 'local' attribute restricts us to the params declared in
492        # the object itself, not including inherited params (which
493        # will also be inherited from the base class's param struct
494        # here).
495        params = cls._params.local.values()
496        ports = cls._ports.local
497        try:
498            ptypes = [p.ptype for p in params]
499        except:
500            print cls, p, p.ptype_str
501            print params
502            raise
503
504        class_path = cls._value_dict['cxx_class'].split('::')
505
506        code('''\
507#ifndef __PARAMS__${cls}__
508#define __PARAMS__${cls}__
509
510''')
511
512        # A forward class declaration is sufficient since we are just
513        # declaring a pointer.
514        for ns in class_path[:-1]:
515            code('namespace $ns {')
516        code('class $0;', class_path[-1])
517        for ns in reversed(class_path[:-1]):
518            code('} // namespace $ns')
519        code()
520
521        # The base SimObject has a couple of params that get
522        # automatically set from Python without being declared through
523        # the normal Param mechanism; we slip them in here (needed
524        # predecls now, actual declarations below)
525        if cls == SimObject:
526            code('''
527#ifndef PY_VERSION
528struct PyObject;
529#endif
530
531#include <string>
532''')
533        for param in params:
534            param.cxx_predecls(code)
535        for port in ports.itervalues():
536            port.cxx_predecls(code)
537        code()
538
539        if cls._base:
540            code('#include "params/${{cls._base.type}}.hh"')
541            code()
542
543        for ptype in ptypes:
544            if issubclass(ptype, Enum):
545                code('#include "enums/${{ptype.__name__}}.hh"')
546                code()
547
548        # now generate the actual param struct
549        code("struct ${cls}Params")
550        if cls._base:
551            code("    : public ${{cls._base.type}}Params")
552        code("{")
553        if not hasattr(cls, 'abstract') or not cls.abstract:
554            if 'type' in cls.__dict__:
555                code("    ${{cls.cxx_type}} create();")
556
557        code.indent()
558        if cls == SimObject:
559            code('''
560    SimObjectParams() {}
561    virtual ~SimObjectParams() {}
562
563    std::string name;
564    PyObject *pyobj;
565            ''')
566        for param in params:
567            param.cxx_decl(code)
568        for port in ports.itervalues():
569            port.cxx_decl(code)
570
571        code.dedent()
572        code('};')
573
574        code()
575        code('#endif // __PARAMS__${cls}__')
576        return code
577
578
579# This *temporary* definition is required to support calls from the
580# SimObject class definition to the MetaSimObject methods (in
581# particular _set_param, which gets called for parameters with default
582# values defined on the SimObject class itself).  It will get
583# overridden by the permanent definition (which requires that
584# SimObject be defined) lower in this file.
585def isSimObjectOrVector(value):
586    return False
587
588# The SimObject class is the root of the special hierarchy.  Most of
589# the code in this class deals with the configuration hierarchy itself
590# (parent/child node relationships).
591class SimObject(object):
592    # Specify metaclass.  Any class inheriting from SimObject will
593    # get this metaclass.
594    __metaclass__ = MetaSimObject
595    type = 'SimObject'
596    abstract = True
597
598    cxx_header = "sim/sim_object.hh"
599    cxx_bases = [ "Drainable", "Serializable" ]
600    eventq_index = Param.UInt32(Parent.eventq_index, "Event Queue Index")
601
602    @classmethod
603    def export_method_swig_predecls(cls, code):
604        code('''
605%include <std_string.i>
606
607%import "python/swig/drain.i"
608%import "python/swig/serialize.i"
609''')
610
611    @classmethod
612    def export_methods(cls, code):
613        code('''
614    void init();
615    void loadState(Checkpoint *cp);
616    void initState();
617    void regStats();
618    void resetStats();
619    void startup();
620''')
621
622    # Initialize new instance.  For objects with SimObject-valued
623    # children, we need to recursively clone the classes represented
624    # by those param values as well in a consistent "deep copy"-style
625    # fashion.  That is, we want to make sure that each instance is
626    # cloned only once, and that if there are multiple references to
627    # the same original object, we end up with the corresponding
628    # cloned references all pointing to the same cloned instance.
629    def __init__(self, **kwargs):
630        ancestor = kwargs.get('_ancestor')
631        memo_dict = kwargs.get('_memo')
632        if memo_dict is None:
633            # prepare to memoize any recursively instantiated objects
634            memo_dict = {}
635        elif ancestor:
636            # memoize me now to avoid problems with recursive calls
637            memo_dict[ancestor] = self
638
639        if not ancestor:
640            ancestor = self.__class__
641        ancestor._instantiated = True
642
643        # initialize required attributes
644        self._parent = None
645        self._name = None
646        self._ccObject = None  # pointer to C++ object
647        self._ccParams = None
648        self._instantiated = False # really "cloned"
649
650        # Clone children specified at class level.  No need for a
651        # multidict here since we will be cloning everything.
652        # Do children before parameter values so that children that
653        # are also param values get cloned properly.
654        self._children = {}
655        for key,val in ancestor._children.iteritems():
656            self.add_child(key, val(_memo=memo_dict))
657
658        # Inherit parameter values from class using multidict so
659        # individual value settings can be overridden but we still
660        # inherit late changes to non-overridden class values.
661        self._values = multidict(ancestor._values)
662        # clone SimObject-valued parameters
663        for key,val in ancestor._values.iteritems():
664            val = tryAsSimObjectOrVector(val)
665            if val is not None:
666                self._values[key] = val(_memo=memo_dict)
667
668        # clone port references.  no need to use a multidict here
669        # since we will be creating new references for all ports.
670        self._port_refs = {}
671        for key,val in ancestor._port_refs.iteritems():
672            self._port_refs[key] = val.clone(self, memo_dict)
673        # apply attribute assignments from keyword args, if any
674        for key,val in kwargs.iteritems():
675            setattr(self, key, val)
676
677    # "Clone" the current instance by creating another instance of
678    # this instance's class, but that inherits its parameter values
679    # and port mappings from the current instance.  If we're in a
680    # "deep copy" recursive clone, check the _memo dict to see if
681    # we've already cloned this instance.
682    def __call__(self, **kwargs):
683        memo_dict = kwargs.get('_memo')
684        if memo_dict is None:
685            # no memo_dict: must be top-level clone operation.
686            # this is only allowed at the root of a hierarchy
687            if self._parent:
688                raise RuntimeError, "attempt to clone object %s " \
689                      "not at the root of a tree (parent = %s)" \
690                      % (self, self._parent)
691            # create a new dict and use that.
692            memo_dict = {}
693            kwargs['_memo'] = memo_dict
694        elif memo_dict.has_key(self):
695            # clone already done & memoized
696            return memo_dict[self]
697        return self.__class__(_ancestor = self, **kwargs)
698
699    def _get_port_ref(self, attr):
700        # Return reference that can be assigned to another port
701        # via __setattr__.  There is only ever one reference
702        # object per port, but we create them lazily here.
703        ref = self._port_refs.get(attr)
704        if ref == None:
705            ref = self._ports[attr].makeRef(self)
706            self._port_refs[attr] = ref
707        return ref
708
709    def __getattr__(self, attr):
710        if self._ports.has_key(attr):
711            return self._get_port_ref(attr)
712
713        if self._values.has_key(attr):
714            return self._values[attr]
715
716        if self._children.has_key(attr):
717            return self._children[attr]
718
719        # If the attribute exists on the C++ object, transparently
720        # forward the reference there.  This is typically used for
721        # SWIG-wrapped methods such as init(), regStats(),
722        # resetStats(), startup(), drain(), and
723        # resume().
724        if self._ccObject and hasattr(self._ccObject, attr):
725            return getattr(self._ccObject, attr)
726
727        raise AttributeError, "object '%s' has no attribute '%s'" \
728              % (self.__class__.__name__, attr)
729
730    # Set attribute (called on foo.attr = value when foo is an
731    # instance of class cls).
732    def __setattr__(self, attr, value):
733        # normal processing for private attributes
734        if attr.startswith('_'):
735            object.__setattr__(self, attr, value)
736            return
737
738        if self._ports.has_key(attr):
739            # set up port connection
740            self._get_port_ref(attr).connect(value)
741            return
742
743        if isSimObjectOrSequence(value) and self._instantiated:
744            raise RuntimeError, \
745                  "cannot set SimObject parameter '%s' after\n" \
746                  "    instance been cloned %s" % (attr, `self`)
747
748        param = self._params.get(attr)
749        if param:
750            try:
751                value = param.convert(value)
752            except Exception, e:
753                msg = "%s\nError setting param %s.%s to %s\n" % \
754                      (e, self.__class__.__name__, attr, value)
755                e.args = (msg, )
756                raise
757            self._values[attr] = value
758            # implicitly parent unparented objects assigned as params
759            if isSimObjectOrVector(value) and not value.has_parent():
760                self.add_child(attr, value)
761            return
762
763        # if RHS is a SimObject, it's an implicit child assignment
764        if isSimObjectOrSequence(value):
765            self.add_child(attr, value)
766            return
767
768        # no valid assignment... raise exception
769        raise AttributeError, "Class %s has no parameter %s" \
770              % (self.__class__.__name__, attr)
771
772
773    # this hack allows tacking a '[0]' onto parameters that may or may
774    # not be vectors, and always getting the first element (e.g. cpus)
775    def __getitem__(self, key):
776        if key == 0:
777            return self
778        raise TypeError, "Non-zero index '%s' to SimObject" % key
779
780    # Also implemented by SimObjectVector
781    def clear_parent(self, old_parent):
782        assert self._parent is old_parent
783        self._parent = None
784
785    # Also implemented by SimObjectVector
786    def set_parent(self, parent, name):
787        self._parent = parent
788        self._name = name
789
790    # Return parent object of this SimObject, not implemented by SimObjectVector
791    # because the elements in a SimObjectVector may not share the same parent
792    def get_parent(self):
793        return self._parent
794
795    # Also implemented by SimObjectVector
796    def get_name(self):
797        return self._name
798
799    # Also implemented by SimObjectVector
800    def has_parent(self):
801        return self._parent is not None
802
803    # clear out child with given name. This code is not likely to be exercised.
804    # See comment in add_child.
805    def clear_child(self, name):
806        child = self._children[name]
807        child.clear_parent(self)
808        del self._children[name]
809
810    # Add a new child to this object.
811    def add_child(self, name, child):
812        child = coerceSimObjectOrVector(child)
813        if child.has_parent():
814            warn("add_child('%s'): child '%s' already has parent", name,
815                child.get_name())
816        if self._children.has_key(name):
817            # This code path had an undiscovered bug that would make it fail
818            # at runtime. It had been here for a long time and was only
819            # exposed by a buggy script. Changes here will probably not be
820            # exercised without specialized testing.
821            self.clear_child(name)
822        child.set_parent(self, name)
823        self._children[name] = child
824
825    # Take SimObject-valued parameters that haven't been explicitly
826    # assigned as children and make them children of the object that
827    # they were assigned to as a parameter value.  This guarantees
828    # that when we instantiate all the parameter objects we're still
829    # inside the configuration hierarchy.
830    def adoptOrphanParams(self):
831        for key,val in self._values.iteritems():
832            if not isSimObjectVector(val) and isSimObjectSequence(val):
833                # need to convert raw SimObject sequences to
834                # SimObjectVector class so we can call has_parent()
835                val = SimObjectVector(val)
836                self._values[key] = val
837            if isSimObjectOrVector(val) and not val.has_parent():
838                warn("%s adopting orphan SimObject param '%s'", self, key)
839                self.add_child(key, val)
840
841    def path(self):
842        if not self._parent:
843            return '<orphan %s>' % self.__class__
844        ppath = self._parent.path()
845        if ppath == 'root':
846            return self._name
847        return ppath + "." + self._name
848
849    def __str__(self):
850        return self.path()
851
852    def ini_str(self):
853        return self.path()
854
855    def find_any(self, ptype):
856        if isinstance(self, ptype):
857            return self, True
858
859        found_obj = None
860        for child in self._children.itervalues():
861            if isinstance(child, ptype):
862                if found_obj != None and child != found_obj:
863                    raise AttributeError, \
864                          'parent.any matched more than one: %s %s' % \
865                          (found_obj.path, child.path)
866                found_obj = child
867        # search param space
868        for pname,pdesc in self._params.iteritems():
869            if issubclass(pdesc.ptype, ptype):
870                match_obj = self._values[pname]
871                if found_obj != None and found_obj != match_obj:
872                    raise AttributeError, \
873                          'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
874                found_obj = match_obj
875        return found_obj, found_obj != None
876
877    def find_all(self, ptype):
878        all = {}
879        # search children
880        for child in self._children.itervalues():
881            # a child could be a list, so ensure we visit each item
882            if isinstance(child, list):
883                children = child
884            else:
885                children = [child]
886
887            for child in children:
888                if isinstance(child, ptype) and not isproxy(child) and \
889                        not isNullPointer(child):
890                    all[child] = True
891                if isSimObject(child):
892                    # also add results from the child itself
893                    child_all, done = child.find_all(ptype)
894                    all.update(dict(zip(child_all, [done] * len(child_all))))
895        # search param space
896        for pname,pdesc in self._params.iteritems():
897            if issubclass(pdesc.ptype, ptype):
898                match_obj = self._values[pname]
899                if not isproxy(match_obj) and not isNullPointer(match_obj):
900                    all[match_obj] = True
901        return all.keys(), True
902
903    def unproxy(self, base):
904        return self
905
906    def unproxyParams(self):
907        for param in self._params.iterkeys():
908            value = self._values.get(param)
909            if value != None and isproxy(value):
910                try:
911                    value = value.unproxy(self)
912                except:
913                    print "Error in unproxying param '%s' of %s" % \
914                          (param, self.path())
915                    raise
916                setattr(self, param, value)
917
918        # Unproxy ports in sorted order so that 'append' operations on
919        # vector ports are done in a deterministic fashion.
920        port_names = self._ports.keys()
921        port_names.sort()
922        for port_name in port_names:
923            port = self._port_refs.get(port_name)
924            if port != None:
925                port.unproxy(self)
926
927    def print_ini(self, ini_file):
928        print >>ini_file, '[' + self.path() + ']'       # .ini section header
929
930        instanceDict[self.path()] = self
931
932        if hasattr(self, 'type'):
933            print >>ini_file, 'type=%s' % self.type
934
935        if len(self._children.keys()):
936            print >>ini_file, 'children=%s' % \
937                  ' '.join(self._children[n].get_name() \
938                  for n in sorted(self._children.keys()))
939
940        for param in sorted(self._params.keys()):
941            value = self._values.get(param)
942            if value != None:
943                print >>ini_file, '%s=%s' % (param,
944                                             self._values[param].ini_str())
945
946        for port_name in sorted(self._ports.keys()):
947            port = self._port_refs.get(port_name, None)
948            if port != None:
949                print >>ini_file, '%s=%s' % (port_name, port.ini_str())
950
951        print >>ini_file        # blank line between objects
952
953    # generate a tree of dictionaries expressing all the parameters in the
954    # instantiated system for use by scripts that want to do power, thermal
955    # visualization, and other similar tasks
956    def get_config_as_dict(self):
957        d = attrdict()
958        if hasattr(self, 'type'):
959            d.type = self.type
960        if hasattr(self, 'cxx_class'):
961            d.cxx_class = self.cxx_class
962        # Add the name and path of this object to be able to link to
963        # the stats
964        d.name = self.get_name()
965        d.path = self.path()
966
967        for param in sorted(self._params.keys()):
968            value = self._values.get(param)
969            if value != None:
970                try:
971                    # Use native type for those supported by JSON and
972                    # strings for everything else. skipkeys=True seems
973                    # to not work as well as one would hope
974                    if type(self._values[param].value) in \
975                            [str, unicode, int, long, float, bool, None]:
976                        d[param] = self._values[param].value
977                    else:
978                        d[param] = str(self._values[param])
979
980                except AttributeError:
981                    pass
982
983        for n in sorted(self._children.keys()):
984            child = self._children[n]
985            # Use the name of the attribute (and not get_name()) as
986            # the key in the JSON dictionary to capture the hierarchy
987            # in the Python code that assembled this system
988            d[n] = child.get_config_as_dict()
989
990        for port_name in sorted(self._ports.keys()):
991            port = self._port_refs.get(port_name, None)
992            if port != None:
993                # Represent each port with a dictionary containing the
994                # prominent attributes
995                d[port_name] = port.get_config_as_dict()
996
997        return d
998
999    def getCCParams(self):
1000        if self._ccParams:
1001            return self._ccParams
1002
1003        cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
1004        cc_params = cc_params_struct()
1005        cc_params.pyobj = self
1006        cc_params.name = str(self)
1007
1008        param_names = self._params.keys()
1009        param_names.sort()
1010        for param in param_names:
1011            value = self._values.get(param)
1012            if value is None:
1013                fatal("%s.%s without default or user set value",
1014                      self.path(), param)
1015
1016            value = value.getValue()
1017            if isinstance(self._params[param], VectorParamDesc):
1018                assert isinstance(value, list)
1019                vec = getattr(cc_params, param)
1020                assert not len(vec)
1021                for v in value:
1022                    vec.append(v)
1023            else:
1024                setattr(cc_params, param, value)
1025
1026        port_names = self._ports.keys()
1027        port_names.sort()
1028        for port_name in port_names:
1029            port = self._port_refs.get(port_name, None)
1030            if port != None:
1031                port_count = len(port)
1032            else:
1033                port_count = 0
1034            setattr(cc_params, 'port_' + port_name + '_connection_count',
1035                    port_count)
1036        self._ccParams = cc_params
1037        return self._ccParams
1038
1039    # Get C++ object corresponding to this object, calling C++ if
1040    # necessary to construct it.  Does *not* recursively create
1041    # children.
1042    def getCCObject(self):
1043        if not self._ccObject:
1044            # Make sure this object is in the configuration hierarchy
1045            if not self._parent and not isRoot(self):
1046                raise RuntimeError, "Attempt to instantiate orphan node"
1047            # Cycles in the configuration hierarchy are not supported. This
1048            # will catch the resulting recursion and stop.
1049            self._ccObject = -1
1050            params = self.getCCParams()
1051            self._ccObject = params.create()
1052        elif self._ccObject == -1:
1053            raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1054                  % self.path()
1055        return self._ccObject
1056
1057    def descendants(self):
1058        yield self
1059        for child in self._children.itervalues():
1060            for obj in child.descendants():
1061                yield obj
1062
1063    # Call C++ to create C++ object corresponding to this object
1064    def createCCObject(self):
1065        self.getCCParams()
1066        self.getCCObject() # force creation
1067
1068    def getValue(self):
1069        return self.getCCObject()
1070
1071    # Create C++ port connections corresponding to the connections in
1072    # _port_refs
1073    def connectPorts(self):
1074        for portRef in self._port_refs.itervalues():
1075            portRef.ccConnect()
1076
1077# Function to provide to C++ so it can look up instances based on paths
1078def resolveSimObject(name):
1079    obj = instanceDict[name]
1080    return obj.getCCObject()
1081
1082def isSimObject(value):
1083    return isinstance(value, SimObject)
1084
1085def isSimObjectClass(value):
1086    return issubclass(value, SimObject)
1087
1088def isSimObjectVector(value):
1089    return isinstance(value, SimObjectVector)
1090
1091def isSimObjectSequence(value):
1092    if not isinstance(value, (list, tuple)) or len(value) == 0:
1093        return False
1094
1095    for val in value:
1096        if not isNullPointer(val) and not isSimObject(val):
1097            return False
1098
1099    return True
1100
1101def isSimObjectOrSequence(value):
1102    return isSimObject(value) or isSimObjectSequence(value)
1103
1104def isRoot(obj):
1105    from m5.objects import Root
1106    return obj and obj is Root.getInstance()
1107
1108def isSimObjectOrVector(value):
1109    return isSimObject(value) or isSimObjectVector(value)
1110
1111def tryAsSimObjectOrVector(value):
1112    if isSimObjectOrVector(value):
1113        return value
1114    if isSimObjectSequence(value):
1115        return SimObjectVector(value)
1116    return None
1117
1118def coerceSimObjectOrVector(value):
1119    value = tryAsSimObjectOrVector(value)
1120    if value is None:
1121        raise TypeError, "SimObject or SimObjectVector expected"
1122    return value
1123
1124baseClasses = allClasses.copy()
1125baseInstances = instanceDict.copy()
1126
1127def clear():
1128    global allClasses, instanceDict, noCxxHeader
1129
1130    allClasses = baseClasses.copy()
1131    instanceDict = baseInstances.copy()
1132    noCxxHeader = False
1133
1134# __all__ defines the list of symbols that get exported when
1135# 'from config import *' is invoked.  Try to keep this reasonably
1136# short to avoid polluting other namespaces.
1137__all__ = [ 'SimObject' ]
1138