SimObject.py revision 9940
18257SN/A# Copyright (c) 2012 ARM Limited
28257SN/A# All rights reserved.
38257SN/A#
48257SN/A# The license below extends only to copyright in the software and shall
58257SN/A# not be construed as granting a license to any other intellectual
68257SN/A# property including but not limited to intellectual property relating
78257SN/A# to a hardware implementation of the functionality of the software
88257SN/A# licensed hereunder.  You may use the software subject to the license
98257SN/A# terms below provided that you ensure that this notice is replicated
108257SN/A# unmodified and in its entirety in all distributions of the software,
118257SN/A# modified or unmodified, in source code or in binary form.
128257SN/A#
138257SN/A# Copyright (c) 2004-2006 The Regents of The University of Michigan
148257SN/A# Copyright (c) 2010 Advanced Micro Devices, Inc.
158257SN/A# All rights reserved.
168257SN/A#
178257SN/A# Redistribution and use in source and binary forms, with or without
188257SN/A# modification, are permitted provided that the following conditions are
198257SN/A# met: redistributions of source code must retain the above copyright
208257SN/A# notice, this list of conditions and the following disclaimer;
218257SN/A# redistributions in binary form must reproduce the above copyright
228257SN/A# notice, this list of conditions and the following disclaimer in the
238257SN/A# documentation and/or other materials provided with the distribution;
248257SN/A# neither the name of the copyright holders nor the names of its
258257SN/A# contributors may be used to endorse or promote products derived from
268257SN/A# this software without specific prior written permission.
278257SN/A#
288257SN/A# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
298257SN/A# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
308257SN/A# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
318258SBrad.Beckmann@amd.com# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
328257SN/A# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
338258SBrad.Beckmann@amd.com# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
348257SN/A# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
358258SBrad.Beckmann@amd.com# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
368258SBrad.Beckmann@amd.com# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
378257SN/A# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
388258SBrad.Beckmann@amd.com# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
398258SBrad.Beckmann@amd.com#
40# Authors: Steve Reinhardt
41#          Nathan Binkert
42#          Andreas Hansson
43
44import sys
45from types import FunctionType, MethodType, ModuleType
46
47import m5
48from m5.util import *
49
50# Have to import params up top since Param is referenced on initial
51# load (when SimObject class references Param to create a class
52# variable, the 'name' param)...
53from m5.params import *
54# There are a few things we need that aren't in params.__all__ since
55# normal users don't need them
56from m5.params import ParamDesc, VectorParamDesc, \
57     isNullPointer, SimObjectVector, Port
58
59from m5.proxy import *
60from m5.proxy import isproxy
61
62#####################################################################
63#
64# M5 Python Configuration Utility
65#
66# The basic idea is to write simple Python programs that build Python
67# objects corresponding to M5 SimObjects for the desired simulation
68# configuration.  For now, the Python emits a .ini file that can be
69# parsed by M5.  In the future, some tighter integration between M5
70# and the Python interpreter may allow bypassing the .ini file.
71#
72# Each SimObject class in M5 is represented by a Python class with the
73# same name.  The Python inheritance tree mirrors the M5 C++ tree
74# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
75# SimObjects inherit from a single SimObject base class).  To specify
76# an instance of an M5 SimObject in a configuration, the user simply
77# instantiates the corresponding Python object.  The parameters for
78# that SimObject are given by assigning to attributes of the Python
79# object, either using keyword assignment in the constructor or in
80# separate assignment statements.  For example:
81#
82# cache = BaseCache(size='64KB')
83# cache.hit_latency = 3
84# cache.assoc = 8
85#
86# The magic lies in the mapping of the Python attributes for SimObject
87# classes to the actual SimObject parameter specifications.  This
88# allows parameter validity checking in the Python code.  Continuing
89# the example above, the statements "cache.blurfl=3" or
90# "cache.assoc='hello'" would both result in runtime errors in Python,
91# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
92# parameter requires an integer, respectively.  This magic is done
93# primarily by overriding the special __setattr__ method that controls
94# assignment to object attributes.
95#
96# Once a set of Python objects have been instantiated in a hierarchy,
97# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
98# will generate a .ini file.
99#
100#####################################################################
101
102# list of all SimObject classes
103allClasses = {}
104
105# dict to look up SimObjects based on path
106instanceDict = {}
107
108# Did any of the SimObjects lack a header file?
109noCxxHeader = False
110
111def public_value(key, value):
112    return key.startswith('_') or \
113               isinstance(value, (FunctionType, MethodType, ModuleType,
114                                  classmethod, type))
115
116# The metaclass for SimObject.  This class controls how new classes
117# that derive from SimObject are instantiated, and provides inherited
118# class behavior (just like a class controls how instances of that
119# class are instantiated, and provides inherited instance behavior).
120class MetaSimObject(type):
121    # Attributes that can be set only at initialization time
122    init_keywords = { 'abstract' : bool,
123                      'cxx_class' : str,
124                      'cxx_type' : str,
125                      'cxx_header' : str,
126                      'type' : str,
127                      'cxx_bases' : list }
128    # Attributes that can be set any time
129    keywords = { 'check' : FunctionType }
130
131    # __new__ is called before __init__, and is where the statements
132    # in the body of the class definition get loaded into the class's
133    # __dict__.  We intercept this to filter out parameter & port assignments
134    # and only allow "private" attributes to be passed to the base
135    # __new__ (starting with underscore).
136    def __new__(mcls, name, bases, dict):
137        assert name not in allClasses, "SimObject %s already present" % name
138
139        # Copy "private" attributes, functions, and classes to the
140        # official dict.  Everything else goes in _init_dict to be
141        # filtered in __init__.
142        cls_dict = {}
143        value_dict = {}
144        for key,val in dict.items():
145            if public_value(key, val):
146                cls_dict[key] = val
147            else:
148                # must be a param/port setting
149                value_dict[key] = val
150        if 'abstract' not in value_dict:
151            value_dict['abstract'] = False
152        if 'cxx_bases' not in value_dict:
153            value_dict['cxx_bases'] = []
154        cls_dict['_value_dict'] = value_dict
155        cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
156        if 'type' in value_dict:
157            allClasses[name] = cls
158        return cls
159
160    # subclass initialization
161    def __init__(cls, name, bases, dict):
162        # calls type.__init__()... I think that's a no-op, but leave
163        # it here just in case it's not.
164        super(MetaSimObject, cls).__init__(name, bases, dict)
165
166        # initialize required attributes
167
168        # class-only attributes
169        cls._params = multidict() # param descriptions
170        cls._ports = multidict()  # port descriptions
171
172        # class or instance attributes
173        cls._values = multidict()   # param values
174        cls._children = multidict() # SimObject children
175        cls._port_refs = multidict() # port ref objects
176        cls._instantiated = False # really instantiated, cloned, or subclassed
177
178        # We don't support multiple inheritance of sim objects.  If you want
179        # to, you must fix multidict to deal with it properly. Non sim-objects
180        # are ok, though
181        bTotal = 0
182        for c in bases:
183            if isinstance(c, MetaSimObject):
184                bTotal += 1
185            if bTotal > 1:
186                raise TypeError, "SimObjects do not support multiple inheritance"
187
188        base = bases[0]
189
190        # Set up general inheritance via multidicts.  A subclass will
191        # inherit all its settings from the base class.  The only time
192        # the following is not true is when we define the SimObject
193        # class itself (in which case the multidicts have no parent).
194        if isinstance(base, MetaSimObject):
195            cls._base = base
196            cls._params.parent = base._params
197            cls._ports.parent = base._ports
198            cls._values.parent = base._values
199            cls._children.parent = base._children
200            cls._port_refs.parent = base._port_refs
201            # mark base as having been subclassed
202            base._instantiated = True
203        else:
204            cls._base = None
205
206        # default keyword values
207        if 'type' in cls._value_dict:
208            if 'cxx_class' not in cls._value_dict:
209                cls._value_dict['cxx_class'] = cls._value_dict['type']
210
211            cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
212
213            if 'cxx_header' not in cls._value_dict:
214                global noCxxHeader
215                noCxxHeader = True
216                warn("No header file specified for SimObject: %s", name)
217
218        # Export methods are automatically inherited via C++, so we
219        # don't want the method declarations to get inherited on the
220        # python side (and thus end up getting repeated in the wrapped
221        # versions of derived classes).  The code below basicallly
222        # suppresses inheritance by substituting in the base (null)
223        # versions of these methods unless a different version is
224        # explicitly supplied.
225        for method_name in ('export_methods', 'export_method_cxx_predecls',
226                            'export_method_swig_predecls'):
227            if method_name not in cls.__dict__:
228                base_method = getattr(MetaSimObject, method_name)
229                m = MethodType(base_method, cls, MetaSimObject)
230                setattr(cls, method_name, m)
231
232        # Now process the _value_dict items.  They could be defining
233        # new (or overriding existing) parameters or ports, setting
234        # class keywords (e.g., 'abstract'), or setting parameter
235        # values or port bindings.  The first 3 can only be set when
236        # the class is defined, so we handle them here.  The others
237        # can be set later too, so just emulate that by calling
238        # setattr().
239        for key,val in cls._value_dict.items():
240            # param descriptions
241            if isinstance(val, ParamDesc):
242                cls._new_param(key, val)
243
244            # port objects
245            elif isinstance(val, Port):
246                cls._new_port(key, val)
247
248            # init-time-only keywords
249            elif cls.init_keywords.has_key(key):
250                cls._set_keyword(key, val, cls.init_keywords[key])
251
252            # default: use normal path (ends up in __setattr__)
253            else:
254                setattr(cls, key, val)
255
256    def _set_keyword(cls, keyword, val, kwtype):
257        if not isinstance(val, kwtype):
258            raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
259                  (keyword, type(val), kwtype)
260        if isinstance(val, FunctionType):
261            val = classmethod(val)
262        type.__setattr__(cls, keyword, val)
263
264    def _new_param(cls, name, pdesc):
265        # each param desc should be uniquely assigned to one variable
266        assert(not hasattr(pdesc, 'name'))
267        pdesc.name = name
268        cls._params[name] = pdesc
269        if hasattr(pdesc, 'default'):
270            cls._set_param(name, pdesc.default, pdesc)
271
272    def _set_param(cls, name, value, param):
273        assert(param.name == name)
274        try:
275            value = param.convert(value)
276        except Exception, e:
277            msg = "%s\nError setting param %s.%s to %s\n" % \
278                  (e, cls.__name__, name, value)
279            e.args = (msg, )
280            raise
281        cls._values[name] = value
282        # if param value is a SimObject, make it a child too, so that
283        # it gets cloned properly when the class is instantiated
284        if isSimObjectOrVector(value) and not value.has_parent():
285            cls._add_cls_child(name, value)
286
287    def _add_cls_child(cls, name, child):
288        # It's a little funky to have a class as a parent, but these
289        # objects should never be instantiated (only cloned, which
290        # clears the parent pointer), and this makes it clear that the
291        # object is not an orphan and can provide better error
292        # messages.
293        child.set_parent(cls, name)
294        cls._children[name] = child
295
296    def _new_port(cls, name, port):
297        # each port should be uniquely assigned to one variable
298        assert(not hasattr(port, 'name'))
299        port.name = name
300        cls._ports[name] = port
301
302    # same as _get_port_ref, effectively, but for classes
303    def _cls_get_port_ref(cls, attr):
304        # Return reference that can be assigned to another port
305        # via __setattr__.  There is only ever one reference
306        # object per port, but we create them lazily here.
307        ref = cls._port_refs.get(attr)
308        if not ref:
309            ref = cls._ports[attr].makeRef(cls)
310            cls._port_refs[attr] = ref
311        return ref
312
313    # Set attribute (called on foo.attr = value when foo is an
314    # instance of class cls).
315    def __setattr__(cls, attr, value):
316        # normal processing for private attributes
317        if public_value(attr, value):
318            type.__setattr__(cls, attr, value)
319            return
320
321        if cls.keywords.has_key(attr):
322            cls._set_keyword(attr, value, cls.keywords[attr])
323            return
324
325        if cls._ports.has_key(attr):
326            cls._cls_get_port_ref(attr).connect(value)
327            return
328
329        if isSimObjectOrSequence(value) and cls._instantiated:
330            raise RuntimeError, \
331                  "cannot set SimObject parameter '%s' after\n" \
332                  "    class %s has been instantiated or subclassed" \
333                  % (attr, cls.__name__)
334
335        # check for param
336        param = cls._params.get(attr)
337        if param:
338            cls._set_param(attr, value, param)
339            return
340
341        if isSimObjectOrSequence(value):
342            # If RHS is a SimObject, it's an implicit child assignment.
343            cls._add_cls_child(attr, coerceSimObjectOrVector(value))
344            return
345
346        # no valid assignment... raise exception
347        raise AttributeError, \
348              "Class %s has no parameter \'%s\'" % (cls.__name__, attr)
349
350    def __getattr__(cls, attr):
351        if attr == 'cxx_class_path':
352            return cls.cxx_class.split('::')
353
354        if attr == 'cxx_class_name':
355            return cls.cxx_class_path[-1]
356
357        if attr == 'cxx_namespaces':
358            return cls.cxx_class_path[:-1]
359
360        if cls._values.has_key(attr):
361            return cls._values[attr]
362
363        if cls._children.has_key(attr):
364            return cls._children[attr]
365
366        raise AttributeError, \
367              "object '%s' has no attribute '%s'" % (cls.__name__, attr)
368
369    def __str__(cls):
370        return cls.__name__
371
372    # See ParamValue.cxx_predecls for description.
373    def cxx_predecls(cls, code):
374        code('#include "params/$cls.hh"')
375
376    # See ParamValue.swig_predecls for description.
377    def swig_predecls(cls, code):
378        code('%import "python/m5/internal/param_$cls.i"')
379
380    # Hook for exporting additional C++ methods to Python via SWIG.
381    # Default is none, override using @classmethod in class definition.
382    def export_methods(cls, code):
383        pass
384
385    # Generate the code needed as a prerequisite for the C++ methods
386    # exported via export_methods() to be compiled in the _wrap.cc
387    # file.  Typically generates one or more #include statements.  If
388    # any methods are exported, typically at least the C++ header
389    # declaring the relevant SimObject class must be included.
390    def export_method_cxx_predecls(cls, code):
391        pass
392
393    # Generate the code needed as a prerequisite for the C++ methods
394    # exported via export_methods() to be processed by SWIG.
395    # Typically generates one or more %include or %import statements.
396    # If any methods are exported, typically at least the C++ header
397    # declaring the relevant SimObject class must be included.
398    def export_method_swig_predecls(cls, code):
399        pass
400
401    # Generate the declaration for this object for wrapping with SWIG.
402    # Generates code that goes into a SWIG .i file.  Called from
403    # src/SConscript.
404    def swig_decl(cls, code):
405        class_path = cls.cxx_class.split('::')
406        classname = class_path[-1]
407        namespaces = class_path[:-1]
408
409        # The 'local' attribute restricts us to the params declared in
410        # the object itself, not including inherited params (which
411        # will also be inherited from the base class's param struct
412        # here).
413        params = cls._params.local.values()
414        ports = cls._ports.local
415
416        code('%module(package="m5.internal") param_$cls')
417        code()
418        code('%{')
419        code('#include "sim/sim_object.hh"')
420        code('#include "params/$cls.hh"')
421        for param in params:
422            param.cxx_predecls(code)
423        code('#include "${{cls.cxx_header}}"')
424        cls.export_method_cxx_predecls(code)
425        code('''\
426/**
427  * This is a workaround for bug in swig. Prior to gcc 4.6.1 the STL
428  * headers like vector, string, etc. used to automatically pull in
429  * the cstddef header but starting with gcc 4.6.1 they no longer do.
430  * This leads to swig generated a file that does not compile so we
431  * explicitly include cstddef. Additionally, including version 2.0.4,
432  * swig uses ptrdiff_t without the std:: namespace prefix which is
433  * required with gcc 4.6.1. We explicitly provide access to it.
434  */
435#include <cstddef>
436using std::ptrdiff_t;
437''')
438        code('%}')
439        code()
440
441        for param in params:
442            param.swig_predecls(code)
443        cls.export_method_swig_predecls(code)
444
445        code()
446        if cls._base:
447            code('%import "python/m5/internal/param_${{cls._base}}.i"')
448        code()
449
450        for ns in namespaces:
451            code('namespace $ns {')
452
453        if namespaces:
454            code('// avoid name conflicts')
455            sep_string = '_COLONS_'
456            flat_name = sep_string.join(class_path)
457            code('%rename($flat_name) $classname;')
458
459        code()
460        code('// stop swig from creating/wrapping default ctor/dtor')
461        code('%nodefault $classname;')
462        code('class $classname')
463        if cls._base:
464            bases = [ cls._base.cxx_class ] + cls.cxx_bases
465        else:
466            bases = cls.cxx_bases
467        base_first = True
468        for base in bases:
469            if base_first:
470                code('    : public ${{base}}')
471                base_first = False
472            else:
473                code('    , public ${{base}}')
474
475        code('{')
476        code('  public:')
477        cls.export_methods(code)
478        code('};')
479
480        for ns in reversed(namespaces):
481            code('} // namespace $ns')
482
483        code()
484        code('%include "params/$cls.hh"')
485
486
487    # Generate the C++ declaration (.hh file) for this SimObject's
488    # param struct.  Called from src/SConscript.
489    def cxx_param_decl(cls, code):
490        # The 'local' attribute restricts us to the params declared in
491        # the object itself, not including inherited params (which
492        # will also be inherited from the base class's param struct
493        # here).
494        params = cls._params.local.values()
495        ports = cls._ports.local
496        try:
497            ptypes = [p.ptype for p in params]
498        except:
499            print cls, p, p.ptype_str
500            print params
501            raise
502
503        class_path = cls._value_dict['cxx_class'].split('::')
504
505        code('''\
506#ifndef __PARAMS__${cls}__
507#define __PARAMS__${cls}__
508
509''')
510
511        # A forward class declaration is sufficient since we are just
512        # declaring a pointer.
513        for ns in class_path[:-1]:
514            code('namespace $ns {')
515        code('class $0;', class_path[-1])
516        for ns in reversed(class_path[:-1]):
517            code('} // namespace $ns')
518        code()
519
520        # The base SimObject has a couple of params that get
521        # automatically set from Python without being declared through
522        # the normal Param mechanism; we slip them in here (needed
523        # predecls now, actual declarations below)
524        if cls == SimObject:
525            code('''
526#ifndef PY_VERSION
527struct PyObject;
528#endif
529
530#include <string>
531
532class EventQueue;
533''')
534        for param in params:
535            param.cxx_predecls(code)
536        for port in ports.itervalues():
537            port.cxx_predecls(code)
538        code()
539
540        if cls._base:
541            code('#include "params/${{cls._base.type}}.hh"')
542            code()
543
544        for ptype in ptypes:
545            if issubclass(ptype, Enum):
546                code('#include "enums/${{ptype.__name__}}.hh"')
547                code()
548
549        # now generate the actual param struct
550        code("struct ${cls}Params")
551        if cls._base:
552            code("    : public ${{cls._base.type}}Params")
553        code("{")
554        if not hasattr(cls, 'abstract') or not cls.abstract:
555            if 'type' in cls.__dict__:
556                code("    ${{cls.cxx_type}} create();")
557
558        code.indent()
559        if cls == SimObject:
560            code('''
561    SimObjectParams()
562    {
563        extern EventQueue mainEventQueue;
564        eventq = &mainEventQueue;
565    }
566    virtual ~SimObjectParams() {}
567
568    std::string name;
569    PyObject *pyobj;
570    EventQueue *eventq;
571            ''')
572        for param in params:
573            param.cxx_decl(code)
574        for port in ports.itervalues():
575            port.cxx_decl(code)
576
577        code.dedent()
578        code('};')
579
580        code()
581        code('#endif // __PARAMS__${cls}__')
582        return code
583
584
585
586# The SimObject class is the root of the special hierarchy.  Most of
587# the code in this class deals with the configuration hierarchy itself
588# (parent/child node relationships).
589class SimObject(object):
590    # Specify metaclass.  Any class inheriting from SimObject will
591    # get this metaclass.
592    __metaclass__ = MetaSimObject
593    type = 'SimObject'
594    abstract = True
595    cxx_header = "sim/sim_object.hh"
596
597    cxx_bases = [ "Drainable", "Serializable" ]
598
599    @classmethod
600    def export_method_swig_predecls(cls, code):
601        code('''
602%include <std_string.i>
603
604%import "python/swig/drain.i"
605%import "python/swig/serialize.i"
606''')
607
608    @classmethod
609    def export_methods(cls, code):
610        code('''
611    void init();
612    void loadState(Checkpoint *cp);
613    void initState();
614    void regStats();
615    void resetStats();
616    void startup();
617''')
618
619    # Initialize new instance.  For objects with SimObject-valued
620    # children, we need to recursively clone the classes represented
621    # by those param values as well in a consistent "deep copy"-style
622    # fashion.  That is, we want to make sure that each instance is
623    # cloned only once, and that if there are multiple references to
624    # the same original object, we end up with the corresponding
625    # cloned references all pointing to the same cloned instance.
626    def __init__(self, **kwargs):
627        ancestor = kwargs.get('_ancestor')
628        memo_dict = kwargs.get('_memo')
629        if memo_dict is None:
630            # prepare to memoize any recursively instantiated objects
631            memo_dict = {}
632        elif ancestor:
633            # memoize me now to avoid problems with recursive calls
634            memo_dict[ancestor] = self
635
636        if not ancestor:
637            ancestor = self.__class__
638        ancestor._instantiated = True
639
640        # initialize required attributes
641        self._parent = None
642        self._name = None
643        self._ccObject = None  # pointer to C++ object
644        self._ccParams = None
645        self._instantiated = False # really "cloned"
646
647        # Clone children specified at class level.  No need for a
648        # multidict here since we will be cloning everything.
649        # Do children before parameter values so that children that
650        # are also param values get cloned properly.
651        self._children = {}
652        for key,val in ancestor._children.iteritems():
653            self.add_child(key, val(_memo=memo_dict))
654
655        # Inherit parameter values from class using multidict so
656        # individual value settings can be overridden but we still
657        # inherit late changes to non-overridden class values.
658        self._values = multidict(ancestor._values)
659        # clone SimObject-valued parameters
660        for key,val in ancestor._values.iteritems():
661            val = tryAsSimObjectOrVector(val)
662            if val is not None:
663                self._values[key] = val(_memo=memo_dict)
664
665        # clone port references.  no need to use a multidict here
666        # since we will be creating new references for all ports.
667        self._port_refs = {}
668        for key,val in ancestor._port_refs.iteritems():
669            self._port_refs[key] = val.clone(self, memo_dict)
670        # apply attribute assignments from keyword args, if any
671        for key,val in kwargs.iteritems():
672            setattr(self, key, val)
673
674    # "Clone" the current instance by creating another instance of
675    # this instance's class, but that inherits its parameter values
676    # and port mappings from the current instance.  If we're in a
677    # "deep copy" recursive clone, check the _memo dict to see if
678    # we've already cloned this instance.
679    def __call__(self, **kwargs):
680        memo_dict = kwargs.get('_memo')
681        if memo_dict is None:
682            # no memo_dict: must be top-level clone operation.
683            # this is only allowed at the root of a hierarchy
684            if self._parent:
685                raise RuntimeError, "attempt to clone object %s " \
686                      "not at the root of a tree (parent = %s)" \
687                      % (self, self._parent)
688            # create a new dict and use that.
689            memo_dict = {}
690            kwargs['_memo'] = memo_dict
691        elif memo_dict.has_key(self):
692            # clone already done & memoized
693            return memo_dict[self]
694        return self.__class__(_ancestor = self, **kwargs)
695
696    def _get_port_ref(self, attr):
697        # Return reference that can be assigned to another port
698        # via __setattr__.  There is only ever one reference
699        # object per port, but we create them lazily here.
700        ref = self._port_refs.get(attr)
701        if ref == None:
702            ref = self._ports[attr].makeRef(self)
703            self._port_refs[attr] = ref
704        return ref
705
706    def __getattr__(self, attr):
707        if self._ports.has_key(attr):
708            return self._get_port_ref(attr)
709
710        if self._values.has_key(attr):
711            return self._values[attr]
712
713        if self._children.has_key(attr):
714            return self._children[attr]
715
716        # If the attribute exists on the C++ object, transparently
717        # forward the reference there.  This is typically used for
718        # SWIG-wrapped methods such as init(), regStats(),
719        # resetStats(), startup(), drain(), and
720        # resume().
721        if self._ccObject and hasattr(self._ccObject, attr):
722            return getattr(self._ccObject, attr)
723
724        raise AttributeError, "object '%s' has no attribute '%s'" \
725              % (self.__class__.__name__, attr)
726
727    # Set attribute (called on foo.attr = value when foo is an
728    # instance of class cls).
729    def __setattr__(self, attr, value):
730        # normal processing for private attributes
731        if attr.startswith('_'):
732            object.__setattr__(self, attr, value)
733            return
734
735        if self._ports.has_key(attr):
736            # set up port connection
737            self._get_port_ref(attr).connect(value)
738            return
739
740        if isSimObjectOrSequence(value) and self._instantiated:
741            raise RuntimeError, \
742                  "cannot set SimObject parameter '%s' after\n" \
743                  "    instance been cloned %s" % (attr, `self`)
744
745        param = self._params.get(attr)
746        if param:
747            try:
748                value = param.convert(value)
749            except Exception, e:
750                msg = "%s\nError setting param %s.%s to %s\n" % \
751                      (e, self.__class__.__name__, attr, value)
752                e.args = (msg, )
753                raise
754            self._values[attr] = value
755            # implicitly parent unparented objects assigned as params
756            if isSimObjectOrVector(value) and not value.has_parent():
757                self.add_child(attr, value)
758            return
759
760        # if RHS is a SimObject, it's an implicit child assignment
761        if isSimObjectOrSequence(value):
762            self.add_child(attr, value)
763            return
764
765        # no valid assignment... raise exception
766        raise AttributeError, "Class %s has no parameter %s" \
767              % (self.__class__.__name__, attr)
768
769
770    # this hack allows tacking a '[0]' onto parameters that may or may
771    # not be vectors, and always getting the first element (e.g. cpus)
772    def __getitem__(self, key):
773        if key == 0:
774            return self
775        raise TypeError, "Non-zero index '%s' to SimObject" % key
776
777    # Also implemented by SimObjectVector
778    def clear_parent(self, old_parent):
779        assert self._parent is old_parent
780        self._parent = None
781
782    # Also implemented by SimObjectVector
783    def set_parent(self, parent, name):
784        self._parent = parent
785        self._name = name
786
787    # Also implemented by SimObjectVector
788    def get_name(self):
789        return self._name
790
791    # Also implemented by SimObjectVector
792    def has_parent(self):
793        return self._parent is not None
794
795    # clear out child with given name. This code is not likely to be exercised.
796    # See comment in add_child.
797    def clear_child(self, name):
798        child = self._children[name]
799        child.clear_parent(self)
800        del self._children[name]
801
802    # Add a new child to this object.
803    def add_child(self, name, child):
804        child = coerceSimObjectOrVector(child)
805        if child.has_parent():
806            warn("add_child('%s'): child '%s' already has parent", name,
807                child.get_name())
808        if self._children.has_key(name):
809            # This code path had an undiscovered bug that would make it fail
810            # at runtime. It had been here for a long time and was only
811            # exposed by a buggy script. Changes here will probably not be
812            # exercised without specialized testing.
813            self.clear_child(name)
814        child.set_parent(self, name)
815        self._children[name] = child
816
817    # Take SimObject-valued parameters that haven't been explicitly
818    # assigned as children and make them children of the object that
819    # they were assigned to as a parameter value.  This guarantees
820    # that when we instantiate all the parameter objects we're still
821    # inside the configuration hierarchy.
822    def adoptOrphanParams(self):
823        for key,val in self._values.iteritems():
824            if not isSimObjectVector(val) and isSimObjectSequence(val):
825                # need to convert raw SimObject sequences to
826                # SimObjectVector class so we can call has_parent()
827                val = SimObjectVector(val)
828                self._values[key] = val
829            if isSimObjectOrVector(val) and not val.has_parent():
830                warn("%s adopting orphan SimObject param '%s'", self, key)
831                self.add_child(key, val)
832
833    def path(self):
834        if not self._parent:
835            return '<orphan %s>' % self.__class__
836        ppath = self._parent.path()
837        if ppath == 'root':
838            return self._name
839        return ppath + "." + self._name
840
841    def __str__(self):
842        return self.path()
843
844    def ini_str(self):
845        return self.path()
846
847    def find_any(self, ptype):
848        if isinstance(self, ptype):
849            return self, True
850
851        found_obj = None
852        for child in self._children.itervalues():
853            if isinstance(child, ptype):
854                if found_obj != None and child != found_obj:
855                    raise AttributeError, \
856                          'parent.any matched more than one: %s %s' % \
857                          (found_obj.path, child.path)
858                found_obj = child
859        # search param space
860        for pname,pdesc in self._params.iteritems():
861            if issubclass(pdesc.ptype, ptype):
862                match_obj = self._values[pname]
863                if found_obj != None and found_obj != match_obj:
864                    raise AttributeError, \
865                          'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
866                found_obj = match_obj
867        return found_obj, found_obj != None
868
869    def find_all(self, ptype):
870        all = {}
871        # search children
872        for child in self._children.itervalues():
873            # a child could be a list, so ensure we visit each item
874            if isinstance(child, list):
875                children = child
876            else:
877                children = [child]
878
879            for child in children:
880                if isinstance(child, ptype) and not isproxy(child) and \
881                        not isNullPointer(child):
882                    all[child] = True
883                if isSimObject(child):
884                    # also add results from the child itself
885                    child_all, done = child.find_all(ptype)
886                    all.update(dict(zip(child_all, [done] * len(child_all))))
887        # search param space
888        for pname,pdesc in self._params.iteritems():
889            if issubclass(pdesc.ptype, ptype):
890                match_obj = self._values[pname]
891                if not isproxy(match_obj) and not isNullPointer(match_obj):
892                    all[match_obj] = True
893        return all.keys(), True
894
895    def unproxy(self, base):
896        return self
897
898    def unproxyParams(self):
899        for param in self._params.iterkeys():
900            value = self._values.get(param)
901            if value != None and isproxy(value):
902                try:
903                    value = value.unproxy(self)
904                except:
905                    print "Error in unproxying param '%s' of %s" % \
906                          (param, self.path())
907                    raise
908                setattr(self, param, value)
909
910        # Unproxy ports in sorted order so that 'append' operations on
911        # vector ports are done in a deterministic fashion.
912        port_names = self._ports.keys()
913        port_names.sort()
914        for port_name in port_names:
915            port = self._port_refs.get(port_name)
916            if port != None:
917                port.unproxy(self)
918
919    def print_ini(self, ini_file):
920        print >>ini_file, '[' + self.path() + ']'       # .ini section header
921
922        instanceDict[self.path()] = self
923
924        if hasattr(self, 'type'):
925            print >>ini_file, 'type=%s' % self.type
926
927        if len(self._children.keys()):
928            print >>ini_file, 'children=%s' % \
929                  ' '.join(self._children[n].get_name() \
930                  for n in sorted(self._children.keys()))
931
932        for param in sorted(self._params.keys()):
933            value = self._values.get(param)
934            if value != None:
935                print >>ini_file, '%s=%s' % (param,
936                                             self._values[param].ini_str())
937
938        for port_name in sorted(self._ports.keys()):
939            port = self._port_refs.get(port_name, None)
940            if port != None:
941                print >>ini_file, '%s=%s' % (port_name, port.ini_str())
942
943        print >>ini_file        # blank line between objects
944
945    # generate a tree of dictionaries expressing all the parameters in the
946    # instantiated system for use by scripts that want to do power, thermal
947    # visualization, and other similar tasks
948    def get_config_as_dict(self):
949        d = attrdict()
950        if hasattr(self, 'type'):
951            d.type = self.type
952        if hasattr(self, 'cxx_class'):
953            d.cxx_class = self.cxx_class
954        # Add the name and path of this object to be able to link to
955        # the stats
956        d.name = self.get_name()
957        d.path = self.path()
958
959        for param in sorted(self._params.keys()):
960            value = self._values.get(param)
961            if value != None:
962                try:
963                    # Use native type for those supported by JSON and
964                    # strings for everything else. skipkeys=True seems
965                    # to not work as well as one would hope
966                    if type(self._values[param].value) in \
967                            [str, unicode, int, long, float, bool, None]:
968                        d[param] = self._values[param].value
969                    else:
970                        d[param] = str(self._values[param])
971
972                except AttributeError:
973                    pass
974
975        for n in sorted(self._children.keys()):
976            child = self._children[n]
977            # Use the name of the attribute (and not get_name()) as
978            # the key in the JSON dictionary to capture the hierarchy
979            # in the Python code that assembled this system
980            d[n] = child.get_config_as_dict()
981
982        for port_name in sorted(self._ports.keys()):
983            port = self._port_refs.get(port_name, None)
984            if port != None:
985                # Represent each port with a dictionary containing the
986                # prominent attributes
987                d[port_name] = port.get_config_as_dict()
988
989        return d
990
991    def getCCParams(self):
992        if self._ccParams:
993            return self._ccParams
994
995        cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
996        cc_params = cc_params_struct()
997        cc_params.pyobj = self
998        cc_params.name = str(self)
999
1000        param_names = self._params.keys()
1001        param_names.sort()
1002        for param in param_names:
1003            value = self._values.get(param)
1004            if value is None:
1005                fatal("%s.%s without default or user set value",
1006                      self.path(), param)
1007
1008            value = value.getValue()
1009            if isinstance(self._params[param], VectorParamDesc):
1010                assert isinstance(value, list)
1011                vec = getattr(cc_params, param)
1012                assert not len(vec)
1013                for v in value:
1014                    vec.append(v)
1015            else:
1016                setattr(cc_params, param, value)
1017
1018        port_names = self._ports.keys()
1019        port_names.sort()
1020        for port_name in port_names:
1021            port = self._port_refs.get(port_name, None)
1022            if port != None:
1023                port_count = len(port)
1024            else:
1025                port_count = 0
1026            setattr(cc_params, 'port_' + port_name + '_connection_count',
1027                    port_count)
1028        self._ccParams = cc_params
1029        return self._ccParams
1030
1031    # Get C++ object corresponding to this object, calling C++ if
1032    # necessary to construct it.  Does *not* recursively create
1033    # children.
1034    def getCCObject(self):
1035        if not self._ccObject:
1036            # Make sure this object is in the configuration hierarchy
1037            if not self._parent and not isRoot(self):
1038                raise RuntimeError, "Attempt to instantiate orphan node"
1039            # Cycles in the configuration hierarchy are not supported. This
1040            # will catch the resulting recursion and stop.
1041            self._ccObject = -1
1042            params = self.getCCParams()
1043            self._ccObject = params.create()
1044        elif self._ccObject == -1:
1045            raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
1046                  % self.path()
1047        return self._ccObject
1048
1049    def descendants(self):
1050        yield self
1051        for child in self._children.itervalues():
1052            for obj in child.descendants():
1053                yield obj
1054
1055    # Call C++ to create C++ object corresponding to this object
1056    def createCCObject(self):
1057        self.getCCParams()
1058        self.getCCObject() # force creation
1059
1060    def getValue(self):
1061        return self.getCCObject()
1062
1063    # Create C++ port connections corresponding to the connections in
1064    # _port_refs
1065    def connectPorts(self):
1066        for portRef in self._port_refs.itervalues():
1067            portRef.ccConnect()
1068
1069# Function to provide to C++ so it can look up instances based on paths
1070def resolveSimObject(name):
1071    obj = instanceDict[name]
1072    return obj.getCCObject()
1073
1074def isSimObject(value):
1075    return isinstance(value, SimObject)
1076
1077def isSimObjectClass(value):
1078    return issubclass(value, SimObject)
1079
1080def isSimObjectVector(value):
1081    return isinstance(value, SimObjectVector)
1082
1083def isSimObjectSequence(value):
1084    if not isinstance(value, (list, tuple)) or len(value) == 0:
1085        return False
1086
1087    for val in value:
1088        if not isNullPointer(val) and not isSimObject(val):
1089            return False
1090
1091    return True
1092
1093def isSimObjectOrSequence(value):
1094    return isSimObject(value) or isSimObjectSequence(value)
1095
1096def isRoot(obj):
1097    from m5.objects import Root
1098    return obj and obj is Root.getInstance()
1099
1100def isSimObjectOrVector(value):
1101    return isSimObject(value) or isSimObjectVector(value)
1102
1103def tryAsSimObjectOrVector(value):
1104    if isSimObjectOrVector(value):
1105        return value
1106    if isSimObjectSequence(value):
1107        return SimObjectVector(value)
1108    return None
1109
1110def coerceSimObjectOrVector(value):
1111    value = tryAsSimObjectOrVector(value)
1112    if value is None:
1113        raise TypeError, "SimObject or SimObjectVector expected"
1114    return value
1115
1116baseClasses = allClasses.copy()
1117baseInstances = instanceDict.copy()
1118
1119def clear():
1120    global allClasses, instanceDict, noCxxHeader
1121
1122    allClasses = baseClasses.copy()
1123    instanceDict = baseInstances.copy()
1124    noCxxHeader = False
1125
1126# __all__ defines the list of symbols that get exported when
1127# 'from config import *' is invoked.  Try to keep this reasonably
1128# short to avoid polluting other namespaces.
1129__all__ = [ 'SimObject' ]
1130