SimObject.py revision 1046
1# Copyright (c) 2004 The Regents of The University of Michigan
2# All rights reserved.
3#
4# Redistribution and use in source and binary forms, with or without
5# modification, are permitted provided that the following conditions are
6# met: redistributions of source code must retain the above copyright
7# notice, this list of conditions and the following disclaimer;
8# redistributions in binary form must reproduce the above copyright
9# notice, this list of conditions and the following disclaimer in the
10# documentation and/or other materials provided with the distribution;
11# neither the name of the copyright holders nor the names of its
12# contributors may be used to endorse or promote products derived from
13# this software without specific prior written permission.
14#
15# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27from __future__ import generators
28
29import os
30import re
31import sys
32
33#####################################################################
34#
35# M5 Python Configuration Utility
36#
37# The basic idea is to write simple Python programs that build Python
38# objects corresponding to M5 SimObjects for the deisred simulation
39# configuration.  For now, the Python emits a .ini file that can be
40# parsed by M5.  In the future, some tighter integration between M5
41# and the Python interpreter may allow bypassing the .ini file.
42#
43# Each SimObject class in M5 is represented by a Python class with the
44# same name.  The Python inheritance tree mirrors the M5 C++ tree
45# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
46# SimObjects inherit from a single SimObject base class).  To specify
47# an instance of an M5 SimObject in a configuration, the user simply
48# instantiates the corresponding Python object.  The parameters for
49# that SimObject are given by assigning to attributes of the Python
50# object, either using keyword assignment in the constructor or in
51# separate assignment statements.  For example:
52#
53# cache = BaseCache('my_cache', root, size=64*K)
54# cache.hit_latency = 3
55# cache.assoc = 8
56#
57# (The first two constructor arguments specify the name of the created
58# cache and its parent node in the hierarchy.)
59#
60# The magic lies in the mapping of the Python attributes for SimObject
61# classes to the actual SimObject parameter specifications.  This
62# allows parameter validity checking in the Python code.  Continuing
63# the example above, the statements "cache.blurfl=3" or
64# "cache.assoc='hello'" would both result in runtime errors in Python,
65# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
66# parameter requires an integer, respectively.  This magic is done
67# primarily by overriding the special __setattr__ method that controls
68# assignment to object attributes.
69#
70# The Python module provides another class, ConfigNode, which is a
71# superclass of SimObject.  ConfigNode implements the parent/child
72# relationship for building the configuration hierarchy tree.
73# Concrete instances of ConfigNode can be used to group objects in the
74# hierarchy, but do not correspond to SimObjects themselves (like a
75# .ini section with "children=" but no "type=".
76#
77# Once a set of Python objects have been instantiated in a hierarchy,
78# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
79# will generate a .ini file.  See simple-4cpu.py for an example
80# (corresponding to m5-test/simple-4cpu.ini).
81#
82#####################################################################
83
84#####################################################################
85#
86# ConfigNode/SimObject classes
87#
88# The Python class hierarchy rooted by ConfigNode (which is the base
89# class of SimObject, which in turn is the base class of all other M5
90# SimObject classes) has special attribute behavior.  In general, an
91# object in this hierarchy has three categories of attribute-like
92# things:
93#
94# 1. Regular Python methods and variables.  These must start with an
95# underscore to be treated normally.
96#
97# 2. SimObject parameters.  These values are stored as normal Python
98# attributes, but all assignments to these attributes are checked
99# against the pre-defined set of parameters stored in the class's
100# _param_dict dictionary.  Assignments to attributes that do not
101# correspond to predefined parameters, or that are not of the correct
102# type, incur runtime errors.
103#
104# 3. Hierarchy children.  The child nodes of a ConfigNode are stored
105# in the node's _children dictionary, but can be accessed using the
106# Python attribute dot-notation (just as they are printed out by the
107# simulator).  Children cannot be created using attribute assigment;
108# they must be added by specifying the parent node in the child's
109# constructor or using the '+=' operator.
110
111# The SimObject parameters are the most complex, for a few reasons.
112# First, both parameter descriptions and parameter values are
113# inherited.  Thus parameter description lookup must go up the
114# inheritance chain like normal attribute lookup, but this behavior
115# must be explicitly coded since the lookup occurs in each class's
116# _param_dict attribute.  Second, because parameter values can be set
117# on SimObject classes (to implement default values), the parameter
118# checking behavior must be enforced on class attribute assignments as
119# well as instance attribute assignments.  Finally, because we allow
120# class specialization via inheritance (e.g., see the L1Cache class in
121# the simple-4cpu.py example), we must do parameter checking even on
122# class instantiation.  To provide all these features, we use a
123# metaclass to define most of the SimObject parameter behavior for
124# this class hierarchy.
125#
126#####################################################################
127
128# The metaclass for ConfigNode (and thus for everything that derives
129# from ConfigNode, including SimObject).  This class controls how new
130# classes that derive from ConfigNode are instantiated, and provides
131# inherited class behavior (just like a class controls how instances
132# of that class are instantiated, and provides inherited instance
133# behavior).
134class MetaConfigNode(type):
135
136    # __new__ is called before __init__, and is where the statements
137    # in the body of the class definition get loaded into the class's
138    # __dict__.  We intercept this to filter out parameter assignments
139    # and only allow "private" attributes to be passed to the base
140    # __new__ (starting with underscore).
141    def __new__(cls, name, bases, dict):
142        priv_keys = [k for k in dict.iterkeys() if k.startswith('_')]
143        priv_dict = {}
144        for k in priv_keys: priv_dict[k] = dict[k]; del dict[k]
145        # entries left in dict will get passed to __init__, where we'll
146        # deal with them as params.
147        return super(MetaConfigNode, cls).__new__(cls, name, bases, priv_dict)
148
149    # initialization: start out with an empty param dict (makes life
150    # simpler if we can assume _param_dict is always valid).  Also
151    # build inheritance list to simplify searching for inherited
152    # params.  Finally set parameters specified in class definition
153    # (if any).
154    def __init__(cls, name, bases, dict):
155        super(MetaConfigNode, cls).__init__(cls, name, bases, {})
156        # initialize _param_dict to empty
157        cls._param_dict = {}
158        # __mro__ is the ordered list of classes Python uses for
159        # method resolution.  We want to pick out the ones that have a
160        # _param_dict attribute for doing parameter lookups.
161        cls._param_bases = \
162                         [c for c in cls.__mro__ if hasattr(c, '_param_dict')]
163        # initialize attributes with values from class definition
164        for (pname, value) in dict.items():
165            try:
166                setattr(cls, pname, value)
167            except Exception, exc:
168                print "Error setting '%s' to '%s' on class '%s'\n" \
169                      % (pname, value, cls.__name__), exc
170
171    # set the class's parameter dictionary (called when loading
172    # class descriptions)
173    def set_param_dict(cls, param_dict):
174        # should only be called once (current one should be empty one
175        # from __init__)
176        assert not cls._param_dict
177        cls._param_dict = param_dict
178        # initialize attributes with default values
179        for (pname, param) in param_dict.items():
180            try:
181                setattr(cls, pname, param.default)
182            except Exception, exc:
183                print "Error setting '%s' default on class '%s'\n" \
184                      % (pname, cls.__name__), exc
185
186    # Set the class's parameter dictionary given a code string of
187    # parameter initializers (as from an object description file).
188    # Note that the caller must pass in the namespace in which to
189    # execute the code (usually the caller's globals()), since if we
190    # call globals() from inside this function all we get is this
191    # module's internal scope.
192    def init_params(cls, init_code, ctx):
193        dict = {}
194        try:
195            exec fixPythonIndentation(init_code) in ctx, dict
196        except Exception, exc:
197            print "Error in %s.init_params:" % cls.__name__, exc
198            raise
199        cls.set_param_dict(dict)
200
201    # Lookup a parameter description by name in the given class.  Use
202    # the _param_bases list defined in __init__ to go up the
203    # inheritance hierarchy if necessary.
204    def lookup_param(cls, param_name):
205        for c in cls._param_bases:
206            param = c._param_dict.get(param_name)
207            if param: return param
208        return None
209
210    # Set attribute (called on foo.attr_name = value when foo is an
211    # instance of class cls).
212    def __setattr__(cls, attr_name, value):
213        # normal processing for private attributes
214        if attr_name.startswith('_'):
215            type.__setattr__(cls, attr_name, value)
216            return
217        # no '_': must be SimObject param
218        param = cls.lookup_param(attr_name)
219        if not param:
220            raise AttributeError, \
221                  "Class %s has no parameter %s" % (cls.__name__, attr_name)
222        # It's ok: set attribute by delegating to 'object' class.
223        # Note the use of param.make_value() to verify/canonicalize
224        # the assigned value
225        type.__setattr__(cls, attr_name, param.make_value(value))
226
227    # generator that iterates across all parameters for this class and
228    # all classes it inherits from
229    def all_param_names(cls):
230        for c in cls._param_bases:
231            for p in c._param_dict.iterkeys():
232                yield p
233
234# The ConfigNode class is the root of the special hierarchy.  Most of
235# the code in this class deals with the configuration hierarchy itself
236# (parent/child node relationships).
237class ConfigNode(object):
238    # Specify metaclass.  Any class inheriting from ConfigNode will
239    # get this metaclass.
240    __metaclass__ = MetaConfigNode
241
242    # Constructor.  Since bare ConfigNodes don't have parameters, just
243    # worry about the name and the parent/child stuff.
244    def __init__(self, _name, _parent=None):
245        # Type-check _name
246        if type(_name) != str:
247            if isinstance(_name, ConfigNode):
248                # special case message for common error of trying to
249                # coerce a SimObject to the wrong type
250                raise TypeError, \
251                      "Attempt to coerce %s to %s" \
252                      % (_name.__class__.__name__, self.__class__.__name__)
253            else:
254                raise TypeError, \
255                      "%s name must be string (was %s, %s)" \
256                      % (self.__class__.__name__, _name, type(_name))
257        # if specified, parent must be a subclass of ConfigNode
258        if _parent != None and not isinstance(_parent, ConfigNode):
259            raise TypeError, \
260                  "%s parent must be ConfigNode subclass (was %s, %s)" \
261                  % (self.__class__.__name__, _name, type(_name))
262        self._name = _name
263        self._parent = _parent
264        if (_parent):
265            _parent._add_child(self)
266        self._children = {}
267        # keep a list of children in addition to the dictionary keys
268        # so we can remember the order they were added and print them
269        # out in that order.
270        self._child_list = []
271
272    # When printing (e.g. to .ini file), just give the name.
273    def __str__(self):
274        return self._name
275
276    # Catch attribute accesses that could be requesting children, and
277    # satisfy them.  Note that __getattr__ is called only if the
278    # regular attribute lookup fails, so private and parameter lookups
279    # will already be satisfied before we ever get here.
280    def __getattr__(self, name):
281        try:
282            return self._children[name]
283        except KeyError:
284            raise AttributeError, \
285                  "Node '%s' has no attribute or child '%s'" \
286                  % (self._name, name)
287
288    # Set attribute.  All attribute assignments go through here.  Must
289    # be private attribute (starts with '_') or valid parameter entry.
290    # Basically identical to MetaConfigClass.__setattr__(), except
291    # this sets attributes on specific instances rather than on classes.
292    def __setattr__(self, attr_name, value):
293        if attr_name.startswith('_'):
294            object.__setattr__(self, attr_name, value)
295            return
296        # not private; look up as param
297        param = self.__class__.lookup_param(attr_name)
298        if not param:
299            raise AttributeError, \
300                  "Class %s has no parameter %s" \
301                  % (self.__class__.__name__, attr_name)
302        # It's ok: set attribute by delegating to 'object' class.
303        # Note the use of param.make_value() to verify/canonicalize
304        # the assigned value.
305        v = param.make_value(value)
306        object.__setattr__(self, attr_name, v)
307
308        # A little convenient magic: if the parameter is a ConfigNode
309        # (or vector of ConfigNodes, or anything else with a
310        # '_set_parent_if_none' function attribute) that does not have
311        # a parent (and so is not part of the configuration
312        # hierarchy), then make this node its parent.
313        if hasattr(v, '_set_parent_if_none'):
314            v._set_parent_if_none(self)
315
316    def _path(self):
317        # Return absolute path from root.
318        if not self._parent and self._name != 'Universe':
319            print >> sys.stderr, "Warning:", self._name, "has no parent"
320        parent_path = self._parent and self._parent._path()
321        if parent_path and parent_path != 'Universe':
322            return parent_path + '.' + self._name
323        else:
324            return self._name
325
326    # Add a child to this node.
327    def _add_child(self, new_child):
328        # set child's parent before calling this function
329        assert new_child._parent == self
330        if not isinstance(new_child, ConfigNode):
331            raise TypeError, \
332                  "ConfigNode child must also be of class ConfigNode"
333        if new_child._name in self._children:
334            raise AttributeError, \
335                  "Node '%s' already has a child '%s'" \
336                  % (self._name, new_child._name)
337        self._children[new_child._name] = new_child
338        self._child_list += [new_child]
339
340    # operator overload for '+='.  You can say "node += child" to add
341    # a child that was created with parent=None.  An early attempt
342    # at playing with syntax; turns out not to be that useful.
343    def __iadd__(self, new_child):
344        if new_child._parent != None:
345            raise AttributeError, \
346                  "Node '%s' already has a parent" % new_child._name
347        new_child._parent = self
348        self._add_child(new_child)
349        return self
350
351    # Set this instance's parent to 'parent' if it doesn't already
352    # have one.  See ConfigNode.__setattr__().
353    def _set_parent_if_none(self, parent):
354        if self._parent == None:
355            parent += self
356
357    # Print instance info to .ini file.
358    def _instantiate(self):
359        print '[' + self._path() + ']'	# .ini section header
360        if self._child_list:
361            # instantiate children in same order they were added for
362            # backward compatibility (else we can end up with cpu1
363            # before cpu0).
364            print 'children =', ' '.join([c._name for c in self._child_list])
365        self._instantiateParams()
366        print
367        # recursively dump out children
368        for c in self._child_list:
369            c._instantiate()
370
371    # ConfigNodes have no parameters.  Overridden by SimObject.
372    def _instantiateParams(self):
373        pass
374
375# SimObject is a minimal extension of ConfigNode, implementing a
376# hierarchy node that corresponds to an M5 SimObject.  It prints out a
377# "type=" line to indicate its SimObject class, prints out the
378# assigned parameters corresponding to its class, and allows
379# parameters to be set by keyword in the constructor.  Note that most
380# of the heavy lifting for the SimObject param handling is done in the
381# MetaConfigNode metaclass.
382
383class SimObject(ConfigNode):
384    # initialization: like ConfigNode, but handle keyword-based
385    # parameter initializers.
386    def __init__(self, _name, _parent=None, **params):
387        ConfigNode.__init__(self, _name, _parent)
388        for param, value in params.items():
389            setattr(self, param, value)
390
391    # print type and parameter values to .ini file
392    def _instantiateParams(self):
393        print "type =", self.__class__._name
394        for pname in self.__class__.all_param_names():
395            value = getattr(self, pname)
396            if value != None:
397                print pname, '=', value
398
399    def _sim_code(cls):
400        name = cls.__name__
401        param_names = cls._param_dict.keys()
402        param_names.sort()
403        code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name
404        decls = ["  " + cls._param_dict[pname].sim_decl(pname) \
405                 for pname in param_names]
406        code += "\n".join(decls) + "\n"
407        code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name
408        code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name
409        inits = ["  " + cls._param_dict[pname].sim_init(pname) \
410                 for pname in param_names]
411        code += ",\n".join(inits) + "\n"
412        code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name
413        return code
414    _sim_code = classmethod(_sim_code)
415
416#####################################################################
417#
418# Parameter description classes
419#
420# The _param_dict dictionary in each class maps parameter names to
421# either a Param or a VectorParam object.  These objects contain the
422# parameter description string, the parameter type, and the default
423# value (loaded from the PARAM section of the .odesc files).  The
424# make_value() method on these objects is used to force whatever value
425# is assigned to the parameter to the appropriate type.
426#
427# Note that the default values are loaded into the class's attribute
428# space when the parameter dictionary is initialized (in
429# MetaConfigNode.set_param_dict()); after that point they aren't
430# used.
431#
432#####################################################################
433
434def isNullPointer(value):
435    return isinstance(value, NullSimObject)
436
437# Regular parameter.
438class Param(object):
439    # Constructor.  E.g., Param(Int, "number of widgets", 5)
440    def __init__(self, ptype, desc, default=None):
441        self.ptype = ptype
442        self.ptype_name = self.ptype.__name__
443        self.desc = desc
444        self.default = default
445
446    # Convert assigned value to appropriate type.  Force parameter
447    # value (rhs of '=') to ptype (or None, which means not set).
448    def make_value(self, value):
449        # nothing to do if None or already correct type.  Also allow NULL
450        # pointer to be assigned where a SimObject is expected.
451        if value == None or isinstance(value, self.ptype) or \
452               isNullPointer(value) and issubclass(self.ptype, ConfigNode):
453            return value
454        # this type conversion will raise an exception if it's illegal
455        return self.ptype(value)
456
457    def sim_decl(self, name):
458        return 'Param<%s> %s;' % (self.ptype_name, name)
459
460    def sim_init(self, name):
461        if self.default == None:
462            return 'INIT_PARAM(%s, "%s")' % (name, self.desc)
463        else:
464            return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \
465                   (name, self.desc, str(self.default))
466
467# The _VectorParamValue class is a wrapper for vector-valued
468# parameters.  The leading underscore indicates that users shouldn't
469# see this class; it's magically generated by VectorParam.  The
470# parameter values are stored in the 'value' field as a Python list of
471# whatever type the parameter is supposed to be.  The only purpose of
472# storing these instead of a raw Python list is that we can override
473# the __str__() method to not print out '[' and ']' in the .ini file.
474class _VectorParamValue(object):
475    def __init__(self, value):
476        assert isinstance(value, list) or value == None
477        self.value = value
478
479    def __str__(self):
480        return ' '.join(map(str, self.value))
481
482    # Set member instance's parents to 'parent' if they don't already
483    # have one.  Extends "magic" parenting of ConfigNodes to vectors
484    # of ConfigNodes as well.  See ConfigNode.__setattr__().
485    def _set_parent_if_none(self, parent):
486        if self.value and hasattr(self.value[0], '_set_parent_if_none'):
487            for v in self.value:
488                v._set_parent_if_none(parent)
489
490# Vector-valued parameter description.  Just like Param, except that
491# the value is a vector (list) of the specified type instead of a
492# single value.
493class VectorParam(Param):
494
495    # Inherit Param constructor.  However, the resulting parameter
496    # will be a list of ptype rather than a single element of ptype.
497    def __init__(self, ptype, desc, default=None):
498        Param.__init__(self, ptype, desc, default)
499
500    # Convert assigned value to appropriate type.  If the RHS is not a
501    # list or tuple, it generates a single-element list.
502    def make_value(self, value):
503        if value == None: return value
504        if isinstance(value, list) or isinstance(value, tuple):
505            # list: coerce each element into new list
506            val_list = [Param.make_value(self, v) for v in iter(value)]
507        else:
508            # singleton: coerce & wrap in a list
509            val_list = [Param.make_value(self, value)]
510        # wrap list in _VectorParamValue (see above)
511        return _VectorParamValue(val_list)
512
513    def sim_decl(self, name):
514        return 'VectorParam<%s> %s;' % (self.ptype_name, name)
515
516    # sim_init inherited from Param
517
518#####################################################################
519#
520# Parameter Types
521#
522# Though native Python types could be used to specify parameter types
523# (the 'ptype' field of the Param and VectorParam classes), it's more
524# flexible to define our own set of types.  This gives us more control
525# over how Python expressions are converted to values (via the
526# __init__() constructor) and how these values are printed out (via
527# the __str__() conversion method).  Eventually we'll need these types
528# to correspond to distinct C++ types as well.
529#
530#####################################################################
531
532# Integer parameter type.
533class Int(object):
534    # Constructor.  Value must be Python int or long (long integer).
535    def __init__(self, value):
536        t = type(value)
537        if t == int or t == long:
538            self.value = value
539        else:
540            raise TypeError, "Int param got value %s %s" % (repr(value), t)
541
542    # Use Python string conversion.  Note that this puts an 'L' on the
543    # end of long integers; we can strip that off here if it gives us
544    # trouble.
545    def __str__(self):
546        return str(self.value)
547
548# Counter, Addr, and Tick are just aliases for Int for now.
549class Counter(Int):
550    pass
551
552class Addr(Int):
553    pass
554
555class Tick(Int):
556    pass
557
558# Boolean parameter type.
559class Bool(object):
560
561    # Constructor.  Typically the value will be one of the Python bool
562    # constants True or False (or the aliases true and false below).
563    # Also need to take integer 0 or 1 values since bool was not a
564    # distinct type in Python 2.2.  Parse a bunch of boolean-sounding
565    # strings too just for kicks.
566    def __init__(self, value):
567        t = type(value)
568        if t == bool:
569            self.value = value
570        elif t == int or t == long:
571            if value == 1:
572                self.value = True
573            elif value == 0:
574                self.value = False
575        elif t == str:
576            v = value.lower()
577            if v == "true" or v == "t" or v == "yes" or v == "y":
578                self.value = True
579            elif v == "false" or v == "f" or v == "no" or v == "n":
580                self.value = False
581        # if we didn't set it yet, it must not be something we understand
582        if not hasattr(self, 'value'):
583            raise TypeError, "Bool param got value %s %s" % (repr(value), t)
584
585    # Generate printable string version.
586    def __str__(self):
587        if self.value: return "true"
588        else: return "false"
589
590# String-valued parameter.
591class String(object):
592    # Constructor.  Value must be Python string.
593    def __init__(self, value):
594        t = type(value)
595        if t == str:
596            self.value = value
597        else:
598            raise TypeError, "String param got value %s %s" % (repr(value), t)
599
600    # Generate printable string version.  Not too tricky.
601    def __str__(self):
602        return self.value
603
604# Special class for NULL pointers.  Note the special check in
605# make_param_value() above that lets these be assigned where a
606# SimObject is required.
607class NullSimObject(object):
608    # Constructor.  No parameters, nothing to do.
609    def __init__(self):
610        pass
611
612    def __str__(self):
613        return "NULL"
614
615# The only instance you'll ever need...
616NULL = NullSimObject()
617
618# Enumerated types are a little more complex.  The user specifies the
619# type as Enum(foo) where foo is either a list or dictionary of
620# alternatives (typically strings, but not necessarily so).  (In the
621# long run, the integer value of the parameter will be the list index
622# or the corresponding dictionary value.  For now, since we only check
623# that the alternative is valid and then spit it into a .ini file,
624# there's not much point in using the dictionary.)
625
626# What Enum() must do is generate a new type encapsulating the
627# provided list/dictionary so that specific values of the parameter
628# can be instances of that type.  We define two hidden internal
629# classes (_ListEnum and _DictEnum) to serve as base classes, then
630# derive the new type from the appropriate base class on the fly.
631
632
633# Base class for list-based Enum types.
634class _ListEnum(object):
635    # Constructor.  Value must be a member of the type's map list.
636    def __init__(self, value):
637        if value in self.map:
638            self.value = value
639            self.index = self.map.index(value)
640        else:
641            raise TypeError, "Enum param got bad value '%s' (not in %s)" \
642                  % (value, self.map)
643
644    # Generate printable string version of value.
645    def __str__(self):
646        return str(self.value)
647
648class _DictEnum(object):
649    # Constructor.  Value must be a key in the type's map dictionary.
650    def __init__(self, value):
651        if value in self.map:
652            self.value = value
653            self.index = self.map[value]
654        else:
655            raise TypeError, "Enum param got bad value '%s' (not in %s)" \
656                  % (value, self.map.keys())
657
658    # Generate printable string version of value.
659    def __str__(self):
660        return str(self.value)
661
662# Enum metaclass... calling Enum(foo) generates a new type (class)
663# that derives from _ListEnum or _DictEnum as appropriate.
664class Enum(type):
665    # counter to generate unique names for generated classes
666    counter = 1
667
668    def __new__(cls, map):
669        if isinstance(map, dict):
670            base = _DictEnum
671            keys = map.keys()
672        elif isinstance(map, list):
673            base = _ListEnum
674            keys = map
675        else:
676            raise TypeError, "Enum map must be list or dict (got %s)" % map
677        classname = "Enum%04d" % Enum.counter
678        Enum.counter += 1
679        # New class derives from selected base, and gets a 'map'
680        # attribute containing the specified list or dict.
681        return type.__new__(cls, classname, (base,), { 'map': map })
682
683
684#
685# "Constants"... handy aliases for various values.
686#
687
688# For compatibility with C++ bool constants.
689false = False
690true = True
691
692# Some memory range specifications use this as a default upper bound.
693MAX_ADDR = 2**64 - 1
694
695# For power-of-two sizing, e.g. 64*K gives an integer value 65536.
696K = 1024
697M = K*K
698G = K*M
699
700#####################################################################
701
702# Munge an arbitrary Python code string to get it to execute (mostly
703# dealing with indentation).  Stolen from isa_parser.py... see
704# comments there for a more detailed description.
705def fixPythonIndentation(s):
706    # get rid of blank lines first
707    s = re.sub(r'(?m)^\s*\n', '', s);
708    if (s != '' and re.match(r'[ \t]', s[0])):
709        s = 'if 1:\n' + s
710    return s
711
712# Hook to generate C++ parameter code.
713def gen_sim_code(file):
714    for objname in sim_object_list:
715        print >> file, eval("%s._sim_code()" % objname)
716
717# The final hook to generate .ini files.  Called from configuration
718# script once config is built.
719def instantiate(*objs):
720    for obj in objs:
721        obj._instantiate()
722
723
724