xbar.hh revision 10888:85a001f2193b
1/* 2 * Copyright (c) 2011-2015 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2002-2005 The Regents of The University of Michigan 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Ron Dreslinski 41 * Ali Saidi 42 * Andreas Hansson 43 * William Wang 44 */ 45 46/** 47 * @file 48 * Declaration of an abstract crossbar base class. 49 */ 50 51#ifndef __MEM_XBAR_HH__ 52#define __MEM_XBAR_HH__ 53 54#include <deque> 55 56#include "base/addr_range_map.hh" 57#include "base/hashmap.hh" 58#include "base/types.hh" 59#include "mem/mem_object.hh" 60#include "mem/qport.hh" 61#include "params/BaseXBar.hh" 62#include "sim/stats.hh" 63 64/** 65 * The base crossbar contains the common elements of the non-coherent 66 * and coherent crossbar. It is an abstract class that does not have 67 * any of the functionality relating to the actual reception and 68 * transmission of packets, as this is left for the subclasses. 69 * 70 * The BaseXBar is responsible for the basic flow control (busy or 71 * not), the administration of retries, and the address decoding. 72 */ 73class BaseXBar : public MemObject 74{ 75 76 protected: 77 78 /** 79 * A layer is an internal crossbar arbitration point with its own 80 * flow control. Each layer is a converging multiplexer tree. By 81 * instantiating one layer per destination port (and per packet 82 * type, i.e. request, response, snoop request and snoop 83 * response), we model full crossbar structures like AXI, ACE, 84 * PCIe, etc. 85 * 86 * The template parameter, PortClass, indicates the destination 87 * port type for the layer. The retry list holds either master 88 * ports or slave ports, depending on the direction of the 89 * layer. Thus, a request layer has a retry list containing slave 90 * ports, whereas a response layer holds master ports. 91 */ 92 template <typename SrcType, typename DstType> 93 class Layer : public Drainable 94 { 95 96 public: 97 98 /** 99 * Create a layer and give it a name. The layer uses 100 * the crossbar an event manager. 101 * 102 * @param _port destination port the layer converges at 103 * @param _xbar the crossbar this layer belongs to 104 * @param _name the layer's name 105 */ 106 Layer(DstType& _port, BaseXBar& _xbar, const std::string& _name); 107 108 /** 109 * Drain according to the normal semantics, so that the crossbar 110 * can tell the layer to drain, and pass an event to signal 111 * back when drained. 112 * 113 * @param de drain event to call once drained 114 * 115 * @return 1 if busy or waiting to retry, or 0 if idle 116 */ 117 unsigned int drain(DrainManager *dm); 118 119 /** 120 * Get the crossbar layer's name 121 */ 122 const std::string name() const { return xbar.name() + _name; } 123 124 125 /** 126 * Determine if the layer accepts a packet from a specific 127 * port. If not, the port in question is also added to the 128 * retry list. In either case the state of the layer is 129 * updated accordingly. 130 * 131 * @param port Source port presenting the packet 132 * 133 * @return True if the layer accepts the packet 134 */ 135 bool tryTiming(SrcType* src_port); 136 137 /** 138 * Deal with a destination port accepting a packet by potentially 139 * removing the source port from the retry list (if retrying) and 140 * occupying the layer accordingly. 141 * 142 * @param busy_time Time to spend as a result of a successful send 143 */ 144 void succeededTiming(Tick busy_time); 145 146 /** 147 * Deal with a destination port not accepting a packet by 148 * potentially adding the source port to the retry list (if 149 * not already at the front) and occupying the layer 150 * accordingly. 151 * 152 * @param src_port Source port 153 * @param busy_time Time to spend as a result of a failed send 154 */ 155 void failedTiming(SrcType* src_port, Tick busy_time); 156 157 /** Occupy the layer until until */ 158 void occupyLayer(Tick until); 159 160 /** 161 * Send a retry to the port at the head of waitingForLayer. The 162 * caller must ensure that the list is not empty. 163 */ 164 void retryWaiting(); 165 166 /** 167 * Handle a retry from a neighbouring module. This wraps 168 * retryWaiting by verifying that there are ports waiting 169 * before calling retryWaiting. 170 */ 171 void recvRetry(); 172 173 /** 174 * Register stats for the layer 175 */ 176 void regStats(); 177 178 protected: 179 180 /** 181 * Sending the actual retry, in a manner specific to the 182 * individual layers. Note that for a MasterPort, there is 183 * both a RequestLayer and a SnoopResponseLayer using the same 184 * port, but using different functions for the flow control. 185 */ 186 virtual void sendRetry(SrcType* retry_port) = 0; 187 188 private: 189 190 /** The destination port this layer converges at. */ 191 DstType& port; 192 193 /** The crossbar this layer is a part of. */ 194 BaseXBar& xbar; 195 196 /** A name for this layer. */ 197 std::string _name; 198 199 /** 200 * We declare an enum to track the state of the layer. The 201 * starting point is an idle state where the layer is waiting 202 * for a packet to arrive. Upon arrival, the layer 203 * transitions to the busy state, where it remains either 204 * until the packet transfer is done, or the header time is 205 * spent. Once the layer leaves the busy state, it can 206 * either go back to idle, if no packets have arrived while it 207 * was busy, or the layer goes on to retry the first port 208 * in waitingForLayer. A similar transition takes place from 209 * idle to retry if the layer receives a retry from one of 210 * its connected ports. The retry state lasts until the port 211 * in questions calls sendTiming and returns control to the 212 * layer, or goes to a busy state if the port does not 213 * immediately react to the retry by calling sendTiming. 214 */ 215 enum State { IDLE, BUSY, RETRY }; 216 217 /** track the state of the layer */ 218 State state; 219 220 /** manager to signal when drained */ 221 DrainManager *drainManager; 222 223 /** 224 * A deque of ports that retry should be called on because 225 * the original send was delayed due to a busy layer. 226 */ 227 std::deque<SrcType*> waitingForLayer; 228 229 /** 230 * Track who is waiting for the retry when receiving it from a 231 * peer. If no port is waiting NULL is stored. 232 */ 233 SrcType* waitingForPeer; 234 235 /** 236 * Release the layer after being occupied and return to an 237 * idle state where we proceed to send a retry to any 238 * potential waiting port, or drain if asked to do so. 239 */ 240 void releaseLayer(); 241 242 /** event used to schedule a release of the layer */ 243 EventWrapper<Layer, &Layer::releaseLayer> releaseEvent; 244 245 /** 246 * Stats for occupancy and utilization. These stats capture 247 * the time the layer spends in the busy state and are thus only 248 * relevant when the memory system is in timing mode. 249 */ 250 Stats::Scalar occupancy; 251 Stats::Formula utilization; 252 253 }; 254 255 class ReqLayer : public Layer<SlavePort,MasterPort> 256 { 257 public: 258 /** 259 * Create a request layer and give it a name. 260 * 261 * @param _port destination port the layer converges at 262 * @param _xbar the crossbar this layer belongs to 263 * @param _name the layer's name 264 */ 265 ReqLayer(MasterPort& _port, BaseXBar& _xbar, const std::string& _name) : 266 Layer(_port, _xbar, _name) {} 267 268 protected: 269 270 void sendRetry(SlavePort* retry_port) 271 { retry_port->sendRetryReq(); } 272 }; 273 274 class RespLayer : public Layer<MasterPort,SlavePort> 275 { 276 public: 277 /** 278 * Create a response layer and give it a name. 279 * 280 * @param _port destination port the layer converges at 281 * @param _xbar the crossbar this layer belongs to 282 * @param _name the layer's name 283 */ 284 RespLayer(SlavePort& _port, BaseXBar& _xbar, const std::string& _name) : 285 Layer(_port, _xbar, _name) {} 286 287 protected: 288 289 void sendRetry(MasterPort* retry_port) 290 { retry_port->sendRetryResp(); } 291 }; 292 293 class SnoopRespLayer : public Layer<SlavePort,MasterPort> 294 { 295 public: 296 /** 297 * Create a snoop response layer and give it a name. 298 * 299 * @param _port destination port the layer converges at 300 * @param _xbar the crossbar this layer belongs to 301 * @param _name the layer's name 302 */ 303 SnoopRespLayer(MasterPort& _port, BaseXBar& _xbar, 304 const std::string& _name) : 305 Layer(_port, _xbar, _name) {} 306 307 protected: 308 309 void sendRetry(SlavePort* retry_port) 310 { retry_port->sendRetrySnoopResp(); } 311 }; 312 313 /** 314 * Cycles of front-end pipeline including the delay to accept the request 315 * and to decode the address. 316 */ 317 const Cycles frontendLatency; 318 /** Cycles of forward latency */ 319 const Cycles forwardLatency; 320 /** Cycles of response latency */ 321 const Cycles responseLatency; 322 /** the width of the xbar in bytes */ 323 const uint32_t width; 324 325 AddrRangeMap<PortID> portMap; 326 327 /** 328 * Remember where request packets came from so that we can route 329 * responses to the appropriate port. This relies on the fact that 330 * the underlying Request pointer inside the Packet stays 331 * constant. 332 */ 333 m5::unordered_map<RequestPtr, PortID> routeTo; 334 335 /** all contigous ranges seen by this crossbar */ 336 AddrRangeList xbarRanges; 337 338 AddrRange defaultRange; 339 340 /** 341 * Function called by the port when the crossbar is recieving a 342 * range change. 343 * 344 * @param master_port_id id of the port that received the change 345 */ 346 void recvRangeChange(PortID master_port_id); 347 348 /** Find which port connected to this crossbar (if any) should be 349 * given a packet with this address. 350 * 351 * @param addr Address to find port for. 352 * @return id of port that the packet should be sent out of. 353 */ 354 PortID findPort(Addr addr); 355 356 // Cache for the findPort function storing recently used ports from portMap 357 struct PortCache { 358 bool valid; 359 PortID id; 360 AddrRange range; 361 }; 362 363 PortCache portCache[3]; 364 365 // Checks the cache and returns the id of the port that has the requested 366 // address within its range 367 inline PortID checkPortCache(Addr addr) const { 368 if (portCache[0].valid && portCache[0].range.contains(addr)) { 369 return portCache[0].id; 370 } 371 if (portCache[1].valid && portCache[1].range.contains(addr)) { 372 return portCache[1].id; 373 } 374 if (portCache[2].valid && portCache[2].range.contains(addr)) { 375 return portCache[2].id; 376 } 377 378 return InvalidPortID; 379 } 380 381 // Clears the earliest entry of the cache and inserts a new port entry 382 inline void updatePortCache(short id, const AddrRange& range) { 383 portCache[2].valid = portCache[1].valid; 384 portCache[2].id = portCache[1].id; 385 portCache[2].range = portCache[1].range; 386 387 portCache[1].valid = portCache[0].valid; 388 portCache[1].id = portCache[0].id; 389 portCache[1].range = portCache[0].range; 390 391 portCache[0].valid = true; 392 portCache[0].id = id; 393 portCache[0].range = range; 394 } 395 396 // Clears the cache. Needs to be called in constructor. 397 inline void clearPortCache() { 398 portCache[2].valid = false; 399 portCache[1].valid = false; 400 portCache[0].valid = false; 401 } 402 403 /** 404 * Return the address ranges the crossbar is responsible for. 405 * 406 * @return a list of non-overlapping address ranges 407 */ 408 AddrRangeList getAddrRanges() const; 409 410 /** 411 * Calculate the timing parameters for the packet. Updates the 412 * headerDelay and payloadDelay fields of the packet 413 * object with the relative number of ticks required to transmit 414 * the header and the payload, respectively. 415 * 416 * @param pkt Packet to populate with timings 417 * @param header_delay Header delay to be added 418 */ 419 void calcPacketTiming(PacketPtr pkt, Tick header_delay); 420 421 /** 422 * Remember for each of the master ports of the crossbar if we got 423 * an address range from the connected slave. For convenience, 424 * also keep track of if we got ranges from all the slave modules 425 * or not. 426 */ 427 std::vector<bool> gotAddrRanges; 428 bool gotAllAddrRanges; 429 430 /** The master and slave ports of the crossbar */ 431 std::vector<QueuedSlavePort*> slavePorts; 432 std::vector<MasterPort*> masterPorts; 433 434 /** Port that handles requests that don't match any of the interfaces.*/ 435 PortID defaultPortID; 436 437 /** If true, use address range provided by default device. Any 438 address not handled by another port and not in default device's 439 range will cause a fatal error. If false, just send all 440 addresses not handled by another port to default device. */ 441 const bool useDefaultRange; 442 443 BaseXBar(const BaseXBarParams *p); 444 445 virtual ~BaseXBar(); 446 447 /** 448 * Stats for transaction distribution and data passing through the 449 * crossbar. The transaction distribution is globally counting 450 * different types of commands. The packet count and total packet 451 * size are two-dimensional vectors that are indexed by the 452 * slave port and master port id (thus the neighbouring master and 453 * neighbouring slave), summing up both directions (request and 454 * response). 455 */ 456 Stats::Vector transDist; 457 Stats::Vector2d pktCount; 458 Stats::Vector2d pktSize; 459 460 public: 461 462 virtual void init(); 463 464 /** A function used to return the port associated with this object. */ 465 BaseMasterPort& getMasterPort(const std::string& if_name, 466 PortID idx = InvalidPortID); 467 BaseSlavePort& getSlavePort(const std::string& if_name, 468 PortID idx = InvalidPortID); 469 470 virtual unsigned int drain(DrainManager *dm) = 0; 471 472 virtual void regStats(); 473 474}; 475 476#endif //__MEM_XBAR_HH__ 477