simple_mem.cc revision 11284:b3926db25371
1/*
2 * Copyright (c) 2010-2013, 2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2001-2005 The Regents of The University of Michigan
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Ron Dreslinski
41 *          Ali Saidi
42 *          Andreas Hansson
43 */
44
45#include "base/random.hh"
46#include "mem/simple_mem.hh"
47#include "debug/Drain.hh"
48
49using namespace std;
50
51SimpleMemory::SimpleMemory(const SimpleMemoryParams* p) :
52    AbstractMemory(p),
53    port(name() + ".port", *this), latency(p->latency),
54    latency_var(p->latency_var), bandwidth(p->bandwidth), isBusy(false),
55    retryReq(false), retryResp(false),
56    releaseEvent(this), dequeueEvent(this)
57{
58}
59
60void
61SimpleMemory::init()
62{
63    AbstractMemory::init();
64
65    // allow unconnected memories as this is used in several ruby
66    // systems at the moment
67    if (port.isConnected()) {
68        port.sendRangeChange();
69    }
70}
71
72Tick
73SimpleMemory::recvAtomic(PacketPtr pkt)
74{
75    access(pkt);
76    return pkt->cacheResponding() ? 0 : getLatency();
77}
78
79void
80SimpleMemory::recvFunctional(PacketPtr pkt)
81{
82    pkt->pushLabel(name());
83
84    functionalAccess(pkt);
85
86    bool done = false;
87    auto p = packetQueue.begin();
88    // potentially update the packets in our packet queue as well
89    while (!done && p != packetQueue.end()) {
90        done = pkt->checkFunctional(p->pkt);
91        ++p;
92    }
93
94    pkt->popLabel();
95}
96
97bool
98SimpleMemory::recvTimingReq(PacketPtr pkt)
99{
100    // if a cache is responding, sink the packet without further action
101    if (pkt->cacheResponding()) {
102        pendingDelete.reset(pkt);
103        return true;
104    }
105
106    // we should not get a new request after committing to retry the
107    // current one, but unfortunately the CPU violates this rule, so
108    // simply ignore it for now
109    if (retryReq)
110        return false;
111
112    // if we are busy with a read or write, remember that we have to
113    // retry
114    if (isBusy) {
115        retryReq = true;
116        return false;
117    }
118
119    // technically the packet only reaches us after the header delay,
120    // and since this is a memory controller we also need to
121    // deserialise the payload before performing any write operation
122    Tick receive_delay = pkt->headerDelay + pkt->payloadDelay;
123    pkt->headerDelay = pkt->payloadDelay = 0;
124
125    // update the release time according to the bandwidth limit, and
126    // do so with respect to the time it takes to finish this request
127    // rather than long term as it is the short term data rate that is
128    // limited for any real memory
129
130    // only look at reads and writes when determining if we are busy,
131    // and for how long, as it is not clear what to regulate for the
132    // other types of commands
133    if (pkt->isRead() || pkt->isWrite()) {
134        // calculate an appropriate tick to release to not exceed
135        // the bandwidth limit
136        Tick duration = pkt->getSize() * bandwidth;
137
138        // only consider ourselves busy if there is any need to wait
139        // to avoid extra events being scheduled for (infinitely) fast
140        // memories
141        if (duration != 0) {
142            schedule(releaseEvent, curTick() + duration);
143            isBusy = true;
144        }
145    }
146
147    // go ahead and deal with the packet and put the response in the
148    // queue if there is one
149    bool needsResponse = pkt->needsResponse();
150    recvAtomic(pkt);
151    // turn packet around to go back to requester if response expected
152    if (needsResponse) {
153        // recvAtomic() should already have turned packet into
154        // atomic response
155        assert(pkt->isResponse());
156
157        Tick when_to_send = curTick() + receive_delay + getLatency();
158
159        // typically this should be added at the end, so start the
160        // insertion sort with the last element, also make sure not to
161        // re-order in front of some existing packet with the same
162        // address, the latter is important as this memory effectively
163        // hands out exclusive copies (shared is not asserted)
164        auto i = packetQueue.end();
165        --i;
166        while (i != packetQueue.begin() && when_to_send < i->tick &&
167               i->pkt->getAddr() != pkt->getAddr())
168            --i;
169
170        // emplace inserts the element before the position pointed to by
171        // the iterator, so advance it one step
172        packetQueue.emplace(++i, pkt, when_to_send);
173
174        if (!retryResp && !dequeueEvent.scheduled())
175            schedule(dequeueEvent, packetQueue.back().tick);
176    } else {
177        pendingDelete.reset(pkt);
178    }
179
180    return true;
181}
182
183void
184SimpleMemory::release()
185{
186    assert(isBusy);
187    isBusy = false;
188    if (retryReq) {
189        retryReq = false;
190        port.sendRetryReq();
191    }
192}
193
194void
195SimpleMemory::dequeue()
196{
197    assert(!packetQueue.empty());
198    DeferredPacket deferred_pkt = packetQueue.front();
199
200    retryResp = !port.sendTimingResp(deferred_pkt.pkt);
201
202    if (!retryResp) {
203        packetQueue.pop_front();
204
205        // if the queue is not empty, schedule the next dequeue event,
206        // otherwise signal that we are drained if we were asked to do so
207        if (!packetQueue.empty()) {
208            // if there were packets that got in-between then we
209            // already have an event scheduled, so use re-schedule
210            reschedule(dequeueEvent,
211                       std::max(packetQueue.front().tick, curTick()), true);
212        } else if (drainState() == DrainState::Draining) {
213            DPRINTF(Drain, "Draining of SimpleMemory complete\n");
214            signalDrainDone();
215        }
216    }
217}
218
219Tick
220SimpleMemory::getLatency() const
221{
222    return latency +
223        (latency_var ? random_mt.random<Tick>(0, latency_var) : 0);
224}
225
226void
227SimpleMemory::recvRespRetry()
228{
229    assert(retryResp);
230
231    dequeue();
232}
233
234BaseSlavePort &
235SimpleMemory::getSlavePort(const std::string &if_name, PortID idx)
236{
237    if (if_name != "port") {
238        return MemObject::getSlavePort(if_name, idx);
239    } else {
240        return port;
241    }
242}
243
244DrainState
245SimpleMemory::drain()
246{
247    if (!packetQueue.empty()) {
248        DPRINTF(Drain, "SimpleMemory Queue has requests, waiting to drain\n");
249        return DrainState::Draining;
250    } else {
251        return DrainState::Drained;
252    }
253}
254
255SimpleMemory::MemoryPort::MemoryPort(const std::string& _name,
256                                     SimpleMemory& _memory)
257    : SlavePort(_name, &_memory), memory(_memory)
258{ }
259
260AddrRangeList
261SimpleMemory::MemoryPort::getAddrRanges() const
262{
263    AddrRangeList ranges;
264    ranges.push_back(memory.getAddrRange());
265    return ranges;
266}
267
268Tick
269SimpleMemory::MemoryPort::recvAtomic(PacketPtr pkt)
270{
271    return memory.recvAtomic(pkt);
272}
273
274void
275SimpleMemory::MemoryPort::recvFunctional(PacketPtr pkt)
276{
277    memory.recvFunctional(pkt);
278}
279
280bool
281SimpleMemory::MemoryPort::recvTimingReq(PacketPtr pkt)
282{
283    return memory.recvTimingReq(pkt);
284}
285
286void
287SimpleMemory::MemoryPort::recvRespRetry()
288{
289    memory.recvRespRetry();
290}
291
292SimpleMemory*
293SimpleMemoryParams::create()
294{
295    return new SimpleMemory(this);
296}
297