RubySystem.cc revision 11189
11897Sstever@eecs.umich.edu/*
24130Ssaidi@eecs.umich.edu * Copyright (c) 1999-2011 Mark D. Hill and David A. Wood
31897Sstever@eecs.umich.edu * All rights reserved.
41897Sstever@eecs.umich.edu *
51897Sstever@eecs.umich.edu * Redistribution and use in source and binary forms, with or without
61897Sstever@eecs.umich.edu * modification, are permitted provided that the following conditions are
71897Sstever@eecs.umich.edu * met: redistributions of source code must retain the above copyright
81897Sstever@eecs.umich.edu * notice, this list of conditions and the following disclaimer;
91897Sstever@eecs.umich.edu * redistributions in binary form must reproduce the above copyright
101897Sstever@eecs.umich.edu * notice, this list of conditions and the following disclaimer in the
111897Sstever@eecs.umich.edu * documentation and/or other materials provided with the distribution;
121897Sstever@eecs.umich.edu * neither the name of the copyright holders nor the names of its
131897Sstever@eecs.umich.edu * contributors may be used to endorse or promote products derived from
141897Sstever@eecs.umich.edu * this software without specific prior written permission.
151897Sstever@eecs.umich.edu *
161897Sstever@eecs.umich.edu * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
171897Sstever@eecs.umich.edu * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
181897Sstever@eecs.umich.edu * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
191897Sstever@eecs.umich.edu * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
201897Sstever@eecs.umich.edu * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
211897Sstever@eecs.umich.edu * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
221897Sstever@eecs.umich.edu * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
231897Sstever@eecs.umich.edu * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
241897Sstever@eecs.umich.edu * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
251897Sstever@eecs.umich.edu * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
261897Sstever@eecs.umich.edu * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
271897Sstever@eecs.umich.edu */
281897Sstever@eecs.umich.edu
291897Sstever@eecs.umich.edu#include "mem/ruby/system/RubySystem.hh"
301897Sstever@eecs.umich.edu
311897Sstever@eecs.umich.edu#include <fcntl.h>
321897Sstever@eecs.umich.edu#include <zlib.h>
331897Sstever@eecs.umich.edu
344961Ssaidi@eecs.umich.edu#include <cstdio>
351897Sstever@eecs.umich.edu#include <list>
361897Sstever@eecs.umich.edu
371897Sstever@eecs.umich.edu#include "base/intmath.hh"
381897Sstever@eecs.umich.edu#include "base/statistics.hh"
391897Sstever@eecs.umich.edu#include "debug/RubyCacheTrace.hh"
401897Sstever@eecs.umich.edu#include "debug/RubySystem.hh"
411897Sstever@eecs.umich.edu#include "mem/ruby/common/Address.hh"
421897Sstever@eecs.umich.edu#include "mem/ruby/network/Network.hh"
435187Sgblack@eecs.umich.edu#include "mem/simple_mem.hh"
445187Sgblack@eecs.umich.edu#include "sim/eventq.hh"
453099Sstever@eecs.umich.edu#include "sim/simulate.hh"
463099Sstever@eecs.umich.edu
471897Sstever@eecs.umich.eduusing namespace std;
483709Sstever@eecs.umich.edu
493099Sstever@eecs.umich.edubool RubySystem::m_randomization;
503099Sstever@eecs.umich.eduuint32_t RubySystem::m_block_size_bytes;
511897Sstever@eecs.umich.eduuint32_t RubySystem::m_block_size_bits;
523099Sstever@eecs.umich.eduuint32_t RubySystem::m_memory_size_bits;
533725Sstever@eecs.umich.edubool RubySystem::m_warmup_enabled = false;
543725Sstever@eecs.umich.edu// To look forward to allowing multiple RubySystem instances, track the number
555247Sstever@gmail.com// of RubySystems that need to be warmed up on checkpoint restore.
565247Sstever@gmail.comunsigned RubySystem::m_systems_to_warmup = 0;
571897Sstever@eecs.umich.edubool RubySystem::m_cooldown_enabled = false;
581897Sstever@eecs.umich.edu
591897Sstever@eecs.umich.eduRubySystem::RubySystem(const Params *p)
601897Sstever@eecs.umich.edu    : ClockedObject(p), m_access_backing_store(p->access_backing_store),
611897Sstever@eecs.umich.edu      m_cache_recorder(NULL)
621897Sstever@eecs.umich.edu{
631897Sstever@eecs.umich.edu    m_randomization = p->randomization;
641897Sstever@eecs.umich.edu
651897Sstever@eecs.umich.edu    m_block_size_bytes = p->block_size_bytes;
661897Sstever@eecs.umich.edu    assert(isPowerOf2(m_block_size_bytes));
674961Ssaidi@eecs.umich.edu    m_block_size_bits = floorLog2(m_block_size_bytes);
684961Ssaidi@eecs.umich.edu    m_memory_size_bits = p->memory_size_bits;
694961Ssaidi@eecs.umich.edu
704961Ssaidi@eecs.umich.edu    // Resize to the size of different machine types
714961Ssaidi@eecs.umich.edu    m_abstract_controls.resize(MachineType_NUM);
724961Ssaidi@eecs.umich.edu
734961Ssaidi@eecs.umich.edu    // Collate the statistics before they are printed.
744961Ssaidi@eecs.umich.edu    Stats::registerDumpCallback(new RubyStatsCallback(this));
754961Ssaidi@eecs.umich.edu    // Create the profiler
764961Ssaidi@eecs.umich.edu    m_profiler = new Profiler(p, this);
774961Ssaidi@eecs.umich.edu    m_phys_mem = p->phys_mem;
784961Ssaidi@eecs.umich.edu}
794961Ssaidi@eecs.umich.edu
804961Ssaidi@eecs.umich.eduvoid
811897Sstever@eecs.umich.eduRubySystem::registerNetwork(Network* network_ptr)
821897Sstever@eecs.umich.edu{
831897Sstever@eecs.umich.edu    m_network = network_ptr;
841897Sstever@eecs.umich.edu}
851897Sstever@eecs.umich.edu
861897Sstever@eecs.umich.eduvoid
871897Sstever@eecs.umich.eduRubySystem::registerAbstractController(AbstractController* cntrl)
884961Ssaidi@eecs.umich.edu{
894961Ssaidi@eecs.umich.edu    m_abs_cntrl_vec.push_back(cntrl);
904961Ssaidi@eecs.umich.edu
914961Ssaidi@eecs.umich.edu    MachineID id = cntrl->getMachineID();
924961Ssaidi@eecs.umich.edu    m_abstract_controls[id.getType()][id.getNum()] = cntrl;
934961Ssaidi@eecs.umich.edu}
944961Ssaidi@eecs.umich.edu
954961Ssaidi@eecs.umich.eduRubySystem::~RubySystem()
964961Ssaidi@eecs.umich.edu{
974961Ssaidi@eecs.umich.edu    delete m_network;
984961Ssaidi@eecs.umich.edu    delete m_profiler;
994961Ssaidi@eecs.umich.edu}
1004961Ssaidi@eecs.umich.edu
1014961Ssaidi@eecs.umich.eduvoid
1024961Ssaidi@eecs.umich.eduRubySystem::makeCacheRecorder(uint8_t *uncompressed_trace,
1034961Ssaidi@eecs.umich.edu                              uint64_t cache_trace_size,
1044961Ssaidi@eecs.umich.edu                              uint64_t block_size_bytes)
1054961Ssaidi@eecs.umich.edu{
1061897Sstever@eecs.umich.edu    vector<Sequencer*> sequencer_map;
1074961Ssaidi@eecs.umich.edu    Sequencer* sequencer_ptr = NULL;
1084961Ssaidi@eecs.umich.edu
1094961Ssaidi@eecs.umich.edu    for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
1105247Sstever@gmail.com        sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer());
1115247Sstever@gmail.com        if (sequencer_ptr == NULL) {
1123725Sstever@eecs.umich.edu            sequencer_ptr = sequencer_map[cntrl];
1134975Ssaidi@eecs.umich.edu        }
1141897Sstever@eecs.umich.edu    }
1154961Ssaidi@eecs.umich.edu
116    assert(sequencer_ptr != NULL);
117
118    for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
119        if (sequencer_map[cntrl] == NULL) {
120            sequencer_map[cntrl] = sequencer_ptr;
121        }
122    }
123
124    // Remove the old CacheRecorder if it's still hanging about.
125    if (m_cache_recorder != NULL) {
126        delete m_cache_recorder;
127    }
128
129    // Create the CacheRecorder and record the cache trace
130    m_cache_recorder = new CacheRecorder(uncompressed_trace, cache_trace_size,
131                                         sequencer_map, block_size_bytes);
132}
133
134void
135RubySystem::memWriteback()
136{
137    m_cooldown_enabled = true;
138
139    // Make the trace so we know what to write back.
140    DPRINTF(RubyCacheTrace, "Recording Cache Trace\n");
141    makeCacheRecorder(NULL, 0, getBlockSizeBytes());
142    for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
143        m_abs_cntrl_vec[cntrl]->recordCacheTrace(cntrl, m_cache_recorder);
144    }
145    DPRINTF(RubyCacheTrace, "Cache Trace Complete\n");
146
147    // save the current tick value
148    Tick curtick_original = curTick();
149    DPRINTF(RubyCacheTrace, "Recording current tick %ld\n", curtick_original);
150
151    // Deschedule all prior events on the event queue, but record the tick they
152    // were scheduled at so they can be restored correctly later.
153    list<pair<Event*, Tick> > original_events;
154    while (!eventq->empty()) {
155        Event *curr_head = eventq->getHead();
156        if (curr_head->isAutoDelete()) {
157            DPRINTF(RubyCacheTrace, "Event %s auto-deletes when descheduled,"
158                    " not recording\n", curr_head->name());
159        } else {
160            original_events.push_back(make_pair(curr_head, curr_head->when()));
161        }
162        eventq->deschedule(curr_head);
163    }
164
165    // Schedule an event to start cache cooldown
166    DPRINTF(RubyCacheTrace, "Starting cache flush\n");
167    enqueueRubyEvent(curTick());
168    simulate();
169    DPRINTF(RubyCacheTrace, "Cache flush complete\n");
170
171    // Deschedule any events left on the event queue.
172    while (!eventq->empty()) {
173        eventq->deschedule(eventq->getHead());
174    }
175
176    // Restore curTick
177    setCurTick(curtick_original);
178
179    // Restore all events that were originally on the event queue.  This is
180    // done after setting curTick back to its original value so that events do
181    // not seem to be scheduled in the past.
182    while (!original_events.empty()) {
183        pair<Event*, Tick> event = original_events.back();
184        eventq->schedule(event.first, event.second);
185        original_events.pop_back();
186    }
187
188    // No longer flushing back to memory.
189    m_cooldown_enabled = false;
190
191    // There are several issues with continuing simulation after calling
192    // memWriteback() at the moment, that stem from taking events off the
193    // queue, simulating again, and then putting them back on, whilst
194    // pretending that no time has passed.  One is that some events will have
195    // been deleted, so can't be put back.  Another is that any object
196    // recording the tick something happens may end up storing a tick in the
197    // future.  A simple warning here alerts the user that things may not work
198    // as expected.
199    warn_once("Ruby memory writeback is experimental.  Continuing simulation "
200              "afterwards may not always work as intended.");
201
202    // Keep the cache recorder around so that we can dump the trace if a
203    // checkpoint is immediately taken.
204}
205
206void
207RubySystem::writeCompressedTrace(uint8_t *raw_data, string filename,
208                                 uint64_t uncompressed_trace_size)
209{
210    // Create the checkpoint file for the memory
211    string thefile = CheckpointIn::dir() + "/" + filename.c_str();
212
213    int fd = creat(thefile.c_str(), 0664);
214    if (fd < 0) {
215        perror("creat");
216        fatal("Can't open memory trace file '%s'\n", filename);
217    }
218
219    gzFile compressedMemory = gzdopen(fd, "wb");
220    if (compressedMemory == NULL)
221        fatal("Insufficient memory to allocate compression state for %s\n",
222              filename);
223
224    if (gzwrite(compressedMemory, raw_data, uncompressed_trace_size) !=
225        uncompressed_trace_size) {
226        fatal("Write failed on memory trace file '%s'\n", filename);
227    }
228
229    if (gzclose(compressedMemory)) {
230        fatal("Close failed on memory trace file '%s'\n", filename);
231    }
232    delete[] raw_data;
233}
234
235void
236RubySystem::serialize(CheckpointOut &cp) const
237{
238    // Store the cache-block size, so we are able to restore on systems with a
239    // different cache-block size. CacheRecorder depends on the correct
240    // cache-block size upon unserializing.
241    uint64_t block_size_bytes = getBlockSizeBytes();
242    SERIALIZE_SCALAR(block_size_bytes);
243
244    // Check that there's a valid trace to use.  If not, then memory won't be
245    // up-to-date and the simulation will probably fail when restoring from the
246    // checkpoint.
247    if (m_cache_recorder == NULL) {
248        fatal("Call memWriteback() before serialize() to create ruby trace");
249    }
250
251    // Aggregate the trace entries together into a single array
252    uint8_t *raw_data = new uint8_t[4096];
253    uint64_t cache_trace_size = m_cache_recorder->aggregateRecords(&raw_data,
254                                                                 4096);
255    string cache_trace_file = name() + ".cache.gz";
256    writeCompressedTrace(raw_data, cache_trace_file, cache_trace_size);
257
258    SERIALIZE_SCALAR(cache_trace_file);
259    SERIALIZE_SCALAR(cache_trace_size);
260}
261
262void
263RubySystem::drainResume()
264{
265    // Delete the cache recorder if it was created in memWriteback()
266    // to checkpoint the current cache state.
267    if (m_cache_recorder) {
268        delete m_cache_recorder;
269        m_cache_recorder = NULL;
270    }
271}
272
273void
274RubySystem::readCompressedTrace(string filename, uint8_t *&raw_data,
275                                uint64_t &uncompressed_trace_size)
276{
277    // Read the trace file
278    gzFile compressedTrace;
279
280    // trace file
281    int fd = open(filename.c_str(), O_RDONLY);
282    if (fd < 0) {
283        perror("open");
284        fatal("Unable to open trace file %s", filename);
285    }
286
287    compressedTrace = gzdopen(fd, "rb");
288    if (compressedTrace == NULL) {
289        fatal("Insufficient memory to allocate compression state for %s\n",
290              filename);
291    }
292
293    raw_data = new uint8_t[uncompressed_trace_size];
294    if (gzread(compressedTrace, raw_data, uncompressed_trace_size) <
295            uncompressed_trace_size) {
296        fatal("Unable to read complete trace from file %s\n", filename);
297    }
298
299    if (gzclose(compressedTrace)) {
300        fatal("Failed to close cache trace file '%s'\n", filename);
301    }
302}
303
304void
305RubySystem::unserialize(CheckpointIn &cp)
306{
307    uint8_t *uncompressed_trace = NULL;
308
309    // This value should be set to the checkpoint-system's block-size.
310    // Optional, as checkpoints without it can be run if the
311    // checkpoint-system's block-size == current block-size.
312    uint64_t block_size_bytes = getBlockSizeBytes();
313    UNSERIALIZE_OPT_SCALAR(block_size_bytes);
314
315    string cache_trace_file;
316    uint64_t cache_trace_size = 0;
317
318    UNSERIALIZE_SCALAR(cache_trace_file);
319    UNSERIALIZE_SCALAR(cache_trace_size);
320    cache_trace_file = cp.cptDir + "/" + cache_trace_file;
321
322    readCompressedTrace(cache_trace_file, uncompressed_trace,
323                        cache_trace_size);
324    m_warmup_enabled = true;
325    m_systems_to_warmup++;
326
327    // Create the cache recorder that will hang around until startup.
328    makeCacheRecorder(uncompressed_trace, cache_trace_size, block_size_bytes);
329}
330
331void
332RubySystem::startup()
333{
334
335    // Ruby restores state from a checkpoint by resetting the clock to 0 and
336    // playing the requests that can possibly re-generate the cache state.
337    // The clock value is set to the actual checkpointed value once all the
338    // requests have been executed.
339    //
340    // This way of restoring state is pretty finicky. For example, if a
341    // Ruby component reads time before the state has been restored, it would
342    // cache this value and hence its clock would not be reset to 0, when
343    // Ruby resets the global clock. This can potentially result in a
344    // deadlock.
345    //
346    // The solution is that no Ruby component should read time before the
347    // simulation starts. And then one also needs to hope that the time
348    // Ruby finishes restoring the state is less than the time when the
349    // state was checkpointed.
350
351    if (m_warmup_enabled) {
352        DPRINTF(RubyCacheTrace, "Starting ruby cache warmup\n");
353        // save the current tick value
354        Tick curtick_original = curTick();
355        // save the event queue head
356        Event* eventq_head = eventq->replaceHead(NULL);
357        // set curTick to 0 and reset Ruby System's clock
358        setCurTick(0);
359        resetClock();
360
361        // Schedule an event to start cache warmup
362        enqueueRubyEvent(curTick());
363        simulate();
364
365        delete m_cache_recorder;
366        m_cache_recorder = NULL;
367        m_systems_to_warmup--;
368        if (m_systems_to_warmup == 0) {
369            m_warmup_enabled = false;
370        }
371
372        // Restore eventq head
373        eventq->replaceHead(eventq_head);
374        // Restore curTick and Ruby System's clock
375        setCurTick(curtick_original);
376        resetClock();
377    }
378
379    resetStats();
380}
381
382void
383RubySystem::RubyEvent::process()
384{
385    if (RubySystem::getWarmupEnabled()) {
386        m_ruby_system->m_cache_recorder->enqueueNextFetchRequest();
387    } else if (RubySystem::getCooldownEnabled()) {
388        m_ruby_system->m_cache_recorder->enqueueNextFlushRequest();
389    }
390}
391
392void
393RubySystem::resetStats()
394{
395    m_start_cycle = curCycle();
396}
397
398bool
399RubySystem::functionalRead(PacketPtr pkt)
400{
401    Addr address(pkt->getAddr());
402    Addr line_address = makeLineAddress(address);
403
404    AccessPermission access_perm = AccessPermission_NotPresent;
405    int num_controllers = m_abs_cntrl_vec.size();
406
407    DPRINTF(RubySystem, "Functional Read request for %#x\n", address);
408
409    unsigned int num_ro = 0;
410    unsigned int num_rw = 0;
411    unsigned int num_busy = 0;
412    unsigned int num_backing_store = 0;
413    unsigned int num_invalid = 0;
414
415    // In this loop we count the number of controllers that have the given
416    // address in read only, read write and busy states.
417    for (unsigned int i = 0; i < num_controllers; ++i) {
418        access_perm = m_abs_cntrl_vec[i]-> getAccessPermission(line_address);
419        if (access_perm == AccessPermission_Read_Only)
420            num_ro++;
421        else if (access_perm == AccessPermission_Read_Write)
422            num_rw++;
423        else if (access_perm == AccessPermission_Busy)
424            num_busy++;
425        else if (access_perm == AccessPermission_Backing_Store)
426            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
427            // to represent blocks in memory *for Broadcast/Snooping protocols*,
428            // where memory has no idea whether it has an exclusive copy of data
429            // or not.
430            num_backing_store++;
431        else if (access_perm == AccessPermission_Invalid ||
432                 access_perm == AccessPermission_NotPresent)
433            num_invalid++;
434    }
435    assert(num_rw <= 1);
436
437    // This if case is meant to capture what happens in a Broadcast/Snoop
438    // protocol where the block does not exist in the cache hierarchy. You
439    // only want to read from the Backing_Store memory if there is no copy in
440    // the cache hierarchy, otherwise you want to try to read the RO or RW
441    // copies existing in the cache hierarchy (covered by the else statement).
442    // The reason is because the Backing_Store memory could easily be stale, if
443    // there are copies floating around the cache hierarchy, so you want to read
444    // it only if it's not in the cache hierarchy at all.
445    if (num_invalid == (num_controllers - 1) && num_backing_store == 1) {
446        DPRINTF(RubySystem, "only copy in Backing_Store memory, read from it\n");
447        for (unsigned int i = 0; i < num_controllers; ++i) {
448            access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address);
449            if (access_perm == AccessPermission_Backing_Store) {
450                m_abs_cntrl_vec[i]->functionalRead(line_address, pkt);
451                return true;
452            }
453        }
454    } else if (num_ro > 0 || num_rw == 1) {
455        // In Broadcast/Snoop protocols, this covers if you know the block
456        // exists somewhere in the caching hierarchy, then you want to read any
457        // valid RO or RW block.  In directory protocols, same thing, you want
458        // to read any valid readable copy of the block.
459        DPRINTF(RubySystem, "num_busy = %d, num_ro = %d, num_rw = %d\n",
460                num_busy, num_ro, num_rw);
461        // In this loop, we try to figure which controller has a read only or
462        // a read write copy of the given address. Any valid copy would suffice
463        // for a functional read.
464        for (unsigned int i = 0;i < num_controllers;++i) {
465            access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address);
466            if (access_perm == AccessPermission_Read_Only ||
467                access_perm == AccessPermission_Read_Write) {
468                m_abs_cntrl_vec[i]->functionalRead(line_address, pkt);
469                return true;
470            }
471        }
472    }
473
474    return false;
475}
476
477// The function searches through all the buffers that exist in different
478// cache, directory and memory controllers, and in the network components
479// and writes the data portion of those that hold the address specified
480// in the packet.
481bool
482RubySystem::functionalWrite(PacketPtr pkt)
483{
484    Addr addr(pkt->getAddr());
485    Addr line_addr = makeLineAddress(addr);
486    AccessPermission access_perm = AccessPermission_NotPresent;
487    int num_controllers = m_abs_cntrl_vec.size();
488
489    DPRINTF(RubySystem, "Functional Write request for %#x\n", addr);
490
491    uint32_t M5_VAR_USED num_functional_writes = 0;
492
493    for (unsigned int i = 0; i < num_controllers;++i) {
494        num_functional_writes +=
495            m_abs_cntrl_vec[i]->functionalWriteBuffers(pkt);
496
497        access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_addr);
498        if (access_perm != AccessPermission_Invalid &&
499            access_perm != AccessPermission_NotPresent) {
500            num_functional_writes +=
501                m_abs_cntrl_vec[i]->functionalWrite(line_addr, pkt);
502        }
503    }
504
505    num_functional_writes += m_network->functionalWrite(pkt);
506    DPRINTF(RubySystem, "Messages written = %u\n", num_functional_writes);
507
508    return true;
509}
510
511#ifdef CHECK_COHERENCE
512// This code will check for cases if the given cache block is exclusive in
513// one node and shared in another-- a coherence violation
514//
515// To use, the SLICC specification must call sequencer.checkCoherence(address)
516// when the controller changes to a state with new permissions.  Do this
517// in setState.  The SLICC spec must also define methods "isBlockShared"
518// and "isBlockExclusive" that are specific to that protocol
519//
520void
521RubySystem::checkGlobalCoherenceInvariant(const Address& addr)
522{
523#if 0
524    NodeID exclusive = -1;
525    bool sharedDetected = false;
526    NodeID lastShared = -1;
527
528    for (int i = 0; i < m_chip_vector.size(); i++) {
529        if (m_chip_vector[i]->isBlockExclusive(addr)) {
530            if (exclusive != -1) {
531                // coherence violation
532                WARN_EXPR(exclusive);
533                WARN_EXPR(m_chip_vector[i]->getID());
534                WARN_EXPR(addr);
535                WARN_EXPR(getTime());
536                ERROR_MSG("Coherence Violation Detected -- 2 exclusive chips");
537            } else if (sharedDetected) {
538                WARN_EXPR(lastShared);
539                WARN_EXPR(m_chip_vector[i]->getID());
540                WARN_EXPR(addr);
541                WARN_EXPR(getTime());
542                ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared");
543            } else {
544                exclusive = m_chip_vector[i]->getID();
545            }
546        } else if (m_chip_vector[i]->isBlockShared(addr)) {
547            sharedDetected = true;
548            lastShared = m_chip_vector[i]->getID();
549
550            if (exclusive != -1) {
551                WARN_EXPR(lastShared);
552                WARN_EXPR(exclusive);
553                WARN_EXPR(addr);
554                WARN_EXPR(getTime());
555                ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared");
556            }
557        }
558    }
559#endif
560}
561#endif
562
563RubySystem *
564RubySystemParams::create()
565{
566    return new RubySystem(this);
567}
568