AbstractController.cc revision 12823:ba630bc7a36d
1/*
2 * Copyright (c) 2017 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 */
40
41#include "mem/ruby/slicc_interface/AbstractController.hh"
42
43#include "debug/RubyQueue.hh"
44#include "mem/protocol/MemoryMsg.hh"
45#include "mem/ruby/network/Network.hh"
46#include "mem/ruby/system/GPUCoalescer.hh"
47#include "mem/ruby/system/RubySystem.hh"
48#include "mem/ruby/system/Sequencer.hh"
49#include "sim/system.hh"
50
51AbstractController::AbstractController(const Params *p)
52    : MemObject(p), Consumer(this), m_version(p->version),
53      m_clusterID(p->cluster_id),
54      m_masterId(p->system->getMasterId(this)), m_is_blocking(false),
55      m_number_of_TBEs(p->number_of_TBEs),
56      m_transitions_per_cycle(p->transitions_per_cycle),
57      m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
58      memoryPort(csprintf("%s.memory", name()), this, ""),
59      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end())
60{
61    if (m_version == 0) {
62        // Combine the statistics from all controllers
63        // of this particular type.
64        Stats::registerDumpCallback(new StatsCallback(this));
65    }
66}
67
68void
69AbstractController::init()
70{
71    params()->ruby_system->registerAbstractController(this);
72    m_delayHistogram.init(10);
73    uint32_t size = Network::getNumberOfVirtualNetworks();
74    for (uint32_t i = 0; i < size; i++) {
75        m_delayVCHistogram.push_back(new Stats::Histogram());
76        m_delayVCHistogram[i]->init(10);
77    }
78}
79
80void
81AbstractController::resetStats()
82{
83    m_delayHistogram.reset();
84    uint32_t size = Network::getNumberOfVirtualNetworks();
85    for (uint32_t i = 0; i < size; i++) {
86        m_delayVCHistogram[i]->reset();
87    }
88}
89
90void
91AbstractController::regStats()
92{
93    MemObject::regStats();
94
95    m_fully_busy_cycles
96        .name(name() + ".fully_busy_cycles")
97        .desc("cycles for which number of transistions == max transitions")
98        .flags(Stats::nozero);
99}
100
101void
102AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
103{
104    assert(virtualNetwork < m_delayVCHistogram.size());
105    m_delayHistogram.sample(delay);
106    m_delayVCHistogram[virtualNetwork]->sample(delay);
107}
108
109void
110AbstractController::stallBuffer(MessageBuffer* buf, Addr addr)
111{
112    if (m_waiting_buffers.count(addr) == 0) {
113        MsgVecType* msgVec = new MsgVecType;
114        msgVec->resize(m_in_ports, NULL);
115        m_waiting_buffers[addr] = msgVec;
116    }
117    DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port,
118            addr);
119    assert(m_in_ports > m_cur_in_port);
120    (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
121}
122
123void
124AbstractController::wakeUpBuffers(Addr addr)
125{
126    if (m_waiting_buffers.count(addr) > 0) {
127        //
128        // Wake up all possible lower rank (i.e. lower priority) buffers that could
129        // be waiting on this message.
130        //
131        for (int in_port_rank = m_cur_in_port - 1;
132             in_port_rank >= 0;
133             in_port_rank--) {
134            if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
135                (*(m_waiting_buffers[addr]))[in_port_rank]->
136                    reanalyzeMessages(addr, clockEdge());
137            }
138        }
139        delete m_waiting_buffers[addr];
140        m_waiting_buffers.erase(addr);
141    }
142}
143
144void
145AbstractController::wakeUpAllBuffers(Addr addr)
146{
147    if (m_waiting_buffers.count(addr) > 0) {
148        //
149        // Wake up all possible lower rank (i.e. lower priority) buffers that could
150        // be waiting on this message.
151        //
152        for (int in_port_rank = m_in_ports - 1;
153             in_port_rank >= 0;
154             in_port_rank--) {
155            if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
156                (*(m_waiting_buffers[addr]))[in_port_rank]->
157                    reanalyzeMessages(addr, clockEdge());
158            }
159        }
160        delete m_waiting_buffers[addr];
161        m_waiting_buffers.erase(addr);
162    }
163}
164
165void
166AbstractController::wakeUpAllBuffers()
167{
168    //
169    // Wake up all possible buffers that could be waiting on any message.
170    //
171
172    std::vector<MsgVecType*> wokeUpMsgVecs;
173    MsgBufType wokeUpMsgBufs;
174
175    if (m_waiting_buffers.size() > 0) {
176        for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
177             buf_iter != m_waiting_buffers.end();
178             ++buf_iter) {
179             for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
180                  vec_iter != buf_iter->second->end();
181                  ++vec_iter) {
182                  //
183                  // Make sure the MessageBuffer has not already be reanalyzed
184                  //
185                  if (*vec_iter != NULL &&
186                      (wokeUpMsgBufs.count(*vec_iter) == 0)) {
187                      (*vec_iter)->reanalyzeAllMessages(clockEdge());
188                      wokeUpMsgBufs.insert(*vec_iter);
189                  }
190             }
191             wokeUpMsgVecs.push_back(buf_iter->second);
192        }
193
194        for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
195             wb_iter != wokeUpMsgVecs.end();
196             ++wb_iter) {
197             delete (*wb_iter);
198        }
199
200        m_waiting_buffers.clear();
201    }
202}
203
204void
205AbstractController::blockOnQueue(Addr addr, MessageBuffer* port)
206{
207    m_is_blocking = true;
208    m_block_map[addr] = port;
209}
210
211bool
212AbstractController::isBlocked(Addr addr) const
213{
214    return m_is_blocking && (m_block_map.find(addr) != m_block_map.end());
215}
216
217void
218AbstractController::unblock(Addr addr)
219{
220    m_block_map.erase(addr);
221    if (m_block_map.size() == 0) {
222       m_is_blocking = false;
223    }
224}
225
226bool
227AbstractController::isBlocked(Addr addr)
228{
229    return (m_block_map.count(addr) > 0);
230}
231
232BaseMasterPort &
233AbstractController::getMasterPort(const std::string &if_name,
234                                  PortID idx)
235{
236    return memoryPort;
237}
238
239void
240AbstractController::queueMemoryRead(const MachineID &id, Addr addr,
241                                    Cycles latency)
242{
243    RequestPtr req = std::make_shared<Request>(
244        addr, RubySystem::getBlockSizeBytes(), 0, m_masterId);
245
246    PacketPtr pkt = Packet::createRead(req);
247    uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
248    pkt->dataDynamic(newData);
249
250    SenderState *s = new SenderState(id);
251    pkt->pushSenderState(s);
252
253    // Use functional rather than timing accesses during warmup
254    if (RubySystem::getWarmupEnabled()) {
255        memoryPort.sendFunctional(pkt);
256        recvTimingResp(pkt);
257        return;
258    }
259
260    memoryPort.schedTimingReq(pkt, clockEdge(latency));
261}
262
263void
264AbstractController::queueMemoryWrite(const MachineID &id, Addr addr,
265                                     Cycles latency, const DataBlock &block)
266{
267    RequestPtr req = std::make_shared<Request>(
268        addr, RubySystem::getBlockSizeBytes(), 0, m_masterId);
269
270    PacketPtr pkt = Packet::createWrite(req);
271    uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
272    pkt->dataDynamic(newData);
273    memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
274           RubySystem::getBlockSizeBytes());
275
276    SenderState *s = new SenderState(id);
277    pkt->pushSenderState(s);
278
279    // Use functional rather than timing accesses during warmup
280    if (RubySystem::getWarmupEnabled()) {
281        memoryPort.sendFunctional(pkt);
282        recvTimingResp(pkt);
283        return;
284    }
285
286    // Create a block and copy data from the block.
287    memoryPort.schedTimingReq(pkt, clockEdge(latency));
288}
289
290void
291AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr,
292                                            Cycles latency,
293                                            const DataBlock &block, int size)
294{
295    RequestPtr req = std::make_shared<Request>(addr, size, 0, m_masterId);
296
297    PacketPtr pkt = Packet::createWrite(req);
298    uint8_t *newData = new uint8_t[size];
299    pkt->dataDynamic(newData);
300    memcpy(newData, block.getData(getOffset(addr), size), size);
301
302    SenderState *s = new SenderState(id);
303    pkt->pushSenderState(s);
304
305    // Create a block and copy data from the block.
306    memoryPort.schedTimingReq(pkt, clockEdge(latency));
307}
308
309void
310AbstractController::functionalMemoryRead(PacketPtr pkt)
311{
312    memoryPort.sendFunctional(pkt);
313}
314
315int
316AbstractController::functionalMemoryWrite(PacketPtr pkt)
317{
318    int num_functional_writes = 0;
319
320    // Check the buffer from the controller to the memory.
321    if (memoryPort.trySatisfyFunctional(pkt)) {
322        num_functional_writes++;
323    }
324
325    // Update memory itself.
326    memoryPort.sendFunctional(pkt);
327    return num_functional_writes + 1;
328}
329
330void
331AbstractController::recvTimingResp(PacketPtr pkt)
332{
333    assert(getMemoryQueue());
334    assert(pkt->isResponse());
335
336    std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
337    (*msg).m_addr = pkt->getAddr();
338    (*msg).m_Sender = m_machineID;
339
340    SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
341    (*msg).m_OriginalRequestorMachId = s->id;
342    delete s;
343
344    if (pkt->isRead()) {
345        (*msg).m_Type = MemoryRequestType_MEMORY_READ;
346        (*msg).m_MessageSize = MessageSizeType_Response_Data;
347
348        // Copy data from the packet
349        (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
350                                 RubySystem::getBlockSizeBytes());
351    } else if (pkt->isWrite()) {
352        (*msg).m_Type = MemoryRequestType_MEMORY_WB;
353        (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
354    } else {
355        panic("Incorrect packet type received from memory controller!");
356    }
357
358    getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
359    delete pkt;
360}
361
362Tick
363AbstractController::recvAtomic(PacketPtr pkt)
364{
365   return ticksToCycles(memoryPort.sendAtomic(pkt));
366}
367
368MachineID
369AbstractController::mapAddressToMachine(Addr addr, MachineType mtype) const
370{
371    NodeID node = m_net_ptr->addressToNodeID(addr, mtype);
372    MachineID mach = {mtype, node};
373    return mach;
374}
375
376bool
377AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
378{
379    controller->recvTimingResp(pkt);
380    return true;
381}
382
383AbstractController::MemoryPort::MemoryPort(const std::string &_name,
384                                           AbstractController *_controller,
385                                           const std::string &_label)
386    : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
387      reqQueue(*_controller, *this, _label),
388      snoopRespQueue(*_controller, *this, _label),
389      controller(_controller)
390{
391}
392