AbstractController.cc revision 11793:ef606668d247
1/*
2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "mem/ruby/slicc_interface/AbstractController.hh"
30
31#include "debug/RubyQueue.hh"
32#include "mem/protocol/MemoryMsg.hh"
33#include "mem/ruby/network/Network.hh"
34#include "mem/ruby/system/GPUCoalescer.hh"
35#include "mem/ruby/system/RubySystem.hh"
36#include "mem/ruby/system/Sequencer.hh"
37#include "sim/system.hh"
38
39AbstractController::AbstractController(const Params *p)
40    : MemObject(p), Consumer(this), m_version(p->version),
41      m_clusterID(p->cluster_id),
42      m_masterId(p->system->getMasterId(name())), m_is_blocking(false),
43      m_number_of_TBEs(p->number_of_TBEs),
44      m_transitions_per_cycle(p->transitions_per_cycle),
45      m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
46      memoryPort(csprintf("%s.memory", name()), this, "")
47{
48    if (m_version == 0) {
49        // Combine the statistics from all controllers
50        // of this particular type.
51        Stats::registerDumpCallback(new StatsCallback(this));
52    }
53}
54
55void
56AbstractController::init()
57{
58    params()->ruby_system->registerAbstractController(this);
59    m_delayHistogram.init(10);
60    uint32_t size = Network::getNumberOfVirtualNetworks();
61    for (uint32_t i = 0; i < size; i++) {
62        m_delayVCHistogram.push_back(new Stats::Histogram());
63        m_delayVCHistogram[i]->init(10);
64    }
65}
66
67void
68AbstractController::resetStats()
69{
70    m_delayHistogram.reset();
71    uint32_t size = Network::getNumberOfVirtualNetworks();
72    for (uint32_t i = 0; i < size; i++) {
73        m_delayVCHistogram[i]->reset();
74    }
75}
76
77void
78AbstractController::regStats()
79{
80    MemObject::regStats();
81
82    m_fully_busy_cycles
83        .name(name() + ".fully_busy_cycles")
84        .desc("cycles for which number of transistions == max transitions")
85        .flags(Stats::nozero);
86}
87
88void
89AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
90{
91    assert(virtualNetwork < m_delayVCHistogram.size());
92    m_delayHistogram.sample(delay);
93    m_delayVCHistogram[virtualNetwork]->sample(delay);
94}
95
96void
97AbstractController::stallBuffer(MessageBuffer* buf, Addr addr)
98{
99    if (m_waiting_buffers.count(addr) == 0) {
100        MsgVecType* msgVec = new MsgVecType;
101        msgVec->resize(m_in_ports, NULL);
102        m_waiting_buffers[addr] = msgVec;
103    }
104    DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port,
105            addr);
106    assert(m_in_ports > m_cur_in_port);
107    (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
108}
109
110void
111AbstractController::wakeUpBuffers(Addr addr)
112{
113    if (m_waiting_buffers.count(addr) > 0) {
114        //
115        // Wake up all possible lower rank (i.e. lower priority) buffers that could
116        // be waiting on this message.
117        //
118        for (int in_port_rank = m_cur_in_port - 1;
119             in_port_rank >= 0;
120             in_port_rank--) {
121            if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
122                (*(m_waiting_buffers[addr]))[in_port_rank]->
123                    reanalyzeMessages(addr, clockEdge());
124            }
125        }
126        delete m_waiting_buffers[addr];
127        m_waiting_buffers.erase(addr);
128    }
129}
130
131void
132AbstractController::wakeUpAllBuffers(Addr addr)
133{
134    if (m_waiting_buffers.count(addr) > 0) {
135        //
136        // Wake up all possible lower rank (i.e. lower priority) buffers that could
137        // be waiting on this message.
138        //
139        for (int in_port_rank = m_in_ports - 1;
140             in_port_rank >= 0;
141             in_port_rank--) {
142            if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
143                (*(m_waiting_buffers[addr]))[in_port_rank]->
144                    reanalyzeMessages(addr, clockEdge());
145            }
146        }
147        delete m_waiting_buffers[addr];
148        m_waiting_buffers.erase(addr);
149    }
150}
151
152void
153AbstractController::wakeUpAllBuffers()
154{
155    //
156    // Wake up all possible buffers that could be waiting on any message.
157    //
158
159    std::vector<MsgVecType*> wokeUpMsgVecs;
160    MsgBufType wokeUpMsgBufs;
161
162    if (m_waiting_buffers.size() > 0) {
163        for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
164             buf_iter != m_waiting_buffers.end();
165             ++buf_iter) {
166             for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
167                  vec_iter != buf_iter->second->end();
168                  ++vec_iter) {
169                  //
170                  // Make sure the MessageBuffer has not already be reanalyzed
171                  //
172                  if (*vec_iter != NULL &&
173                      (wokeUpMsgBufs.count(*vec_iter) == 0)) {
174                      (*vec_iter)->reanalyzeAllMessages(clockEdge());
175                      wokeUpMsgBufs.insert(*vec_iter);
176                  }
177             }
178             wokeUpMsgVecs.push_back(buf_iter->second);
179        }
180
181        for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
182             wb_iter != wokeUpMsgVecs.end();
183             ++wb_iter) {
184             delete (*wb_iter);
185        }
186
187        m_waiting_buffers.clear();
188    }
189}
190
191void
192AbstractController::blockOnQueue(Addr addr, MessageBuffer* port)
193{
194    m_is_blocking = true;
195    m_block_map[addr] = port;
196}
197
198bool
199AbstractController::isBlocked(Addr addr) const
200{
201    return m_is_blocking && (m_block_map.find(addr) != m_block_map.end());
202}
203
204void
205AbstractController::unblock(Addr addr)
206{
207    m_block_map.erase(addr);
208    if (m_block_map.size() == 0) {
209       m_is_blocking = false;
210    }
211}
212
213bool
214AbstractController::isBlocked(Addr addr)
215{
216    return (m_block_map.count(addr) > 0);
217}
218
219BaseMasterPort &
220AbstractController::getMasterPort(const std::string &if_name,
221                                  PortID idx)
222{
223    return memoryPort;
224}
225
226void
227AbstractController::queueMemoryRead(const MachineID &id, Addr addr,
228                                    Cycles latency)
229{
230    RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
231                                 m_masterId);
232
233    PacketPtr pkt = Packet::createRead(req);
234    uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
235    pkt->dataDynamic(newData);
236
237    SenderState *s = new SenderState(id);
238    pkt->pushSenderState(s);
239
240    // Use functional rather than timing accesses during warmup
241    if (RubySystem::getWarmupEnabled()) {
242        memoryPort.sendFunctional(pkt);
243        recvTimingResp(pkt);
244        return;
245    }
246
247    memoryPort.schedTimingReq(pkt, clockEdge(latency));
248}
249
250void
251AbstractController::queueMemoryWrite(const MachineID &id, Addr addr,
252                                     Cycles latency, const DataBlock &block)
253{
254    RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
255                                 m_masterId);
256
257    PacketPtr pkt = Packet::createWrite(req);
258    uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
259    pkt->dataDynamic(newData);
260    memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
261           RubySystem::getBlockSizeBytes());
262
263    SenderState *s = new SenderState(id);
264    pkt->pushSenderState(s);
265
266    // Use functional rather than timing accesses during warmup
267    if (RubySystem::getWarmupEnabled()) {
268        memoryPort.sendFunctional(pkt);
269        recvTimingResp(pkt);
270        return;
271    }
272
273    // Create a block and copy data from the block.
274    memoryPort.schedTimingReq(pkt, clockEdge(latency));
275}
276
277void
278AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr,
279                                            Cycles latency,
280                                            const DataBlock &block, int size)
281{
282    RequestPtr req = new Request(addr, size, 0, m_masterId);
283
284    PacketPtr pkt = Packet::createWrite(req);
285    uint8_t *newData = new uint8_t[size];
286    pkt->dataDynamic(newData);
287    memcpy(newData, block.getData(getOffset(addr), size), size);
288
289    SenderState *s = new SenderState(id);
290    pkt->pushSenderState(s);
291
292    // Create a block and copy data from the block.
293    memoryPort.schedTimingReq(pkt, clockEdge(latency));
294}
295
296void
297AbstractController::functionalMemoryRead(PacketPtr pkt)
298{
299    memoryPort.sendFunctional(pkt);
300}
301
302int
303AbstractController::functionalMemoryWrite(PacketPtr pkt)
304{
305    int num_functional_writes = 0;
306
307    // Check the buffer from the controller to the memory.
308    if (memoryPort.checkFunctional(pkt)) {
309        num_functional_writes++;
310    }
311
312    // Update memory itself.
313    memoryPort.sendFunctional(pkt);
314    return num_functional_writes + 1;
315}
316
317void
318AbstractController::recvTimingResp(PacketPtr pkt)
319{
320    assert(getMemoryQueue());
321    assert(pkt->isResponse());
322
323    std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
324    (*msg).m_addr = pkt->getAddr();
325    (*msg).m_Sender = m_machineID;
326
327    SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
328    (*msg).m_OriginalRequestorMachId = s->id;
329    delete s;
330
331    if (pkt->isRead()) {
332        (*msg).m_Type = MemoryRequestType_MEMORY_READ;
333        (*msg).m_MessageSize = MessageSizeType_Response_Data;
334
335        // Copy data from the packet
336        (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
337                                 RubySystem::getBlockSizeBytes());
338    } else if (pkt->isWrite()) {
339        (*msg).m_Type = MemoryRequestType_MEMORY_WB;
340        (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
341    } else {
342        panic("Incorrect packet type received from memory controller!");
343    }
344
345    getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
346    delete pkt->req;
347    delete pkt;
348}
349
350bool
351AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
352{
353    controller->recvTimingResp(pkt);
354    return true;
355}
356
357AbstractController::MemoryPort::MemoryPort(const std::string &_name,
358                                           AbstractController *_controller,
359                                           const std::string &_label)
360    : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
361      reqQueue(*_controller, *this, _label),
362      snoopRespQueue(*_controller, *this, _label),
363      controller(_controller)
364{
365}
366