AbstractController.cc revision 11448:8d94df4c9da4
1/* 2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29#include "mem/ruby/slicc_interface/AbstractController.hh" 30 31#include "debug/RubyQueue.hh" 32#include "mem/protocol/MemoryMsg.hh" 33#include "mem/ruby/system/RubySystem.hh" 34#include "mem/ruby/system/Sequencer.hh" 35#include "mem/ruby/system/GPUCoalescer.hh" 36#include "sim/system.hh" 37 38AbstractController::AbstractController(const Params *p) 39 : MemObject(p), Consumer(this), m_version(p->version), 40 m_clusterID(p->cluster_id), 41 m_masterId(p->system->getMasterId(name())), m_is_blocking(false), 42 m_number_of_TBEs(p->number_of_TBEs), 43 m_transitions_per_cycle(p->transitions_per_cycle), 44 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency), 45 memoryPort(csprintf("%s.memory", name()), this, "") 46{ 47 if (m_version == 0) { 48 // Combine the statistics from all controllers 49 // of this particular type. 50 Stats::registerDumpCallback(new StatsCallback(this)); 51 } 52} 53 54void 55AbstractController::init() 56{ 57 params()->ruby_system->registerAbstractController(this); 58 m_delayHistogram.init(10); 59 uint32_t size = Network::getNumberOfVirtualNetworks(); 60 for (uint32_t i = 0; i < size; i++) { 61 m_delayVCHistogram.push_back(new Stats::Histogram()); 62 m_delayVCHistogram[i]->init(10); 63 } 64} 65 66void 67AbstractController::resetStats() 68{ 69 m_delayHistogram.reset(); 70 uint32_t size = Network::getNumberOfVirtualNetworks(); 71 for (uint32_t i = 0; i < size; i++) { 72 m_delayVCHistogram[i]->reset(); 73 } 74} 75 76void 77AbstractController::regStats() 78{ 79 m_fully_busy_cycles 80 .name(name() + ".fully_busy_cycles") 81 .desc("cycles for which number of transistions == max transitions") 82 .flags(Stats::nozero); 83} 84 85void 86AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay) 87{ 88 assert(virtualNetwork < m_delayVCHistogram.size()); 89 m_delayHistogram.sample(delay); 90 m_delayVCHistogram[virtualNetwork]->sample(delay); 91} 92 93void 94AbstractController::stallBuffer(MessageBuffer* buf, Addr addr) 95{ 96 if (m_waiting_buffers.count(addr) == 0) { 97 MsgVecType* msgVec = new MsgVecType; 98 msgVec->resize(m_in_ports, NULL); 99 m_waiting_buffers[addr] = msgVec; 100 } 101 DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port, 102 addr); 103 assert(m_in_ports > m_cur_in_port); 104 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf; 105} 106 107void 108AbstractController::wakeUpBuffers(Addr addr) 109{ 110 if (m_waiting_buffers.count(addr) > 0) { 111 // 112 // Wake up all possible lower rank (i.e. lower priority) buffers that could 113 // be waiting on this message. 114 // 115 for (int in_port_rank = m_cur_in_port - 1; 116 in_port_rank >= 0; 117 in_port_rank--) { 118 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { 119 (*(m_waiting_buffers[addr]))[in_port_rank]-> 120 reanalyzeMessages(addr, clockEdge()); 121 } 122 } 123 delete m_waiting_buffers[addr]; 124 m_waiting_buffers.erase(addr); 125 } 126} 127 128void 129AbstractController::wakeUpAllBuffers(Addr addr) 130{ 131 if (m_waiting_buffers.count(addr) > 0) { 132 // 133 // Wake up all possible lower rank (i.e. lower priority) buffers that could 134 // be waiting on this message. 135 // 136 for (int in_port_rank = m_in_ports - 1; 137 in_port_rank >= 0; 138 in_port_rank--) { 139 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { 140 (*(m_waiting_buffers[addr]))[in_port_rank]-> 141 reanalyzeMessages(addr, clockEdge()); 142 } 143 } 144 delete m_waiting_buffers[addr]; 145 m_waiting_buffers.erase(addr); 146 } 147} 148 149void 150AbstractController::wakeUpAllBuffers() 151{ 152 // 153 // Wake up all possible buffers that could be waiting on any message. 154 // 155 156 std::vector<MsgVecType*> wokeUpMsgVecs; 157 MsgBufType wokeUpMsgBufs; 158 159 if (m_waiting_buffers.size() > 0) { 160 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin(); 161 buf_iter != m_waiting_buffers.end(); 162 ++buf_iter) { 163 for (MsgVecType::iterator vec_iter = buf_iter->second->begin(); 164 vec_iter != buf_iter->second->end(); 165 ++vec_iter) { 166 // 167 // Make sure the MessageBuffer has not already be reanalyzed 168 // 169 if (*vec_iter != NULL && 170 (wokeUpMsgBufs.count(*vec_iter) == 0)) { 171 (*vec_iter)->reanalyzeAllMessages(clockEdge()); 172 wokeUpMsgBufs.insert(*vec_iter); 173 } 174 } 175 wokeUpMsgVecs.push_back(buf_iter->second); 176 } 177 178 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin(); 179 wb_iter != wokeUpMsgVecs.end(); 180 ++wb_iter) { 181 delete (*wb_iter); 182 } 183 184 m_waiting_buffers.clear(); 185 } 186} 187 188void 189AbstractController::blockOnQueue(Addr addr, MessageBuffer* port) 190{ 191 m_is_blocking = true; 192 m_block_map[addr] = port; 193} 194 195bool 196AbstractController::isBlocked(Addr addr) const 197{ 198 return m_is_blocking && (m_block_map.find(addr) != m_block_map.end()); 199} 200 201void 202AbstractController::unblock(Addr addr) 203{ 204 m_block_map.erase(addr); 205 if (m_block_map.size() == 0) { 206 m_is_blocking = false; 207 } 208} 209 210bool 211AbstractController::isBlocked(Addr addr) 212{ 213 return (m_block_map.count(addr) > 0); 214} 215 216BaseMasterPort & 217AbstractController::getMasterPort(const std::string &if_name, 218 PortID idx) 219{ 220 return memoryPort; 221} 222 223void 224AbstractController::queueMemoryRead(const MachineID &id, Addr addr, 225 Cycles latency) 226{ 227 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0, 228 m_masterId); 229 230 PacketPtr pkt = Packet::createRead(req); 231 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; 232 pkt->dataDynamic(newData); 233 234 SenderState *s = new SenderState(id); 235 pkt->pushSenderState(s); 236 237 // Use functional rather than timing accesses during warmup 238 if (RubySystem::getWarmupEnabled()) { 239 memoryPort.sendFunctional(pkt); 240 recvTimingResp(pkt); 241 return; 242 } 243 244 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 245} 246 247void 248AbstractController::queueMemoryWrite(const MachineID &id, Addr addr, 249 Cycles latency, const DataBlock &block) 250{ 251 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0, 252 m_masterId); 253 254 PacketPtr pkt = Packet::createWrite(req); 255 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; 256 pkt->dataDynamic(newData); 257 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()), 258 RubySystem::getBlockSizeBytes()); 259 260 SenderState *s = new SenderState(id); 261 pkt->pushSenderState(s); 262 263 // Use functional rather than timing accesses during warmup 264 if (RubySystem::getWarmupEnabled()) { 265 memoryPort.sendFunctional(pkt); 266 recvTimingResp(pkt); 267 return; 268 } 269 270 // Create a block and copy data from the block. 271 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 272} 273 274void 275AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr, 276 Cycles latency, 277 const DataBlock &block, int size) 278{ 279 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0, 280 m_masterId); 281 282 PacketPtr pkt = Packet::createWrite(req); 283 uint8_t *newData = new uint8_t[size]; 284 pkt->dataDynamic(newData); 285 memcpy(newData, block.getData(getOffset(addr), size), size); 286 287 SenderState *s = new SenderState(id); 288 pkt->pushSenderState(s); 289 290 // Create a block and copy data from the block. 291 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 292} 293 294void 295AbstractController::functionalMemoryRead(PacketPtr pkt) 296{ 297 memoryPort.sendFunctional(pkt); 298} 299 300int 301AbstractController::functionalMemoryWrite(PacketPtr pkt) 302{ 303 int num_functional_writes = 0; 304 305 // Check the buffer from the controller to the memory. 306 if (memoryPort.checkFunctional(pkt)) { 307 num_functional_writes++; 308 } 309 310 // Update memory itself. 311 memoryPort.sendFunctional(pkt); 312 return num_functional_writes + 1; 313} 314 315void 316AbstractController::recvTimingResp(PacketPtr pkt) 317{ 318 assert(getMemoryQueue()); 319 assert(pkt->isResponse()); 320 321 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge()); 322 (*msg).m_addr = pkt->getAddr(); 323 (*msg).m_Sender = m_machineID; 324 325 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState); 326 (*msg).m_OriginalRequestorMachId = s->id; 327 delete s; 328 329 if (pkt->isRead()) { 330 (*msg).m_Type = MemoryRequestType_MEMORY_READ; 331 (*msg).m_MessageSize = MessageSizeType_Response_Data; 332 333 // Copy data from the packet 334 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0, 335 RubySystem::getBlockSizeBytes()); 336 } else if (pkt->isWrite()) { 337 (*msg).m_Type = MemoryRequestType_MEMORY_WB; 338 (*msg).m_MessageSize = MessageSizeType_Writeback_Control; 339 } else { 340 panic("Incorrect packet type received from memory controller!"); 341 } 342 343 getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1))); 344 delete pkt->req; 345 delete pkt; 346} 347 348bool 349AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt) 350{ 351 controller->recvTimingResp(pkt); 352 return true; 353} 354 355AbstractController::MemoryPort::MemoryPort(const std::string &_name, 356 AbstractController *_controller, 357 const std::string &_label) 358 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue), 359 reqQueue(*_controller, *this, _label), 360 snoopRespQueue(*_controller, *this, _label), 361 controller(_controller) 362{ 363} 364