AbstractController.cc revision 11142:c5ac64b4b020
1/* 2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29#include "mem/ruby/slicc_interface/AbstractController.hh" 30 31#include "debug/RubyQueue.hh" 32#include "mem/protocol/MemoryMsg.hh" 33#include "mem/ruby/system/RubySystem.hh" 34#include "mem/ruby/system/Sequencer.hh" 35#include "sim/system.hh" 36 37AbstractController::AbstractController(const Params *p) 38 : MemObject(p), Consumer(this), m_version(p->version), 39 m_clusterID(p->cluster_id), 40 m_masterId(p->system->getMasterId(name())), m_is_blocking(false), 41 m_number_of_TBEs(p->number_of_TBEs), 42 m_transitions_per_cycle(p->transitions_per_cycle), 43 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency), 44 memoryPort(csprintf("%s.memory", name()), this, "") 45{ 46 if (m_version == 0) { 47 // Combine the statistics from all controllers 48 // of this particular type. 49 Stats::registerDumpCallback(new StatsCallback(this)); 50 } 51} 52 53void 54AbstractController::init() 55{ 56 params()->ruby_system->registerAbstractController(this); 57 m_delayHistogram.init(10); 58 uint32_t size = Network::getNumberOfVirtualNetworks(); 59 for (uint32_t i = 0; i < size; i++) { 60 m_delayVCHistogram.push_back(new Stats::Histogram()); 61 m_delayVCHistogram[i]->init(10); 62 } 63} 64 65void 66AbstractController::resetStats() 67{ 68 m_delayHistogram.reset(); 69 uint32_t size = Network::getNumberOfVirtualNetworks(); 70 for (uint32_t i = 0; i < size; i++) { 71 m_delayVCHistogram[i]->reset(); 72 } 73} 74 75void 76AbstractController::regStats() 77{ 78 m_fully_busy_cycles 79 .name(name() + ".fully_busy_cycles") 80 .desc("cycles for which number of transistions == max transitions") 81 .flags(Stats::nozero); 82} 83 84void 85AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay) 86{ 87 assert(virtualNetwork < m_delayVCHistogram.size()); 88 m_delayHistogram.sample(delay); 89 m_delayVCHistogram[virtualNetwork]->sample(delay); 90} 91 92void 93AbstractController::stallBuffer(MessageBuffer* buf, Addr addr) 94{ 95 if (m_waiting_buffers.count(addr) == 0) { 96 MsgVecType* msgVec = new MsgVecType; 97 msgVec->resize(m_in_ports, NULL); 98 m_waiting_buffers[addr] = msgVec; 99 } 100 DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port, 101 addr); 102 assert(m_in_ports > m_cur_in_port); 103 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf; 104} 105 106void 107AbstractController::wakeUpBuffers(Addr addr) 108{ 109 if (m_waiting_buffers.count(addr) > 0) { 110 // 111 // Wake up all possible lower rank (i.e. lower priority) buffers that could 112 // be waiting on this message. 113 // 114 for (int in_port_rank = m_cur_in_port - 1; 115 in_port_rank >= 0; 116 in_port_rank--) { 117 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { 118 (*(m_waiting_buffers[addr]))[in_port_rank]-> 119 reanalyzeMessages(addr, clockEdge()); 120 } 121 } 122 delete m_waiting_buffers[addr]; 123 m_waiting_buffers.erase(addr); 124 } 125} 126 127void 128AbstractController::wakeUpAllBuffers(Addr addr) 129{ 130 if (m_waiting_buffers.count(addr) > 0) { 131 // 132 // Wake up all possible lower rank (i.e. lower priority) buffers that could 133 // be waiting on this message. 134 // 135 for (int in_port_rank = m_in_ports - 1; 136 in_port_rank >= 0; 137 in_port_rank--) { 138 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { 139 (*(m_waiting_buffers[addr]))[in_port_rank]-> 140 reanalyzeMessages(addr, clockEdge()); 141 } 142 } 143 delete m_waiting_buffers[addr]; 144 m_waiting_buffers.erase(addr); 145 } 146} 147 148void 149AbstractController::wakeUpAllBuffers() 150{ 151 // 152 // Wake up all possible buffers that could be waiting on any message. 153 // 154 155 std::vector<MsgVecType*> wokeUpMsgVecs; 156 MsgBufType wokeUpMsgBufs; 157 158 if(m_waiting_buffers.size() > 0) { 159 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin(); 160 buf_iter != m_waiting_buffers.end(); 161 ++buf_iter) { 162 for (MsgVecType::iterator vec_iter = buf_iter->second->begin(); 163 vec_iter != buf_iter->second->end(); 164 ++vec_iter) { 165 // 166 // Make sure the MessageBuffer has not already be reanalyzed 167 // 168 if (*vec_iter != NULL && 169 (wokeUpMsgBufs.count(*vec_iter) == 0)) { 170 (*vec_iter)->reanalyzeAllMessages(clockEdge()); 171 wokeUpMsgBufs.insert(*vec_iter); 172 } 173 } 174 wokeUpMsgVecs.push_back(buf_iter->second); 175 } 176 177 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin(); 178 wb_iter != wokeUpMsgVecs.end(); 179 ++wb_iter) { 180 delete (*wb_iter); 181 } 182 183 m_waiting_buffers.clear(); 184 } 185} 186 187void 188AbstractController::blockOnQueue(Addr addr, MessageBuffer* port) 189{ 190 m_is_blocking = true; 191 m_block_map[addr] = port; 192} 193 194void 195AbstractController::unblock(Addr addr) 196{ 197 m_block_map.erase(addr); 198 if (m_block_map.size() == 0) { 199 m_is_blocking = false; 200 } 201} 202 203BaseMasterPort & 204AbstractController::getMasterPort(const std::string &if_name, 205 PortID idx) 206{ 207 return memoryPort; 208} 209 210void 211AbstractController::queueMemoryRead(const MachineID &id, Addr addr, 212 Cycles latency) 213{ 214 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0, 215 m_masterId); 216 217 PacketPtr pkt = Packet::createRead(req); 218 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; 219 pkt->dataDynamic(newData); 220 221 SenderState *s = new SenderState(id); 222 pkt->pushSenderState(s); 223 224 // Use functional rather than timing accesses during warmup 225 if (RubySystem::getWarmupEnabled()) { 226 memoryPort.sendFunctional(pkt); 227 recvTimingResp(pkt); 228 return; 229 } 230 231 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 232} 233 234void 235AbstractController::queueMemoryWrite(const MachineID &id, Addr addr, 236 Cycles latency, const DataBlock &block) 237{ 238 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0, 239 m_masterId); 240 241 PacketPtr pkt = Packet::createWrite(req); 242 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; 243 pkt->dataDynamic(newData); 244 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()), 245 RubySystem::getBlockSizeBytes()); 246 247 SenderState *s = new SenderState(id); 248 pkt->pushSenderState(s); 249 250 // Use functional rather than timing accesses during warmup 251 if (RubySystem::getWarmupEnabled()) { 252 memoryPort.sendFunctional(pkt); 253 recvTimingResp(pkt); 254 return; 255 } 256 257 // Create a block and copy data from the block. 258 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 259} 260 261void 262AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr, 263 Cycles latency, 264 const DataBlock &block, int size) 265{ 266 RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0, 267 m_masterId); 268 269 PacketPtr pkt = Packet::createWrite(req); 270 uint8_t *newData = new uint8_t[size]; 271 pkt->dataDynamic(newData); 272 memcpy(newData, block.getData(getOffset(addr), size), size); 273 274 SenderState *s = new SenderState(id); 275 pkt->pushSenderState(s); 276 277 // Create a block and copy data from the block. 278 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 279} 280 281void 282AbstractController::functionalMemoryRead(PacketPtr pkt) 283{ 284 memoryPort.sendFunctional(pkt); 285} 286 287int 288AbstractController::functionalMemoryWrite(PacketPtr pkt) 289{ 290 int num_functional_writes = 0; 291 292 // Check the buffer from the controller to the memory. 293 if (memoryPort.checkFunctional(pkt)) { 294 num_functional_writes++; 295 } 296 297 // Update memory itself. 298 memoryPort.sendFunctional(pkt); 299 return num_functional_writes + 1; 300} 301 302void 303AbstractController::recvTimingResp(PacketPtr pkt) 304{ 305 assert(getMemoryQueue()); 306 assert(pkt->isResponse()); 307 308 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge()); 309 (*msg).m_addr = pkt->getAddr(); 310 (*msg).m_Sender = m_machineID; 311 312 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState); 313 (*msg).m_OriginalRequestorMachId = s->id; 314 delete s; 315 316 if (pkt->isRead()) { 317 (*msg).m_Type = MemoryRequestType_MEMORY_READ; 318 (*msg).m_MessageSize = MessageSizeType_Response_Data; 319 320 // Copy data from the packet 321 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0, 322 RubySystem::getBlockSizeBytes()); 323 } else if (pkt->isWrite()) { 324 (*msg).m_Type = MemoryRequestType_MEMORY_WB; 325 (*msg).m_MessageSize = MessageSizeType_Writeback_Control; 326 } else { 327 panic("Incorrect packet type received from memory controller!"); 328 } 329 330 getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1))); 331 delete pkt->req; 332 delete pkt; 333} 334 335bool 336AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt) 337{ 338 controller->recvTimingResp(pkt); 339 return true; 340} 341 342AbstractController::MemoryPort::MemoryPort(const std::string &_name, 343 AbstractController *_controller, 344 const std::string &_label) 345 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue), 346 reqQueue(*_controller, *this, _label), 347 snoopRespQueue(*_controller, *this, _label), 348 controller(_controller) 349{ 350} 351