AbstractController.cc revision 11108:6342ddf6d733
1/*
2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "mem/ruby/slicc_interface/AbstractController.hh"
30
31#include "debug/RubyQueue.hh"
32#include "mem/protocol/MemoryMsg.hh"
33#include "mem/ruby/system/RubySystem.hh"
34#include "mem/ruby/system/Sequencer.hh"
35#include "sim/system.hh"
36
37AbstractController::AbstractController(const Params *p)
38    : MemObject(p), Consumer(this), m_version(p->version),
39      m_clusterID(p->cluster_id),
40      m_masterId(p->system->getMasterId(name())), m_is_blocking(false),
41      m_number_of_TBEs(p->number_of_TBEs),
42      m_transitions_per_cycle(p->transitions_per_cycle),
43      m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
44      memoryPort(csprintf("%s.memory", name()), this, "")
45{
46    if (m_version == 0) {
47        // Combine the statistics from all controllers
48        // of this particular type.
49        Stats::registerDumpCallback(new StatsCallback(this));
50    }
51}
52
53void
54AbstractController::init()
55{
56    params()->ruby_system->registerAbstractController(this);
57    m_delayHistogram.init(10);
58    uint32_t size = Network::getNumberOfVirtualNetworks();
59    for (uint32_t i = 0; i < size; i++) {
60        m_delayVCHistogram.push_back(new Stats::Histogram());
61        m_delayVCHistogram[i]->init(10);
62    }
63    if (getMemoryQueue()) {
64        getMemoryQueue()->setSender(this);
65    }
66}
67
68void
69AbstractController::resetStats()
70{
71    m_delayHistogram.reset();
72    uint32_t size = Network::getNumberOfVirtualNetworks();
73    for (uint32_t i = 0; i < size; i++) {
74        m_delayVCHistogram[i]->reset();
75    }
76}
77
78void
79AbstractController::regStats()
80{
81    m_fully_busy_cycles
82        .name(name() + ".fully_busy_cycles")
83        .desc("cycles for which number of transistions == max transitions")
84        .flags(Stats::nozero);
85}
86
87void
88AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
89{
90    assert(virtualNetwork < m_delayVCHistogram.size());
91    m_delayHistogram.sample(delay);
92    m_delayVCHistogram[virtualNetwork]->sample(delay);
93}
94
95void
96AbstractController::stallBuffer(MessageBuffer* buf, Addr addr)
97{
98    if (m_waiting_buffers.count(addr) == 0) {
99        MsgVecType* msgVec = new MsgVecType;
100        msgVec->resize(m_in_ports, NULL);
101        m_waiting_buffers[addr] = msgVec;
102    }
103    DPRINTF(RubyQueue, "stalling %s port %d addr %s\n", buf, m_cur_in_port,
104            addr);
105    assert(m_in_ports > m_cur_in_port);
106    (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
107}
108
109void
110AbstractController::wakeUpBuffers(Addr addr)
111{
112    if (m_waiting_buffers.count(addr) > 0) {
113        //
114        // Wake up all possible lower rank (i.e. lower priority) buffers that could
115        // be waiting on this message.
116        //
117        for (int in_port_rank = m_cur_in_port - 1;
118             in_port_rank >= 0;
119             in_port_rank--) {
120            if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
121                (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
122            }
123        }
124        delete m_waiting_buffers[addr];
125        m_waiting_buffers.erase(addr);
126    }
127}
128
129void
130AbstractController::wakeUpAllBuffers(Addr addr)
131{
132    if (m_waiting_buffers.count(addr) > 0) {
133        //
134        // Wake up all possible lower rank (i.e. lower priority) buffers that could
135        // be waiting on this message.
136        //
137        for (int in_port_rank = m_in_ports - 1;
138             in_port_rank >= 0;
139             in_port_rank--) {
140            if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
141                (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr);
142            }
143        }
144        delete m_waiting_buffers[addr];
145        m_waiting_buffers.erase(addr);
146    }
147}
148
149void
150AbstractController::wakeUpAllBuffers()
151{
152    //
153    // Wake up all possible buffers that could be waiting on any message.
154    //
155
156    std::vector<MsgVecType*> wokeUpMsgVecs;
157    MsgBufType wokeUpMsgBufs;
158
159    if(m_waiting_buffers.size() > 0) {
160        for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
161             buf_iter != m_waiting_buffers.end();
162             ++buf_iter) {
163             for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
164                  vec_iter != buf_iter->second->end();
165                  ++vec_iter) {
166                  //
167                  // Make sure the MessageBuffer has not already be reanalyzed
168                  //
169                  if (*vec_iter != NULL &&
170                      (wokeUpMsgBufs.count(*vec_iter) == 0)) {
171                      (*vec_iter)->reanalyzeAllMessages();
172                      wokeUpMsgBufs.insert(*vec_iter);
173                  }
174             }
175             wokeUpMsgVecs.push_back(buf_iter->second);
176        }
177
178        for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
179             wb_iter != wokeUpMsgVecs.end();
180             ++wb_iter) {
181             delete (*wb_iter);
182        }
183
184        m_waiting_buffers.clear();
185    }
186}
187
188void
189AbstractController::blockOnQueue(Addr addr, MessageBuffer* port)
190{
191    m_is_blocking = true;
192    m_block_map[addr] = port;
193}
194
195void
196AbstractController::unblock(Addr addr)
197{
198    m_block_map.erase(addr);
199    if (m_block_map.size() == 0) {
200       m_is_blocking = false;
201    }
202}
203
204BaseMasterPort &
205AbstractController::getMasterPort(const std::string &if_name,
206                                  PortID idx)
207{
208    return memoryPort;
209}
210
211void
212AbstractController::queueMemoryRead(const MachineID &id, Addr addr,
213                                    Cycles latency)
214{
215    RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
216                                 m_masterId);
217
218    PacketPtr pkt = Packet::createRead(req);
219    uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
220    pkt->dataDynamic(newData);
221
222    SenderState *s = new SenderState(id);
223    pkt->pushSenderState(s);
224
225    // Use functional rather than timing accesses during warmup
226    if (RubySystem::getWarmupEnabled()) {
227        memoryPort.sendFunctional(pkt);
228        recvTimingResp(pkt);
229        return;
230    }
231
232    memoryPort.schedTimingReq(pkt, clockEdge(latency));
233}
234
235void
236AbstractController::queueMemoryWrite(const MachineID &id, Addr addr,
237                                     Cycles latency, const DataBlock &block)
238{
239    RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
240                                 m_masterId);
241
242    PacketPtr pkt = Packet::createWrite(req);
243    uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
244    pkt->dataDynamic(newData);
245    memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()),
246           RubySystem::getBlockSizeBytes());
247
248    SenderState *s = new SenderState(id);
249    pkt->pushSenderState(s);
250
251    // Use functional rather than timing accesses during warmup
252    if (RubySystem::getWarmupEnabled()) {
253        memoryPort.sendFunctional(pkt);
254        recvTimingResp(pkt);
255        return;
256    }
257
258    // Create a block and copy data from the block.
259    memoryPort.schedTimingReq(pkt, clockEdge(latency));
260}
261
262void
263AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr,
264                                            Cycles latency,
265                                            const DataBlock &block, int size)
266{
267    RequestPtr req = new Request(addr, RubySystem::getBlockSizeBytes(), 0,
268                                 m_masterId);
269
270    PacketPtr pkt = Packet::createWrite(req);
271    uint8_t *newData = new uint8_t[size];
272    pkt->dataDynamic(newData);
273    memcpy(newData, block.getData(getOffset(addr), size), size);
274
275    SenderState *s = new SenderState(id);
276    pkt->pushSenderState(s);
277
278    // Create a block and copy data from the block.
279    memoryPort.schedTimingReq(pkt, clockEdge(latency));
280}
281
282void
283AbstractController::functionalMemoryRead(PacketPtr pkt)
284{
285    memoryPort.sendFunctional(pkt);
286}
287
288int
289AbstractController::functionalMemoryWrite(PacketPtr pkt)
290{
291    int num_functional_writes = 0;
292
293    // Check the buffer from the controller to the memory.
294    if (memoryPort.checkFunctional(pkt)) {
295        num_functional_writes++;
296    }
297
298    // Update memory itself.
299    memoryPort.sendFunctional(pkt);
300    return num_functional_writes + 1;
301}
302
303void
304AbstractController::recvTimingResp(PacketPtr pkt)
305{
306    assert(getMemoryQueue());
307    assert(pkt->isResponse());
308
309    std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
310    (*msg).m_addr = pkt->getAddr();
311    (*msg).m_Sender = m_machineID;
312
313    SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
314    (*msg).m_OriginalRequestorMachId = s->id;
315    delete s;
316
317    if (pkt->isRead()) {
318        (*msg).m_Type = MemoryRequestType_MEMORY_READ;
319        (*msg).m_MessageSize = MessageSizeType_Response_Data;
320
321        // Copy data from the packet
322        (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
323                                 RubySystem::getBlockSizeBytes());
324    } else if (pkt->isWrite()) {
325        (*msg).m_Type = MemoryRequestType_MEMORY_WB;
326        (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
327    } else {
328        panic("Incorrect packet type received from memory controller!");
329    }
330
331    getMemoryQueue()->enqueue(msg);
332    delete pkt;
333}
334
335bool
336AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
337{
338    controller->recvTimingResp(pkt);
339    return true;
340}
341
342AbstractController::MemoryPort::MemoryPort(const std::string &_name,
343                                           AbstractController *_controller,
344                                           const std::string &_label)
345    : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
346      reqQueue(*_controller, *this, _label),
347      snoopRespQueue(*_controller, *this, _label),
348      controller(_controller)
349{
350}
351