AbstractController.cc revision 11024:bc179fa0b91b
1/* 2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29#include "mem/ruby/slicc_interface/AbstractController.hh" 30 31#include "debug/RubyQueue.hh" 32#include "mem/protocol/MemoryMsg.hh" 33#include "mem/ruby/system/Sequencer.hh" 34#include "mem/ruby/system/System.hh" 35#include "sim/system.hh" 36 37AbstractController::AbstractController(const Params *p) 38 : MemObject(p), Consumer(this), m_version(p->version), 39 m_clusterID(p->cluster_id), 40 m_masterId(p->system->getMasterId(name())), m_is_blocking(false), 41 m_number_of_TBEs(p->number_of_TBEs), 42 m_transitions_per_cycle(p->transitions_per_cycle), 43 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency), 44 memoryPort(csprintf("%s.memory", name()), this, "") 45{ 46 if (m_version == 0) { 47 // Combine the statistics from all controllers 48 // of this particular type. 49 Stats::registerDumpCallback(new StatsCallback(this)); 50 } 51} 52 53void 54AbstractController::init() 55{ 56 params()->ruby_system->registerAbstractController(this); 57 m_delayHistogram.init(10); 58 uint32_t size = Network::getNumberOfVirtualNetworks(); 59 for (uint32_t i = 0; i < size; i++) { 60 m_delayVCHistogram.push_back(new Stats::Histogram()); 61 m_delayVCHistogram[i]->init(10); 62 } 63 if (getMemoryQueue()) { 64 getMemoryQueue()->setSender(this); 65 } 66} 67 68void 69AbstractController::resetStats() 70{ 71 m_delayHistogram.reset(); 72 uint32_t size = Network::getNumberOfVirtualNetworks(); 73 for (uint32_t i = 0; i < size; i++) { 74 m_delayVCHistogram[i]->reset(); 75 } 76} 77 78void 79AbstractController::regStats() 80{ 81 m_fully_busy_cycles 82 .name(name() + ".fully_busy_cycles") 83 .desc("cycles for which number of transistions == max transitions") 84 .flags(Stats::nozero); 85} 86 87void 88AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay) 89{ 90 assert(virtualNetwork < m_delayVCHistogram.size()); 91 m_delayHistogram.sample(delay); 92 m_delayVCHistogram[virtualNetwork]->sample(delay); 93} 94 95void 96AbstractController::stallBuffer(MessageBuffer* buf, Address addr) 97{ 98 if (m_waiting_buffers.count(addr) == 0) { 99 MsgVecType* msgVec = new MsgVecType; 100 msgVec->resize(m_in_ports, NULL); 101 m_waiting_buffers[addr] = msgVec; 102 } 103 DPRINTF(RubyQueue, "stalling %s port %d addr %s\n", buf, m_cur_in_port, 104 addr); 105 assert(m_in_ports > m_cur_in_port); 106 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf; 107} 108 109void 110AbstractController::wakeUpBuffers(Address addr) 111{ 112 if (m_waiting_buffers.count(addr) > 0) { 113 // 114 // Wake up all possible lower rank (i.e. lower priority) buffers that could 115 // be waiting on this message. 116 // 117 for (int in_port_rank = m_cur_in_port - 1; 118 in_port_rank >= 0; 119 in_port_rank--) { 120 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { 121 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr); 122 } 123 } 124 delete m_waiting_buffers[addr]; 125 m_waiting_buffers.erase(addr); 126 } 127} 128 129void 130AbstractController::wakeUpAllBuffers(Address addr) 131{ 132 if (m_waiting_buffers.count(addr) > 0) { 133 // 134 // Wake up all possible lower rank (i.e. lower priority) buffers that could 135 // be waiting on this message. 136 // 137 for (int in_port_rank = m_in_ports - 1; 138 in_port_rank >= 0; 139 in_port_rank--) { 140 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { 141 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr); 142 } 143 } 144 delete m_waiting_buffers[addr]; 145 m_waiting_buffers.erase(addr); 146 } 147} 148 149void 150AbstractController::wakeUpAllBuffers() 151{ 152 // 153 // Wake up all possible buffers that could be waiting on any message. 154 // 155 156 std::vector<MsgVecType*> wokeUpMsgVecs; 157 MsgBufType wokeUpMsgBufs; 158 159 if(m_waiting_buffers.size() > 0) { 160 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin(); 161 buf_iter != m_waiting_buffers.end(); 162 ++buf_iter) { 163 for (MsgVecType::iterator vec_iter = buf_iter->second->begin(); 164 vec_iter != buf_iter->second->end(); 165 ++vec_iter) { 166 // 167 // Make sure the MessageBuffer has not already be reanalyzed 168 // 169 if (*vec_iter != NULL && 170 (wokeUpMsgBufs.count(*vec_iter) == 0)) { 171 (*vec_iter)->reanalyzeAllMessages(); 172 wokeUpMsgBufs.insert(*vec_iter); 173 } 174 } 175 wokeUpMsgVecs.push_back(buf_iter->second); 176 } 177 178 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin(); 179 wb_iter != wokeUpMsgVecs.end(); 180 ++wb_iter) { 181 delete (*wb_iter); 182 } 183 184 m_waiting_buffers.clear(); 185 } 186} 187 188void 189AbstractController::blockOnQueue(Address addr, MessageBuffer* port) 190{ 191 m_is_blocking = true; 192 m_block_map[addr] = port; 193} 194 195void 196AbstractController::unblock(Address addr) 197{ 198 m_block_map.erase(addr); 199 if (m_block_map.size() == 0) { 200 m_is_blocking = false; 201 } 202} 203 204BaseMasterPort & 205AbstractController::getMasterPort(const std::string &if_name, 206 PortID idx) 207{ 208 return memoryPort; 209} 210 211void 212AbstractController::queueMemoryRead(const MachineID &id, Address addr, 213 Cycles latency) 214{ 215 RequestPtr req = new Request(addr.getAddress(), 216 RubySystem::getBlockSizeBytes(), 0, 217 m_masterId); 218 219 PacketPtr pkt = Packet::createRead(req); 220 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; 221 pkt->dataDynamic(newData); 222 223 SenderState *s = new SenderState(id); 224 pkt->pushSenderState(s); 225 226 // Use functional rather than timing accesses during warmup 227 if (RubySystem::getWarmupEnabled()) { 228 memoryPort.sendFunctional(pkt); 229 recvTimingResp(pkt); 230 return; 231 } 232 233 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 234} 235 236void 237AbstractController::queueMemoryWrite(const MachineID &id, Address addr, 238 Cycles latency, const DataBlock &block) 239{ 240 RequestPtr req = new Request(addr.getAddress(), 241 RubySystem::getBlockSizeBytes(), 0, 242 m_masterId); 243 244 PacketPtr pkt = Packet::createWrite(req); 245 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; 246 pkt->dataDynamic(newData); 247 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()), 248 RubySystem::getBlockSizeBytes()); 249 250 SenderState *s = new SenderState(id); 251 pkt->pushSenderState(s); 252 253 // Use functional rather than timing accesses during warmup 254 if (RubySystem::getWarmupEnabled()) { 255 memoryPort.sendFunctional(pkt); 256 recvTimingResp(pkt); 257 return; 258 } 259 260 // Create a block and copy data from the block. 261 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 262} 263 264void 265AbstractController::queueMemoryWritePartial(const MachineID &id, Address addr, 266 Cycles latency, 267 const DataBlock &block, int size) 268{ 269 RequestPtr req = new Request(addr.getAddress(), 270 RubySystem::getBlockSizeBytes(), 0, 271 m_masterId); 272 273 PacketPtr pkt = Packet::createWrite(req); 274 uint8_t *newData = new uint8_t[size]; 275 pkt->dataDynamic(newData); 276 memcpy(newData, block.getData(addr.getOffset(), size), size); 277 278 SenderState *s = new SenderState(id); 279 pkt->pushSenderState(s); 280 281 // Create a block and copy data from the block. 282 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 283} 284 285void 286AbstractController::functionalMemoryRead(PacketPtr pkt) 287{ 288 memoryPort.sendFunctional(pkt); 289} 290 291int 292AbstractController::functionalMemoryWrite(PacketPtr pkt) 293{ 294 int num_functional_writes = 0; 295 296 // Check the buffer from the controller to the memory. 297 if (memoryPort.checkFunctional(pkt)) { 298 num_functional_writes++; 299 } 300 301 // Update memory itself. 302 memoryPort.sendFunctional(pkt); 303 return num_functional_writes + 1; 304} 305 306void 307AbstractController::recvTimingResp(PacketPtr pkt) 308{ 309 assert(getMemoryQueue()); 310 assert(pkt->isResponse()); 311 312 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge()); 313 (*msg).m_addr.setAddress(pkt->getAddr()); 314 (*msg).m_Sender = m_machineID; 315 316 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState); 317 (*msg).m_OriginalRequestorMachId = s->id; 318 delete s; 319 320 if (pkt->isRead()) { 321 (*msg).m_Type = MemoryRequestType_MEMORY_READ; 322 (*msg).m_MessageSize = MessageSizeType_Response_Data; 323 324 // Copy data from the packet 325 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0, 326 RubySystem::getBlockSizeBytes()); 327 } else if (pkt->isWrite()) { 328 (*msg).m_Type = MemoryRequestType_MEMORY_WB; 329 (*msg).m_MessageSize = MessageSizeType_Writeback_Control; 330 } else { 331 panic("Incorrect packet type received from memory controller!"); 332 } 333 334 getMemoryQueue()->enqueue(msg); 335 delete pkt; 336} 337 338bool 339AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt) 340{ 341 controller->recvTimingResp(pkt); 342 return true; 343} 344 345AbstractController::MemoryPort::MemoryPort(const std::string &_name, 346 AbstractController *_controller, 347 const std::string &_label) 348 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue), 349 reqQueue(*_controller, *this, _label), 350 snoopRespQueue(*_controller, *this, _label), 351 controller(_controller) 352{ 353} 354