AbstractController.cc revision 10977:9b3b9be42dd9
1/* 2 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions are 7 * met: redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer; 9 * redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution; 12 * neither the name of the copyright holders nor the names of its 13 * contributors may be used to endorse or promote products derived from 14 * this software without specific prior written permission. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29#include "mem/protocol/MemoryMsg.hh" 30#include "mem/ruby/slicc_interface/AbstractController.hh" 31#include "mem/ruby/system/Sequencer.hh" 32#include "mem/ruby/system/System.hh" 33#include "sim/system.hh" 34 35AbstractController::AbstractController(const Params *p) 36 : MemObject(p), Consumer(this), m_version(p->version), 37 m_clusterID(p->cluster_id), 38 m_masterId(p->system->getMasterId(name())), m_is_blocking(false), 39 m_number_of_TBEs(p->number_of_TBEs), 40 m_transitions_per_cycle(p->transitions_per_cycle), 41 m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency), 42 memoryPort(csprintf("%s.memory", name()), this, ""), 43 m_responseFromMemory_ptr(new MessageBuffer()) 44{ 45 // Set the sender pointer of the response message buffer from the 46 // memory controller. 47 // This pointer is used for querying for the current time. 48 m_responseFromMemory_ptr->setSender(this); 49 m_responseFromMemory_ptr->setReceiver(this); 50 m_responseFromMemory_ptr->setOrdering(false); 51 52 if (m_version == 0) { 53 // Combine the statistics from all controllers 54 // of this particular type. 55 Stats::registerDumpCallback(new StatsCallback(this)); 56 } 57} 58 59void 60AbstractController::init() 61{ 62 params()->ruby_system->registerAbstractController(this); 63 m_delayHistogram.init(10); 64 uint32_t size = Network::getNumberOfVirtualNetworks(); 65 for (uint32_t i = 0; i < size; i++) { 66 m_delayVCHistogram.push_back(new Stats::Histogram()); 67 m_delayVCHistogram[i]->init(10); 68 } 69} 70 71void 72AbstractController::resetStats() 73{ 74 m_delayHistogram.reset(); 75 uint32_t size = Network::getNumberOfVirtualNetworks(); 76 for (uint32_t i = 0; i < size; i++) { 77 m_delayVCHistogram[i]->reset(); 78 } 79} 80 81void 82AbstractController::regStats() 83{ 84 m_fully_busy_cycles 85 .name(name() + ".fully_busy_cycles") 86 .desc("cycles for which number of transistions == max transitions") 87 .flags(Stats::nozero); 88} 89 90void 91AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay) 92{ 93 assert(virtualNetwork < m_delayVCHistogram.size()); 94 m_delayHistogram.sample(delay); 95 m_delayVCHistogram[virtualNetwork]->sample(delay); 96} 97 98void 99AbstractController::stallBuffer(MessageBuffer* buf, Address addr) 100{ 101 if (m_waiting_buffers.count(addr) == 0) { 102 MsgVecType* msgVec = new MsgVecType; 103 msgVec->resize(m_in_ports, NULL); 104 m_waiting_buffers[addr] = msgVec; 105 } 106 (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf; 107} 108 109void 110AbstractController::wakeUpBuffers(Address addr) 111{ 112 if (m_waiting_buffers.count(addr) > 0) { 113 // 114 // Wake up all possible lower rank (i.e. lower priority) buffers that could 115 // be waiting on this message. 116 // 117 for (int in_port_rank = m_cur_in_port - 1; 118 in_port_rank >= 0; 119 in_port_rank--) { 120 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { 121 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr); 122 } 123 } 124 delete m_waiting_buffers[addr]; 125 m_waiting_buffers.erase(addr); 126 } 127} 128 129void 130AbstractController::wakeUpAllBuffers(Address addr) 131{ 132 if (m_waiting_buffers.count(addr) > 0) { 133 // 134 // Wake up all possible lower rank (i.e. lower priority) buffers that could 135 // be waiting on this message. 136 // 137 for (int in_port_rank = m_in_ports - 1; 138 in_port_rank >= 0; 139 in_port_rank--) { 140 if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) { 141 (*(m_waiting_buffers[addr]))[in_port_rank]->reanalyzeMessages(addr); 142 } 143 } 144 delete m_waiting_buffers[addr]; 145 m_waiting_buffers.erase(addr); 146 } 147} 148 149void 150AbstractController::wakeUpAllBuffers() 151{ 152 // 153 // Wake up all possible buffers that could be waiting on any message. 154 // 155 156 std::vector<MsgVecType*> wokeUpMsgVecs; 157 MsgBufType wokeUpMsgBufs; 158 159 if(m_waiting_buffers.size() > 0) { 160 for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin(); 161 buf_iter != m_waiting_buffers.end(); 162 ++buf_iter) { 163 for (MsgVecType::iterator vec_iter = buf_iter->second->begin(); 164 vec_iter != buf_iter->second->end(); 165 ++vec_iter) { 166 // 167 // Make sure the MessageBuffer has not already be reanalyzed 168 // 169 if (*vec_iter != NULL && 170 (wokeUpMsgBufs.count(*vec_iter) == 0)) { 171 (*vec_iter)->reanalyzeAllMessages(); 172 wokeUpMsgBufs.insert(*vec_iter); 173 } 174 } 175 wokeUpMsgVecs.push_back(buf_iter->second); 176 } 177 178 for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin(); 179 wb_iter != wokeUpMsgVecs.end(); 180 ++wb_iter) { 181 delete (*wb_iter); 182 } 183 184 m_waiting_buffers.clear(); 185 } 186} 187 188void 189AbstractController::blockOnQueue(Address addr, MessageBuffer* port) 190{ 191 m_is_blocking = true; 192 m_block_map[addr] = port; 193} 194 195void 196AbstractController::unblock(Address addr) 197{ 198 m_block_map.erase(addr); 199 if (m_block_map.size() == 0) { 200 m_is_blocking = false; 201 } 202} 203 204BaseMasterPort & 205AbstractController::getMasterPort(const std::string &if_name, 206 PortID idx) 207{ 208 return memoryPort; 209} 210 211void 212AbstractController::queueMemoryRead(const MachineID &id, Address addr, 213 Cycles latency) 214{ 215 RequestPtr req = new Request(addr.getAddress(), 216 RubySystem::getBlockSizeBytes(), 0, 217 m_masterId); 218 219 PacketPtr pkt = Packet::createRead(req); 220 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; 221 pkt->dataDynamic(newData); 222 223 SenderState *s = new SenderState(id); 224 pkt->pushSenderState(s); 225 226 // Use functional rather than timing accesses during warmup 227 if (RubySystem::getWarmupEnabled()) { 228 memoryPort.sendFunctional(pkt); 229 recvTimingResp(pkt); 230 return; 231 } 232 233 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 234} 235 236void 237AbstractController::queueMemoryWrite(const MachineID &id, Address addr, 238 Cycles latency, const DataBlock &block) 239{ 240 RequestPtr req = new Request(addr.getAddress(), 241 RubySystem::getBlockSizeBytes(), 0, 242 m_masterId); 243 244 PacketPtr pkt = Packet::createWrite(req); 245 uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()]; 246 pkt->dataDynamic(newData); 247 memcpy(newData, block.getData(0, RubySystem::getBlockSizeBytes()), 248 RubySystem::getBlockSizeBytes()); 249 250 SenderState *s = new SenderState(id); 251 pkt->pushSenderState(s); 252 253 // Use functional rather than timing accesses during warmup 254 if (RubySystem::getWarmupEnabled()) { 255 memoryPort.sendFunctional(pkt); 256 recvTimingResp(pkt); 257 return; 258 } 259 260 // Create a block and copy data from the block. 261 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 262} 263 264void 265AbstractController::queueMemoryWritePartial(const MachineID &id, Address addr, 266 Cycles latency, 267 const DataBlock &block, int size) 268{ 269 RequestPtr req = new Request(addr.getAddress(), 270 RubySystem::getBlockSizeBytes(), 0, 271 m_masterId); 272 273 PacketPtr pkt = Packet::createWrite(req); 274 uint8_t *newData = new uint8_t[size]; 275 pkt->dataDynamic(newData); 276 memcpy(newData, block.getData(addr.getOffset(), size), size); 277 278 SenderState *s = new SenderState(id); 279 pkt->pushSenderState(s); 280 281 // Create a block and copy data from the block. 282 memoryPort.schedTimingReq(pkt, clockEdge(latency)); 283} 284 285void 286AbstractController::functionalMemoryRead(PacketPtr pkt) 287{ 288 memoryPort.sendFunctional(pkt); 289} 290 291int 292AbstractController::functionalMemoryWrite(PacketPtr pkt) 293{ 294 int num_functional_writes = 0; 295 296 // Check the message buffer that runs from the memory to the controller. 297 num_functional_writes += m_responseFromMemory_ptr->functionalWrite(pkt); 298 299 // Check the buffer from the controller to the memory. 300 if (memoryPort.checkFunctional(pkt)) { 301 num_functional_writes++; 302 } 303 304 // Update memory itself. 305 memoryPort.sendFunctional(pkt); 306 return num_functional_writes + 1; 307} 308 309void 310AbstractController::recvTimingResp(PacketPtr pkt) 311{ 312 assert(pkt->isResponse()); 313 314 std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge()); 315 (*msg).m_Addr.setAddress(pkt->getAddr()); 316 (*msg).m_Sender = m_machineID; 317 318 SenderState *s = dynamic_cast<SenderState *>(pkt->senderState); 319 (*msg).m_OriginalRequestorMachId = s->id; 320 delete s; 321 322 if (pkt->isRead()) { 323 (*msg).m_Type = MemoryRequestType_MEMORY_READ; 324 (*msg).m_MessageSize = MessageSizeType_Response_Data; 325 326 // Copy data from the packet 327 (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0, 328 RubySystem::getBlockSizeBytes()); 329 } else if (pkt->isWrite()) { 330 (*msg).m_Type = MemoryRequestType_MEMORY_WB; 331 (*msg).m_MessageSize = MessageSizeType_Writeback_Control; 332 } else { 333 panic("Incorrect packet type received from memory controller!"); 334 } 335 336 m_responseFromMemory_ptr->enqueue(msg); 337 delete pkt; 338} 339 340bool 341AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt) 342{ 343 controller->recvTimingResp(pkt); 344 return true; 345} 346 347AbstractController::MemoryPort::MemoryPort(const std::string &_name, 348 AbstractController *_controller, 349 const std::string &_label) 350 : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue), 351 reqQueue(*_controller, *this, _label), 352 snoopRespQueue(*_controller, *this, _label), 353 controller(_controller) 354{ 355} 356