PerfectSwitch.cc revision 9499:b03b556a8fbb
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "base/cast.hh"
32#include "debug/RubyNetwork.hh"
33#include "mem/ruby/buffers/MessageBuffer.hh"
34#include "mem/ruby/network/simple/PerfectSwitch.hh"
35#include "mem/ruby/network/simple/SimpleNetwork.hh"
36#include "mem/ruby/network/simple/Switch.hh"
37#include "mem/ruby/slicc_interface/NetworkMessage.hh"
38
39using namespace std;
40
41const int PRIORITY_SWITCH_LIMIT = 128;
42
43// Operator for helper class
44bool
45operator<(const LinkOrder& l1, const LinkOrder& l2)
46{
47    return (l1.m_value < l2.m_value);
48}
49
50PerfectSwitch::PerfectSwitch(SwitchID sid, Switch *sw, uint32_t virt_nets)
51    : Consumer(sw)
52{
53    m_switch_id = sid;
54    m_round_robin_start = 0;
55    m_wakeups_wo_switch = 0;
56    m_virtual_networks = virt_nets;
57}
58
59void
60PerfectSwitch::init(SimpleNetwork *network_ptr)
61{
62    m_network_ptr = network_ptr;
63
64    for(int i = 0;i < m_virtual_networks;++i)
65    {
66        m_pending_message_count.push_back(0);
67    }
68}
69
70void
71PerfectSwitch::addInPort(const vector<MessageBuffer*>& in, Switch *sw)
72{
73    assert(in.size() == m_virtual_networks);
74    NodeID port = m_in.size();
75    m_in.push_back(in);
76
77    for (int j = 0; j < m_virtual_networks; j++) {
78        m_in[port][j]->setConsumer(this);
79        m_in[port][j]->setClockObj(sw);
80
81        string desc = csprintf("[Queue from port %s %s %s to PerfectSwitch]",
82            to_string(m_switch_id), to_string(port), to_string(j));
83        m_in[port][j]->setDescription(desc);
84        m_in[port][j]->setIncomingLink(port);
85        m_in[port][j]->setVnet(j);
86    }
87}
88
89void
90PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
91    const NetDest& routing_table_entry)
92{
93    assert(out.size() == m_virtual_networks);
94
95    // Setup link order
96    LinkOrder l;
97    l.m_value = 0;
98    l.m_link = m_out.size();
99    m_link_order.push_back(l);
100
101    // Add to routing table
102    m_out.push_back(out);
103    m_routing_table.push_back(routing_table_entry);
104}
105
106void
107PerfectSwitch::clearRoutingTables()
108{
109    m_routing_table.clear();
110}
111
112void
113PerfectSwitch::clearBuffers()
114{
115    for (int i = 0; i < m_in.size(); i++){
116        for(int vnet = 0; vnet < m_virtual_networks; vnet++) {
117            m_in[i][vnet]->clear();
118        }
119    }
120
121    for (int i = 0; i < m_out.size(); i++){
122        for(int vnet = 0; vnet < m_virtual_networks; vnet++) {
123            m_out[i][vnet]->clear();
124        }
125    }
126}
127
128void
129PerfectSwitch::reconfigureOutPort(const NetDest& routing_table_entry)
130{
131    m_routing_table.push_back(routing_table_entry);
132}
133
134PerfectSwitch::~PerfectSwitch()
135{
136}
137
138void
139PerfectSwitch::wakeup()
140{
141    MsgPtr msg_ptr;
142
143    // Give the highest numbered link priority most of the time
144    m_wakeups_wo_switch++;
145    int highest_prio_vnet = m_virtual_networks-1;
146    int lowest_prio_vnet = 0;
147    int decrementer = 1;
148    NetworkMessage* net_msg_ptr = NULL;
149
150    // invert priorities to avoid starvation seen in the component network
151    if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
152        m_wakeups_wo_switch = 0;
153        highest_prio_vnet = 0;
154        lowest_prio_vnet = m_virtual_networks-1;
155        decrementer = -1;
156    }
157
158    // For all components incoming queues
159    for (int vnet = highest_prio_vnet;
160         (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
161         vnet -= decrementer) {
162
163        // This is for round-robin scheduling
164        int incoming = m_round_robin_start;
165        m_round_robin_start++;
166        if (m_round_robin_start >= m_in.size()) {
167            m_round_robin_start = 0;
168        }
169
170        if(m_pending_message_count[vnet] > 0) {
171            // for all input ports, use round robin scheduling
172            for (int counter = 0; counter < m_in.size(); counter++) {
173                // Round robin scheduling
174                incoming++;
175                if (incoming >= m_in.size()) {
176                    incoming = 0;
177                }
178
179                // temporary vectors to store the routing results
180                vector<LinkID> output_links;
181                vector<NetDest> output_link_destinations;
182
183                // Is there a message waiting?
184                while (m_in[incoming][vnet]->isReady()) {
185                    DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
186
187                    // Peek at message
188                    msg_ptr = m_in[incoming][vnet]->peekMsgPtr();
189                    net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
190                    DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
191
192                    output_links.clear();
193                    output_link_destinations.clear();
194                    NetDest msg_dsts =
195                        net_msg_ptr->getInternalDestination();
196
197                    // Unfortunately, the token-protocol sends some
198                    // zero-destination messages, so this assert isn't valid
199                    // assert(msg_dsts.count() > 0);
200
201                    assert(m_link_order.size() == m_routing_table.size());
202                    assert(m_link_order.size() == m_out.size());
203
204                    if (m_network_ptr->getAdaptiveRouting()) {
205                        if (m_network_ptr->isVNetOrdered(vnet)) {
206                            // Don't adaptively route
207                            for (int out = 0; out < m_out.size(); out++) {
208                                m_link_order[out].m_link = out;
209                                m_link_order[out].m_value = 0;
210                            }
211                        } else {
212                            // Find how clogged each link is
213                            for (int out = 0; out < m_out.size(); out++) {
214                                int out_queue_length = 0;
215                                for (int v = 0; v < m_virtual_networks; v++) {
216                                    out_queue_length += m_out[out][v]->getSize();
217                                }
218                                int value =
219                                    (out_queue_length << 8) | (random() & 0xff);
220                                m_link_order[out].m_link = out;
221                                m_link_order[out].m_value = value;
222                            }
223
224                            // Look at the most empty link first
225                            sort(m_link_order.begin(), m_link_order.end());
226                        }
227                    }
228
229                    for (int i = 0; i < m_routing_table.size(); i++) {
230                        // pick the next link to look at
231                        int link = m_link_order[i].m_link;
232                        NetDest dst = m_routing_table[link];
233                        DPRINTF(RubyNetwork, "dst: %s\n", dst);
234
235                        if (!msg_dsts.intersectionIsNotEmpty(dst))
236                            continue;
237
238                        // Remember what link we're using
239                        output_links.push_back(link);
240
241                        // Need to remember which destinations need this
242                        // message in another vector.  This Set is the
243                        // intersection of the routing_table entry and the
244                        // current destination set.  The intersection must
245                        // not be empty, since we are inside "if"
246                        output_link_destinations.push_back(msg_dsts.AND(dst));
247
248                        // Next, we update the msg_destination not to
249                        // include those nodes that were already handled
250                        // by this link
251                        msg_dsts.removeNetDest(dst);
252                    }
253
254                    assert(msg_dsts.count() == 0);
255                    //assert(output_links.size() > 0);
256
257                    // Check for resources - for all outgoing queues
258                    bool enough = true;
259                    for (int i = 0; i < output_links.size(); i++) {
260                        int outgoing = output_links[i];
261                        if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
262                            enough = false;
263                        DPRINTF(RubyNetwork, "Checking if node is blocked ..."
264                                "outgoing: %d, vnet: %d, enough: %d\n",
265                                outgoing, vnet, enough);
266                    }
267
268                    // There were not enough resources
269                    if (!enough) {
270                        scheduleEvent(Cycles(1));
271                        DPRINTF(RubyNetwork, "Can't deliver message since a node "
272                                "is blocked\n");
273                        DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
274                        break; // go to next incoming port
275                    }
276
277                    MsgPtr unmodified_msg_ptr;
278
279                    if (output_links.size() > 1) {
280                        // If we are sending this message down more than
281                        // one link (size>1), we need to make a copy of
282                        // the message so each branch can have a different
283                        // internal destination we need to create an
284                        // unmodified MsgPtr because the MessageBuffer
285                        // enqueue func will modify the message
286
287                        // This magic line creates a private copy of the
288                        // message
289                        unmodified_msg_ptr = msg_ptr->clone();
290                    }
291
292                    // Enqueue it - for all outgoing queues
293                    for (int i=0; i<output_links.size(); i++) {
294                        int outgoing = output_links[i];
295
296                        if (i > 0) {
297                            // create a private copy of the unmodified
298                            // message
299                            msg_ptr = unmodified_msg_ptr->clone();
300                        }
301
302                        // Change the internal destination set of the
303                        // message so it knows which destinations this
304                        // link is responsible for.
305                        net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
306                        net_msg_ptr->getInternalDestination() =
307                            output_link_destinations[i];
308
309                        // Enqeue msg
310                        DPRINTF(RubyNetwork, "Enqueuing net msg from "
311                                "inport[%d][%d] to outport [%d][%d].\n",
312                                incoming, vnet, outgoing, vnet);
313
314                        m_out[outgoing][vnet]->enqueue(msg_ptr);
315                    }
316
317                    // Dequeue msg
318                    m_in[incoming][vnet]->pop();
319                    m_pending_message_count[vnet]--;
320                }
321            }
322        }
323    }
324}
325
326void
327PerfectSwitch::storeEventInfo(int info)
328{
329    m_pending_message_count[info]++;
330}
331
332void
333PerfectSwitch::printStats(std::ostream& out) const
334{
335    out << "PerfectSwitch printStats" << endl;
336}
337
338void
339PerfectSwitch::clearStats()
340{
341}
342
343void
344PerfectSwitch::print(std::ostream& out) const
345{
346    out << "[PerfectSwitch " << m_switch_id << "]";
347}
348