PerfectSwitch.cc revision 7973:e5550966464a
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "mem/protocol/Protocol.hh"
32#include "mem/ruby/buffers/MessageBuffer.hh"
33#include "mem/ruby/network/simple/PerfectSwitch.hh"
34#include "mem/ruby/network/simple/SimpleNetwork.hh"
35#include "mem/ruby/profiler/Profiler.hh"
36#include "mem/ruby/slicc_interface/NetworkMessage.hh"
37#include "mem/ruby/system/System.hh"
38
39using namespace std;
40
41const int PRIORITY_SWITCH_LIMIT = 128;
42
43// Operator for helper class
44bool
45operator<(const LinkOrder& l1, const LinkOrder& l2)
46{
47    return (l1.m_value < l2.m_value);
48}
49
50PerfectSwitch::PerfectSwitch(SwitchID sid, SimpleNetwork* network_ptr)
51{
52    m_virtual_networks = network_ptr->getNumberOfVirtualNetworks();
53    m_switch_id = sid;
54    m_round_robin_start = 0;
55    m_network_ptr = network_ptr;
56    m_wakeups_wo_switch = 0;
57
58    for(int i = 0;i < m_virtual_networks;++i)
59    {
60        m_pending_message_count.push_back(0);
61    }
62}
63
64void
65PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
66{
67    assert(in.size() == m_virtual_networks);
68    NodeID port = m_in.size();
69    m_in.push_back(in);
70
71    for (int j = 0; j < m_virtual_networks; j++) {
72        m_in[port][j]->setConsumer(this);
73        string desc = csprintf("[Queue from port %s %s %s to PerfectSwitch]",
74            NodeIDToString(m_switch_id), NodeIDToString(port),
75            NodeIDToString(j));
76        m_in[port][j]->setDescription(desc);
77        m_in[port][j]->setIncomingLink(port);
78        m_in[port][j]->setVnet(j);
79    }
80}
81
82void
83PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
84    const NetDest& routing_table_entry)
85{
86    assert(out.size() == m_virtual_networks);
87
88    // Setup link order
89    LinkOrder l;
90    l.m_value = 0;
91    l.m_link = m_out.size();
92    m_link_order.push_back(l);
93
94    // Add to routing table
95    m_out.push_back(out);
96    m_routing_table.push_back(routing_table_entry);
97}
98
99void
100PerfectSwitch::clearRoutingTables()
101{
102    m_routing_table.clear();
103}
104
105void
106PerfectSwitch::clearBuffers()
107{
108    for (int i = 0; i < m_in.size(); i++){
109        for(int vnet = 0; vnet < m_virtual_networks; vnet++) {
110            m_in[i][vnet]->clear();
111        }
112    }
113
114    for (int i = 0; i < m_out.size(); i++){
115        for(int vnet = 0; vnet < m_virtual_networks; vnet++) {
116            m_out[i][vnet]->clear();
117        }
118    }
119}
120
121void
122PerfectSwitch::reconfigureOutPort(const NetDest& routing_table_entry)
123{
124    m_routing_table.push_back(routing_table_entry);
125}
126
127PerfectSwitch::~PerfectSwitch()
128{
129}
130
131void
132PerfectSwitch::wakeup()
133{
134    DPRINTF(RubyNetwork, "m_switch_id: %d\n",m_switch_id);
135
136    MsgPtr msg_ptr;
137
138    // Give the highest numbered link priority most of the time
139    m_wakeups_wo_switch++;
140    int highest_prio_vnet = m_virtual_networks-1;
141    int lowest_prio_vnet = 0;
142    int decrementer = 1;
143    NetworkMessage* net_msg_ptr = NULL;
144
145    // invert priorities to avoid starvation seen in the component network
146    if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
147        m_wakeups_wo_switch = 0;
148        highest_prio_vnet = 0;
149        lowest_prio_vnet = m_virtual_networks-1;
150        decrementer = -1;
151    }
152
153    // For all components incoming queues
154    for (int vnet = highest_prio_vnet;
155         (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
156         vnet -= decrementer) {
157
158        // This is for round-robin scheduling
159        int incoming = m_round_robin_start;
160        m_round_robin_start++;
161        if (m_round_robin_start >= m_in.size()) {
162            m_round_robin_start = 0;
163        }
164
165        if(m_pending_message_count[vnet] > 0) {
166            // for all input ports, use round robin scheduling
167            for (int counter = 0; counter < m_in.size(); counter++) {
168                // Round robin scheduling
169                incoming++;
170                if (incoming >= m_in.size()) {
171                    incoming = 0;
172                }
173
174                // temporary vectors to store the routing results
175                vector<LinkID> output_links;
176                vector<NetDest> output_link_destinations;
177
178                // Is there a message waiting?
179                while (m_in[incoming][vnet]->isReady()) {
180                    DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
181
182                    // Peek at message
183                    msg_ptr = m_in[incoming][vnet]->peekMsgPtr();
184                    net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
185                    DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
186
187                    output_links.clear();
188                    output_link_destinations.clear();
189                    NetDest msg_dsts =
190                        net_msg_ptr->getInternalDestination();
191
192                    // Unfortunately, the token-protocol sends some
193                    // zero-destination messages, so this assert isn't valid
194                    // assert(msg_dsts.count() > 0);
195
196                    assert(m_link_order.size() == m_routing_table.size());
197                    assert(m_link_order.size() == m_out.size());
198
199                    if (m_network_ptr->getAdaptiveRouting()) {
200                        if (m_network_ptr->isVNetOrdered(vnet)) {
201                            // Don't adaptively route
202                            for (int out = 0; out < m_out.size(); out++) {
203                                m_link_order[out].m_link = out;
204                                m_link_order[out].m_value = 0;
205                            }
206                        } else {
207                            // Find how clogged each link is
208                            for (int out = 0; out < m_out.size(); out++) {
209                                int out_queue_length = 0;
210                                for (int v = 0; v < m_virtual_networks; v++) {
211                                    out_queue_length += m_out[out][v]->getSize();
212                                }
213                                int value =
214                                    (out_queue_length << 8) | (random() & 0xff);
215                                m_link_order[out].m_link = out;
216                                m_link_order[out].m_value = value;
217                            }
218
219                            // Look at the most empty link first
220                            sort(m_link_order.begin(), m_link_order.end());
221                        }
222                    }
223
224                    for (int i = 0; i < m_routing_table.size(); i++) {
225                        // pick the next link to look at
226                        int link = m_link_order[i].m_link;
227                        NetDest dst = m_routing_table[link];
228                        DPRINTF(RubyNetwork, "dst: %s\n", dst);
229
230                        if (!msg_dsts.intersectionIsNotEmpty(dst))
231                            continue;
232
233                        // Remember what link we're using
234                        output_links.push_back(link);
235
236                        // Need to remember which destinations need this
237                        // message in another vector.  This Set is the
238                        // intersection of the routing_table entry and the
239                        // current destination set.  The intersection must
240                        // not be empty, since we are inside "if"
241                        output_link_destinations.push_back(msg_dsts.AND(dst));
242
243                        // Next, we update the msg_destination not to
244                        // include those nodes that were already handled
245                        // by this link
246                        msg_dsts.removeNetDest(dst);
247                    }
248
249                    assert(msg_dsts.count() == 0);
250                    //assert(output_links.size() > 0);
251
252                    // Check for resources - for all outgoing queues
253                    bool enough = true;
254                    for (int i = 0; i < output_links.size(); i++) {
255                        int outgoing = output_links[i];
256                        if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
257                            enough = false;
258                        DPRINTF(RubyNetwork, "Checking if node is blocked\n"
259                                "outgoing: %d, vnet: %d, enough: %d\n",
260                                outgoing, vnet, enough);
261                    }
262
263                    // There were not enough resources
264                    if (!enough) {
265                        g_eventQueue_ptr->scheduleEvent(this, 1);
266                        DPRINTF(RubyNetwork, "Can't deliver message since a node "
267                                "is blocked\n"
268                                "Message: %s\n", (*net_msg_ptr));
269                        break; // go to next incoming port
270                    }
271
272                    MsgPtr unmodified_msg_ptr;
273
274                    if (output_links.size() > 1) {
275                        // If we are sending this message down more than
276                        // one link (size>1), we need to make a copy of
277                        // the message so each branch can have a different
278                        // internal destination we need to create an
279                        // unmodified MsgPtr because the MessageBuffer
280                        // enqueue func will modify the message
281
282                        // This magic line creates a private copy of the
283                        // message
284                        unmodified_msg_ptr = msg_ptr->clone();
285                    }
286
287                    // Enqueue it - for all outgoing queues
288                    for (int i=0; i<output_links.size(); i++) {
289                        int outgoing = output_links[i];
290
291                        if (i > 0) {
292                            // create a private copy of the unmodified
293                            // message
294                            msg_ptr = unmodified_msg_ptr->clone();
295                        }
296
297                        // Change the internal destination set of the
298                        // message so it knows which destinations this
299                        // link is responsible for.
300                        net_msg_ptr = safe_cast<NetworkMessage*>(msg_ptr.get());
301                        net_msg_ptr->getInternalDestination() =
302                            output_link_destinations[i];
303
304                        // Enqeue msg
305                        DPRINTF(RubyNetwork, "Switch: %d enqueuing net msg from "
306                                "inport[%d][%d] to outport [%d][%d] time: %lld.\n",
307                                m_switch_id, incoming, vnet, outgoing, vnet,
308                                g_eventQueue_ptr->getTime());
309
310                        m_out[outgoing][vnet]->enqueue(msg_ptr);
311                    }
312
313                    // Dequeue msg
314                    m_in[incoming][vnet]->pop();
315                    m_pending_message_count[vnet]--;
316                }
317            }
318        }
319    }
320}
321
322void
323PerfectSwitch::storeEventInfo(int info)
324{
325    m_pending_message_count[info]++;
326}
327
328void
329PerfectSwitch::printStats(std::ostream& out) const
330{
331    out << "PerfectSwitch printStats" << endl;
332}
333
334void
335PerfectSwitch::clearStats()
336{
337}
338
339void
340PerfectSwitch::printConfig(std::ostream& out) const
341{
342}
343
344void
345PerfectSwitch::print(std::ostream& out) const
346{
347    out << "[PerfectSwitch " << m_switch_id << "]";
348}
349
350