PerfectSwitch.cc revision 11092:a51ef09e3a78
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "base/cast.hh"
32#include "base/random.hh"
33#include "debug/RubyNetwork.hh"
34#include "mem/ruby/network/MessageBuffer.hh"
35#include "mem/ruby/network/simple/PerfectSwitch.hh"
36#include "mem/ruby/network/simple/SimpleNetwork.hh"
37#include "mem/ruby/network/simple/Switch.hh"
38#include "mem/ruby/slicc_interface/Message.hh"
39
40using namespace std;
41
42const int PRIORITY_SWITCH_LIMIT = 128;
43
44// Operator for helper class
45bool
46operator<(const LinkOrder& l1, const LinkOrder& l2)
47{
48    return (l1.m_value < l2.m_value);
49}
50
51PerfectSwitch::PerfectSwitch(SwitchID sid, Switch *sw, uint32_t virt_nets)
52    : Consumer(sw), m_switch_id(sid), m_switch(sw)
53{
54    m_round_robin_start = 0;
55    m_wakeups_wo_switch = 0;
56    m_virtual_networks = virt_nets;
57}
58
59void
60PerfectSwitch::init(SimpleNetwork *network_ptr)
61{
62    m_network_ptr = network_ptr;
63
64    for(int i = 0;i < m_virtual_networks;++i) {
65        m_pending_message_count.push_back(0);
66    }
67}
68
69void
70PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
71{
72    NodeID port = m_in.size();
73    m_in.push_back(in);
74
75    for (int i = 0; i < in.size(); ++i) {
76        if (in[i] != nullptr) {
77            in[i]->setConsumer(this);
78            in[i]->setIncomingLink(port);
79            in[i]->setVnet(i);
80        }
81    }
82}
83
84void
85PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
86                          const NetDest& routing_table_entry)
87{
88    // Setup link order
89    LinkOrder l;
90    l.m_value = 0;
91    l.m_link = m_out.size();
92    m_link_order.push_back(l);
93
94    // Add to routing table
95    m_out.push_back(out);
96    m_routing_table.push_back(routing_table_entry);
97}
98
99PerfectSwitch::~PerfectSwitch()
100{
101}
102
103void
104PerfectSwitch::operateVnet(int vnet)
105{
106    MsgPtr msg_ptr;
107    Message *net_msg_ptr = NULL;
108
109    // This is for round-robin scheduling
110    int incoming = m_round_robin_start;
111    m_round_robin_start++;
112    if (m_round_robin_start >= m_in.size()) {
113        m_round_robin_start = 0;
114    }
115
116    if(m_pending_message_count[vnet] > 0) {
117        // for all input ports, use round robin scheduling
118        for (int counter = 0; counter < m_in.size(); counter++) {
119            // Round robin scheduling
120            incoming++;
121            if (incoming >= m_in.size()) {
122                incoming = 0;
123            }
124
125            // temporary vectors to store the routing results
126            vector<LinkID> output_links;
127            vector<NetDest> output_link_destinations;
128
129            // Is there a message waiting?
130            if (m_in[incoming].size() <= vnet) {
131                continue;
132            }
133
134            MessageBuffer *buffer = m_in[incoming][vnet];
135            if (buffer == nullptr) {
136                continue;
137            }
138
139            while (buffer->isReady()) {
140                DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
141
142                // Peek at message
143                msg_ptr = buffer->peekMsgPtr();
144                net_msg_ptr = msg_ptr.get();
145                DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
146
147                output_links.clear();
148                output_link_destinations.clear();
149                NetDest msg_dsts = net_msg_ptr->getDestination();
150
151                // Unfortunately, the token-protocol sends some
152                // zero-destination messages, so this assert isn't valid
153                // assert(msg_dsts.count() > 0);
154
155                assert(m_link_order.size() == m_routing_table.size());
156                assert(m_link_order.size() == m_out.size());
157
158                if (m_network_ptr->getAdaptiveRouting()) {
159                    if (m_network_ptr->isVNetOrdered(vnet)) {
160                        // Don't adaptively route
161                        for (int out = 0; out < m_out.size(); out++) {
162                            m_link_order[out].m_link = out;
163                            m_link_order[out].m_value = 0;
164                        }
165                    } else {
166                        // Find how clogged each link is
167                        for (int out = 0; out < m_out.size(); out++) {
168                            int out_queue_length = 0;
169                            for (int v = 0; v < m_virtual_networks; v++) {
170                                out_queue_length += m_out[out][v]->getSize();
171                            }
172                            int value =
173                                (out_queue_length << 8) |
174                                random_mt.random(0, 0xff);
175                            m_link_order[out].m_link = out;
176                            m_link_order[out].m_value = value;
177                        }
178
179                        // Look at the most empty link first
180                        sort(m_link_order.begin(), m_link_order.end());
181                    }
182                }
183
184                for (int i = 0; i < m_routing_table.size(); i++) {
185                    // pick the next link to look at
186                    int link = m_link_order[i].m_link;
187                    NetDest dst = m_routing_table[link];
188                    DPRINTF(RubyNetwork, "dst: %s\n", dst);
189
190                    if (!msg_dsts.intersectionIsNotEmpty(dst))
191                        continue;
192
193                    // Remember what link we're using
194                    output_links.push_back(link);
195
196                    // Need to remember which destinations need this message in
197                    // another vector.  This Set is the intersection of the
198                    // routing_table entry and the current destination set.  The
199                    // intersection must not be empty, since we are inside "if"
200                    output_link_destinations.push_back(msg_dsts.AND(dst));
201
202                    // Next, we update the msg_destination not to include
203                    // those nodes that were already handled by this link
204                    msg_dsts.removeNetDest(dst);
205                }
206
207                assert(msg_dsts.count() == 0);
208
209                // Check for resources - for all outgoing queues
210                bool enough = true;
211                for (int i = 0; i < output_links.size(); i++) {
212                    int outgoing = output_links[i];
213
214                    if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
215                        enough = false;
216
217                    DPRINTF(RubyNetwork, "Checking if node is blocked ..."
218                            "outgoing: %d, vnet: %d, enough: %d\n",
219                            outgoing, vnet, enough);
220                }
221
222                // There were not enough resources
223                if (!enough) {
224                    scheduleEvent(Cycles(1));
225                    DPRINTF(RubyNetwork, "Can't deliver message since a node "
226                            "is blocked\n");
227                    DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
228                    break; // go to next incoming port
229                }
230
231                MsgPtr unmodified_msg_ptr;
232
233                if (output_links.size() > 1) {
234                    // If we are sending this message down more than one link
235                    // (size>1), we need to make a copy of the message so each
236                    // branch can have a different internal destination we need
237                    // to create an unmodified MsgPtr because the MessageBuffer
238                    // enqueue func will modify the message
239
240                    // This magic line creates a private copy of the message
241                    unmodified_msg_ptr = msg_ptr->clone();
242                }
243
244                // Dequeue msg
245                buffer->dequeue();
246                m_pending_message_count[vnet]--;
247
248                // Enqueue it - for all outgoing queues
249                for (int i=0; i<output_links.size(); i++) {
250                    int outgoing = output_links[i];
251
252                    if (i > 0) {
253                        // create a private copy of the unmodified message
254                        msg_ptr = unmodified_msg_ptr->clone();
255                    }
256
257                    // Change the internal destination set of the message so it
258                    // knows which destinations this link is responsible for.
259                    net_msg_ptr = msg_ptr.get();
260                    net_msg_ptr->getDestination() =
261                        output_link_destinations[i];
262
263                    // Enqeue msg
264                    DPRINTF(RubyNetwork, "Enqueuing net msg from "
265                            "inport[%d][%d] to outport [%d][%d].\n",
266                            incoming, vnet, outgoing, vnet);
267
268                    m_out[outgoing][vnet]->enqueue(msg_ptr);
269                }
270            }
271        }
272    }
273}
274
275void
276PerfectSwitch::wakeup()
277{
278    // Give the highest numbered link priority most of the time
279    m_wakeups_wo_switch++;
280    int highest_prio_vnet = m_virtual_networks-1;
281    int lowest_prio_vnet = 0;
282    int decrementer = 1;
283
284    // invert priorities to avoid starvation seen in the component network
285    if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
286        m_wakeups_wo_switch = 0;
287        highest_prio_vnet = 0;
288        lowest_prio_vnet = m_virtual_networks-1;
289        decrementer = -1;
290    }
291
292    // For all components incoming queues
293    for (int vnet = highest_prio_vnet;
294         (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
295         vnet -= decrementer) {
296        operateVnet(vnet);
297    }
298}
299
300void
301PerfectSwitch::storeEventInfo(int info)
302{
303    m_pending_message_count[info]++;
304}
305
306void
307PerfectSwitch::clearStats()
308{
309}
310void
311PerfectSwitch::collateStats()
312{
313}
314
315
316void
317PerfectSwitch::print(std::ostream& out) const
318{
319    out << "[PerfectSwitch " << m_switch_id << "]";
320}
321