PerfectSwitch.cc revision 11021:e8a6637afa4c
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <algorithm>
30
31#include "base/cast.hh"
32#include "base/random.hh"
33#include "debug/RubyNetwork.hh"
34#include "mem/ruby/network/MessageBuffer.hh"
35#include "mem/ruby/network/simple/PerfectSwitch.hh"
36#include "mem/ruby/network/simple/SimpleNetwork.hh"
37#include "mem/ruby/network/simple/Switch.hh"
38#include "mem/ruby/slicc_interface/Message.hh"
39
40using namespace std;
41
42const int PRIORITY_SWITCH_LIMIT = 128;
43
44// Operator for helper class
45bool
46operator<(const LinkOrder& l1, const LinkOrder& l2)
47{
48    return (l1.m_value < l2.m_value);
49}
50
51PerfectSwitch::PerfectSwitch(SwitchID sid, Switch *sw, uint32_t virt_nets)
52    : Consumer(sw)
53{
54    m_switch_id = sid;
55    m_round_robin_start = 0;
56    m_wakeups_wo_switch = 0;
57    m_virtual_networks = virt_nets;
58}
59
60void
61PerfectSwitch::init(SimpleNetwork *network_ptr)
62{
63    m_network_ptr = network_ptr;
64
65    for(int i = 0;i < m_virtual_networks;++i) {
66        m_pending_message_count.push_back(0);
67    }
68}
69
70void
71PerfectSwitch::addInPort(const vector<MessageBuffer*>& in)
72{
73    NodeID port = m_in.size();
74    m_in.push_back(in);
75
76    for (int i = 0; i < in.size(); ++i) {
77        if (in[i] != nullptr) {
78            in[i]->setConsumer(this);
79            in[i]->setIncomingLink(port);
80            in[i]->setVnet(i);
81        }
82    }
83}
84
85void
86PerfectSwitch::addOutPort(const vector<MessageBuffer*>& out,
87                          const NetDest& routing_table_entry)
88{
89    // Setup link order
90    LinkOrder l;
91    l.m_value = 0;
92    l.m_link = m_out.size();
93    m_link_order.push_back(l);
94
95    // Add to routing table
96    m_out.push_back(out);
97    m_routing_table.push_back(routing_table_entry);
98}
99
100PerfectSwitch::~PerfectSwitch()
101{
102}
103
104void
105PerfectSwitch::operateVnet(int vnet)
106{
107    MsgPtr msg_ptr;
108    Message *net_msg_ptr = NULL;
109
110    // This is for round-robin scheduling
111    int incoming = m_round_robin_start;
112    m_round_robin_start++;
113    if (m_round_robin_start >= m_in.size()) {
114        m_round_robin_start = 0;
115    }
116
117    if(m_pending_message_count[vnet] > 0) {
118        // for all input ports, use round robin scheduling
119        for (int counter = 0; counter < m_in.size(); counter++) {
120            // Round robin scheduling
121            incoming++;
122            if (incoming >= m_in.size()) {
123                incoming = 0;
124            }
125
126            // temporary vectors to store the routing results
127            vector<LinkID> output_links;
128            vector<NetDest> output_link_destinations;
129
130            // Is there a message waiting?
131            if (m_in[incoming].size() <= vnet) {
132                continue;
133            }
134
135            MessageBuffer *buffer = m_in[incoming][vnet];
136            if (buffer == nullptr) {
137                continue;
138            }
139
140            while (buffer->isReady()) {
141                DPRINTF(RubyNetwork, "incoming: %d\n", incoming);
142
143                // Peek at message
144                msg_ptr = buffer->peekMsgPtr();
145                net_msg_ptr = msg_ptr.get();
146                DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
147
148                output_links.clear();
149                output_link_destinations.clear();
150                NetDest msg_dsts = net_msg_ptr->getDestination();
151
152                // Unfortunately, the token-protocol sends some
153                // zero-destination messages, so this assert isn't valid
154                // assert(msg_dsts.count() > 0);
155
156                assert(m_link_order.size() == m_routing_table.size());
157                assert(m_link_order.size() == m_out.size());
158
159                if (m_network_ptr->getAdaptiveRouting()) {
160                    if (m_network_ptr->isVNetOrdered(vnet)) {
161                        // Don't adaptively route
162                        for (int out = 0; out < m_out.size(); out++) {
163                            m_link_order[out].m_link = out;
164                            m_link_order[out].m_value = 0;
165                        }
166                    } else {
167                        // Find how clogged each link is
168                        for (int out = 0; out < m_out.size(); out++) {
169                            int out_queue_length = 0;
170                            for (int v = 0; v < m_virtual_networks; v++) {
171                                out_queue_length += m_out[out][v]->getSize();
172                            }
173                            int value =
174                                (out_queue_length << 8) |
175                                random_mt.random(0, 0xff);
176                            m_link_order[out].m_link = out;
177                            m_link_order[out].m_value = value;
178                        }
179
180                        // Look at the most empty link first
181                        sort(m_link_order.begin(), m_link_order.end());
182                    }
183                }
184
185                for (int i = 0; i < m_routing_table.size(); i++) {
186                    // pick the next link to look at
187                    int link = m_link_order[i].m_link;
188                    NetDest dst = m_routing_table[link];
189                    DPRINTF(RubyNetwork, "dst: %s\n", dst);
190
191                    if (!msg_dsts.intersectionIsNotEmpty(dst))
192                        continue;
193
194                    // Remember what link we're using
195                    output_links.push_back(link);
196
197                    // Need to remember which destinations need this message in
198                    // another vector.  This Set is the intersection of the
199                    // routing_table entry and the current destination set.  The
200                    // intersection must not be empty, since we are inside "if"
201                    output_link_destinations.push_back(msg_dsts.AND(dst));
202
203                    // Next, we update the msg_destination not to include
204                    // those nodes that were already handled by this link
205                    msg_dsts.removeNetDest(dst);
206                }
207
208                assert(msg_dsts.count() == 0);
209
210                // Check for resources - for all outgoing queues
211                bool enough = true;
212                for (int i = 0; i < output_links.size(); i++) {
213                    int outgoing = output_links[i];
214
215                    if (!m_out[outgoing][vnet]->areNSlotsAvailable(1))
216                        enough = false;
217
218                    DPRINTF(RubyNetwork, "Checking if node is blocked ..."
219                            "outgoing: %d, vnet: %d, enough: %d\n",
220                            outgoing, vnet, enough);
221                }
222
223                // There were not enough resources
224                if (!enough) {
225                    scheduleEvent(Cycles(1));
226                    DPRINTF(RubyNetwork, "Can't deliver message since a node "
227                            "is blocked\n");
228                    DPRINTF(RubyNetwork, "Message: %s\n", (*net_msg_ptr));
229                    break; // go to next incoming port
230                }
231
232                MsgPtr unmodified_msg_ptr;
233
234                if (output_links.size() > 1) {
235                    // If we are sending this message down more than one link
236                    // (size>1), we need to make a copy of the message so each
237                    // branch can have a different internal destination we need
238                    // to create an unmodified MsgPtr because the MessageBuffer
239                    // enqueue func will modify the message
240
241                    // This magic line creates a private copy of the message
242                    unmodified_msg_ptr = msg_ptr->clone();
243                }
244
245                // Dequeue msg
246                buffer->dequeue();
247                m_pending_message_count[vnet]--;
248
249                // Enqueue it - for all outgoing queues
250                for (int i=0; i<output_links.size(); i++) {
251                    int outgoing = output_links[i];
252
253                    if (i > 0) {
254                        // create a private copy of the unmodified message
255                        msg_ptr = unmodified_msg_ptr->clone();
256                    }
257
258                    // Change the internal destination set of the message so it
259                    // knows which destinations this link is responsible for.
260                    net_msg_ptr = msg_ptr.get();
261                    net_msg_ptr->getDestination() =
262                        output_link_destinations[i];
263
264                    // Enqeue msg
265                    DPRINTF(RubyNetwork, "Enqueuing net msg from "
266                            "inport[%d][%d] to outport [%d][%d].\n",
267                            incoming, vnet, outgoing, vnet);
268
269                    m_out[outgoing][vnet]->enqueue(msg_ptr);
270                }
271            }
272        }
273    }
274}
275
276void
277PerfectSwitch::wakeup()
278{
279    // Give the highest numbered link priority most of the time
280    m_wakeups_wo_switch++;
281    int highest_prio_vnet = m_virtual_networks-1;
282    int lowest_prio_vnet = 0;
283    int decrementer = 1;
284
285    // invert priorities to avoid starvation seen in the component network
286    if (m_wakeups_wo_switch > PRIORITY_SWITCH_LIMIT) {
287        m_wakeups_wo_switch = 0;
288        highest_prio_vnet = 0;
289        lowest_prio_vnet = m_virtual_networks-1;
290        decrementer = -1;
291    }
292
293    // For all components incoming queues
294    for (int vnet = highest_prio_vnet;
295         (vnet * decrementer) >= (decrementer * lowest_prio_vnet);
296         vnet -= decrementer) {
297        operateVnet(vnet);
298    }
299}
300
301void
302PerfectSwitch::storeEventInfo(int info)
303{
304    m_pending_message_count[info]++;
305}
306
307void
308PerfectSwitch::clearStats()
309{
310}
311void
312PerfectSwitch::collateStats()
313{
314}
315
316
317void
318PerfectSwitch::print(std::ostream& out) const
319{
320    out << "[PerfectSwitch " << m_switch_id << "]";
321}
322