Topology.cc revision 9356:b279bad40aa3
17032SN/A/*
27032SN/A * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
37032SN/A * All rights reserved.
47032SN/A *
57032SN/A * Redistribution and use in source and binary forms, with or without
67032SN/A * modification, are permitted provided that the following conditions are
77032SN/A * met: redistributions of source code must retain the above copyright
87032SN/A * notice, this list of conditions and the following disclaimer;
97032SN/A * redistributions in binary form must reproduce the above copyright
107032SN/A * notice, this list of conditions and the following disclaimer in the
117032SN/A * documentation and/or other materials provided with the distribution;
127032SN/A * neither the name of the copyright holders nor the names of its
137032SN/A * contributors may be used to endorse or promote products derived from
147032SN/A * this software without specific prior written permission.
157032SN/A *
167032SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
177032SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
187032SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
197032SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
207032SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
217032SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
227032SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
237032SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
247032SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
257032SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
267032SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
277032SN/A */
287032SN/A
2913774Sandreas.sandberg@arm.com#include <cassert>
3013774Sandreas.sandberg@arm.com
3113774Sandreas.sandberg@arm.com#include "base/trace.hh"
327032SN/A#include "debug/RubyNetwork.hh"
337032SN/A#include "mem/protocol/MachineType.hh"
347032SN/A#include "mem/ruby/common/NetDest.hh"
3513774Sandreas.sandberg@arm.com#include "mem/ruby/network/BasicLink.hh"
369100SBrad.Beckmann@amd.com#include "mem/ruby/network/Network.hh"
379148Spowerjg@cs.wisc.edu#include "mem/ruby/network/Topology.hh"
387540SN/A#include "mem/ruby/slicc_interface/AbstractController.hh"
397540SN/A
409862Snilay@cs.wisc.eduusing namespace std;
4111666Stushar@ece.gatech.edu
4211666Stushar@ece.gatech.educonst int INFINITE_LATENCY = 10000; // Yes, this is a big hack
4311666Stushar@ece.gatech.edu
4411666Stushar@ece.gatech.edu// Note: In this file, we use the first 2*m_nodes SwitchIDs to
4511666Stushar@ece.gatech.edu// represent the input and output endpoint links.  These really are
4611666Stushar@ece.gatech.edu// not 'switches', as they will not have a Switch object allocated for
479862Snilay@cs.wisc.edu// them. The first m_nodes SwitchIDs are the links into the network,
489862Snilay@cs.wisc.edu// the second m_nodes set of SwitchIDs represent the the output queues
499862Snilay@cs.wisc.edu// of the network.
509862Snilay@cs.wisc.edu
5111663Stushar@ece.gatech.edu// Helper functions based on chapter 29 of Cormen et al.
527032SN/Avoid extend_shortest_path(Matrix& current_dist, Matrix& latencies,
539100SBrad.Beckmann@amd.com    Matrix& inter_switches);
549862Snilay@cs.wisc.eduMatrix shortest_path(const Matrix& weights, Matrix& latencies,
559862Snilay@cs.wisc.edu    Matrix& inter_switches);
569862Snilay@cs.wisc.edubool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
5711666Stushar@ece.gatech.edu    SwitchID final, const Matrix& weights, const Matrix& dist);
5811666Stushar@ece.gatech.eduNetDest shortest_path_to_node(SwitchID src, SwitchID next,
599100SBrad.Beckmann@amd.com    const Matrix& weights, const Matrix& dist);
609862Snilay@cs.wisc.edu
619862Snilay@cs.wisc.eduTopology::Topology(const Params *p)
629100SBrad.Beckmann@amd.com    : SimObject(p)
6311663Stushar@ece.gatech.edu{
6411663Stushar@ece.gatech.edu    m_print_config = p->print_config;
6511663Stushar@ece.gatech.edu    m_number_of_switches = p->routers.size();
6611663Stushar@ece.gatech.edu
6711663Stushar@ece.gatech.edu    // initialize component latencies record
6811666Stushar@ece.gatech.edu    m_component_latencies.resize(0);
6911666Stushar@ece.gatech.edu    m_component_inter_switches.resize(0);
7011663Stushar@ece.gatech.edu
7111663Stushar@ece.gatech.edu    // Total nodes/controllers in network
7211663Stushar@ece.gatech.edu    // Must make sure this is called after the State Machine constructors
7311663Stushar@ece.gatech.edu    m_nodes = MachineType_base_number(MachineType_NUM);
7411663Stushar@ece.gatech.edu    assert(m_nodes > 1);
7511663Stushar@ece.gatech.edu
7611666Stushar@ece.gatech.edu    if (m_nodes != params()->ext_links.size() &&
7711666Stushar@ece.gatech.edu        m_nodes != params()->ext_links.size()) {
7811663Stushar@ece.gatech.edu        fatal("m_nodes (%d) != ext_links vector length (%d)\n",
799862Snilay@cs.wisc.edu              m_nodes, params()->ext_links.size());
80    }
81
82    // analyze both the internal and external links, create data structures
83    // Note that the python created links are bi-directional, but that the
84    // topology and networks utilize uni-directional links.  Thus each
85    // BasicLink is converted to two calls to add link, on for each direction
86    for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
87         i != params()->ext_links.end(); ++i) {
88        BasicExtLink *ext_link = (*i);
89        AbstractController *abs_cntrl = ext_link->params()->ext_node;
90        BasicRouter *router = ext_link->params()->int_node;
91
92        // Store the controller and ExtLink pointers for later
93        m_controller_vector.push_back(abs_cntrl);
94        m_ext_link_vector.push_back(ext_link);
95
96        int ext_idx1 = abs_cntrl->params()->cntrl_id;
97        int ext_idx2 = ext_idx1 + m_nodes;
98        int int_idx = router->params()->router_id + 2*m_nodes;
99
100        // create the internal uni-directional links in both directions
101        //   the first direction is marked: In
102        addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
103        //   the first direction is marked: Out
104        addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
105    }
106
107    for (vector<BasicIntLink*>::const_iterator i = params()->int_links.begin();
108         i != params()->int_links.end(); ++i) {
109        BasicIntLink *int_link = (*i);
110        BasicRouter *router_a = int_link->params()->node_a;
111        BasicRouter *router_b = int_link->params()->node_b;
112
113        // Store the IntLink pointers for later
114        m_int_link_vector.push_back(int_link);
115
116        int a = router_a->params()->router_id + 2*m_nodes;
117        int b = router_b->params()->router_id + 2*m_nodes;
118
119        // create the internal uni-directional links in both directions
120        //   the first direction is marked: In
121        addLink(a, b, int_link, LinkDirection_In);
122        //   the second direction is marked: Out
123        addLink(b, a, int_link, LinkDirection_Out);
124    }
125}
126
127void
128Topology::init()
129{
130}
131
132
133void
134Topology::initNetworkPtr(Network* net_ptr)
135{
136    for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
137         i != params()->ext_links.end(); ++i) {
138        BasicExtLink *ext_link = (*i);
139        AbstractController *abs_cntrl = ext_link->params()->ext_node;
140        abs_cntrl->initNetworkPtr(net_ptr);
141    }
142}
143
144void
145Topology::createLinks(Network *net, bool isReconfiguration)
146{
147    // Find maximum switchID
148    SwitchID max_switch_id = 0;
149    for (LinkMap::const_iterator i = m_link_map.begin();
150         i != m_link_map.end(); ++i) {
151        std::pair<int, int> src_dest = (*i).first;
152        max_switch_id = max(max_switch_id, src_dest.first);
153        max_switch_id = max(max_switch_id, src_dest.second);
154    }
155
156    // Initialize weight, latency, and inter switched vectors
157    Matrix topology_weights;
158    int num_switches = max_switch_id+1;
159    topology_weights.resize(num_switches);
160    m_component_latencies.resize(num_switches);
161    m_component_inter_switches.resize(num_switches);
162
163    for (int i = 0; i < topology_weights.size(); i++) {
164        topology_weights[i].resize(num_switches);
165        m_component_latencies[i].resize(num_switches);
166        m_component_inter_switches[i].resize(num_switches);
167
168        for (int j = 0; j < topology_weights[i].size(); j++) {
169            topology_weights[i][j] = INFINITE_LATENCY;
170
171            // initialize to invalid values
172            m_component_latencies[i][j] = -1;
173
174            // initially assume direct connections / no intermediate
175            // switches between components
176            m_component_inter_switches[i][j] = 0;
177        }
178    }
179
180    // Set identity weights to zero
181    for (int i = 0; i < topology_weights.size(); i++) {
182        topology_weights[i][i] = 0;
183    }
184
185    // Fill in the topology weights and bandwidth multipliers
186    for (LinkMap::const_iterator i = m_link_map.begin();
187         i != m_link_map.end(); ++i) {
188        std::pair<int, int> src_dest = (*i).first;
189        BasicLink* link = (*i).second.link;
190        int src = src_dest.first;
191        int dst = src_dest.second;
192        m_component_latencies[src][dst] = link->m_latency;
193        topology_weights[src][dst] = link->m_weight;
194    }
195
196    // Walk topology and hookup the links
197    Matrix dist = shortest_path(topology_weights, m_component_latencies,
198        m_component_inter_switches);
199    for (int i = 0; i < topology_weights.size(); i++) {
200        for (int j = 0; j < topology_weights[i].size(); j++) {
201            int weight = topology_weights[i][j];
202            if (weight > 0 && weight != INFINITE_LATENCY) {
203                NetDest destination_set = shortest_path_to_node(i, j,
204                                                     topology_weights, dist);
205                makeLink(net, i, j, destination_set, isReconfiguration);
206            }
207        }
208    }
209}
210
211void
212Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
213                  LinkDirection dir)
214{
215    assert(src <= m_number_of_switches+m_nodes+m_nodes);
216    assert(dest <= m_number_of_switches+m_nodes+m_nodes);
217
218    std::pair<int, int> src_dest_pair;
219    LinkEntry link_entry;
220
221    src_dest_pair.first = src;
222    src_dest_pair.second = dest;
223    link_entry.direction = dir;
224    link_entry.link = link;
225    m_link_map[src_dest_pair] = link_entry;
226}
227
228void
229Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
230                   const NetDest& routing_table_entry, bool isReconfiguration)
231{
232    // Make sure we're not trying to connect two end-point nodes
233    // directly together
234    assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
235
236    std::pair<int, int> src_dest;
237    LinkEntry link_entry;
238
239    if (src < m_nodes) {
240        src_dest.first = src;
241        src_dest.second = dest;
242        link_entry = m_link_map[src_dest];
243        net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
244                        link_entry.direction,
245                        routing_table_entry,
246                        isReconfiguration);
247    } else if (dest < 2*m_nodes) {
248        assert(dest >= m_nodes);
249        NodeID node = dest - m_nodes;
250        src_dest.first = src;
251        src_dest.second = dest;
252        link_entry = m_link_map[src_dest];
253        net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
254                         link_entry.direction,
255                         routing_table_entry,
256                         isReconfiguration);
257    } else {
258        assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
259        src_dest.first = src;
260        src_dest.second = dest;
261        link_entry = m_link_map[src_dest];
262        net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
263                              link_entry.link, link_entry.direction,
264                              routing_table_entry, isReconfiguration);
265    }
266}
267
268void
269Topology::printStats(std::ostream& out) const
270{
271    for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
272        m_controller_vector[cntrl]->printStats(out);
273    }
274}
275
276void
277Topology::clearStats()
278{
279    for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
280        m_controller_vector[cntrl]->clearStats();
281    }
282}
283
284// The following all-pairs shortest path algorithm is based on the
285// discussion from Cormen et al., Chapter 26.1.
286void
287extend_shortest_path(Matrix& current_dist, Matrix& latencies,
288    Matrix& inter_switches)
289{
290    bool change = true;
291    int nodes = current_dist.size();
292
293    while (change) {
294        change = false;
295        for (int i = 0; i < nodes; i++) {
296            for (int j = 0; j < nodes; j++) {
297                int minimum = current_dist[i][j];
298                int previous_minimum = minimum;
299                int intermediate_switch = -1;
300                for (int k = 0; k < nodes; k++) {
301                    minimum = min(minimum,
302                        current_dist[i][k] + current_dist[k][j]);
303                    if (previous_minimum != minimum) {
304                        intermediate_switch = k;
305                        inter_switches[i][j] =
306                            inter_switches[i][k] +
307                            inter_switches[k][j] + 1;
308                    }
309                    previous_minimum = minimum;
310                }
311                if (current_dist[i][j] != minimum) {
312                    change = true;
313                    current_dist[i][j] = minimum;
314                    assert(intermediate_switch >= 0);
315                    assert(intermediate_switch < latencies[i].size());
316                    latencies[i][j] = latencies[i][intermediate_switch] +
317                        latencies[intermediate_switch][j];
318                }
319            }
320        }
321    }
322}
323
324Matrix
325shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
326{
327    Matrix dist = weights;
328    extend_shortest_path(dist, latencies, inter_switches);
329    return dist;
330}
331
332bool
333link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
334    const Matrix& weights, const Matrix& dist)
335{
336    return weights[src][next] + dist[next][final] == dist[src][final];
337}
338
339NetDest
340shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
341    const Matrix& dist)
342{
343    NetDest result;
344    int d = 0;
345    int machines;
346    int max_machines;
347
348    machines = MachineType_NUM;
349    max_machines = MachineType_base_number(MachineType_NUM);
350
351    for (int m = 0; m < machines; m++) {
352        for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
353            // we use "d+max_machines" below since the "destination"
354            // switches for the machines are numbered
355            // [MachineType_base_number(MachineType_NUM)...
356            //  2*MachineType_base_number(MachineType_NUM)-1] for the
357            // component network
358            if (link_is_shortest_path_to_node(src, next, d + max_machines,
359                    weights, dist)) {
360                MachineID mach = {(MachineType)m, i};
361                result.add(mach);
362            }
363            d++;
364        }
365    }
366
367    DPRINTF(RubyNetwork, "Returning shortest path\n"
368            "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
369            "src: %d, next: %d, result: %s\n",
370            (src-(2*max_machines)), (next-(2*max_machines)),
371            src, next, result);
372
373    return result;
374}
375
376Topology *
377TopologyParams::create()
378{
379    return new Topology(this);
380}
381
382