Topology.cc revision 9117:49116b947194
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "debug/RubyNetwork.hh"
32#include "mem/protocol/MachineType.hh"
33#include "mem/ruby/common/NetDest.hh"
34#include "mem/ruby/network/BasicLink.hh"
35#include "mem/ruby/network/BasicRouter.hh"
36#include "mem/ruby/network/Network.hh"
37#include "mem/ruby/network/Topology.hh"
38#include "mem/ruby/slicc_interface/AbstractController.hh"
39
40using namespace std;
41
42const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
43
44class BasicRouter;
45
46// Note: In this file, we use the first 2*m_nodes SwitchIDs to
47// represent the input and output endpoint links.  These really are
48// not 'switches', as they will not have a Switch object allocated for
49// them. The first m_nodes SwitchIDs are the links into the network,
50// the second m_nodes set of SwitchIDs represent the the output queues
51// of the network.
52
53// Helper functions based on chapter 29 of Cormen et al.
54void extend_shortest_path(Matrix& current_dist, Matrix& latencies,
55    Matrix& inter_switches);
56Matrix shortest_path(const Matrix& weights, Matrix& latencies,
57    Matrix& inter_switches);
58bool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
59    SwitchID final, const Matrix& weights, const Matrix& dist);
60NetDest shortest_path_to_node(SwitchID src, SwitchID next,
61    const Matrix& weights, const Matrix& dist);
62
63Topology::Topology(const Params *p)
64    : SimObject(p)
65{
66    m_print_config = p->print_config;
67    m_number_of_switches = p->routers.size();
68
69    // initialize component latencies record
70    m_component_latencies.resize(0);
71    m_component_inter_switches.resize(0);
72
73    // Total nodes/controllers in network
74    // Must make sure this is called after the State Machine constructors
75    m_nodes = MachineType_base_number(MachineType_NUM);
76    assert(m_nodes > 1);
77
78    if (m_nodes != params()->ext_links.size() &&
79        m_nodes != params()->ext_links.size()) {
80        fatal("m_nodes (%d) != ext_links vector length (%d)\n",
81              m_nodes, params()->ext_links.size());
82    }
83
84    // analyze both the internal and external links, create data structures
85    // Note that the python created links are bi-directional, but that the
86    // topology and networks utilize uni-directional links.  Thus each
87    // BasicLink is converted to two calls to add link, on for each direction
88    for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
89         i != params()->ext_links.end(); ++i) {
90        BasicExtLink *ext_link = (*i);
91        AbstractController *abs_cntrl = ext_link->params()->ext_node;
92        BasicRouter *router = ext_link->params()->int_node;
93
94        // Store the controller and ExtLink pointers for later
95        m_controller_vector.push_back(abs_cntrl);
96        m_ext_link_vector.push_back(ext_link);
97
98        int ext_idx1 = abs_cntrl->params()->cntrl_id;
99        int ext_idx2 = ext_idx1 + m_nodes;
100        int int_idx = router->params()->router_id + 2*m_nodes;
101
102        // create the internal uni-directional links in both directions
103        //   the first direction is marked: In
104        addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
105        //   the first direction is marked: Out
106        addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
107    }
108
109    for (vector<BasicIntLink*>::const_iterator i = params()->int_links.begin();
110         i != params()->int_links.end(); ++i) {
111        BasicIntLink *int_link = (*i);
112        BasicRouter *router_a = int_link->params()->node_a;
113        BasicRouter *router_b = int_link->params()->node_b;
114
115        // Store the IntLink pointers for later
116        m_int_link_vector.push_back(int_link);
117
118        int a = router_a->params()->router_id + 2*m_nodes;
119        int b = router_b->params()->router_id + 2*m_nodes;
120
121        // create the internal uni-directional links in both directions
122        //   the first direction is marked: In
123        addLink(a, b, int_link, LinkDirection_In);
124        //   the second direction is marked: Out
125        addLink(b, a, int_link, LinkDirection_Out);
126    }
127}
128
129void
130Topology::init()
131{
132}
133
134
135void
136Topology::initNetworkPtr(Network* net_ptr)
137{
138    for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
139         i != params()->ext_links.end(); ++i) {
140        BasicExtLink *ext_link = (*i);
141        AbstractController *abs_cntrl = ext_link->params()->ext_node;
142        abs_cntrl->initNetworkPtr(net_ptr);
143    }
144}
145
146void
147Topology::createLinks(Network *net, bool isReconfiguration)
148{
149    // Find maximum switchID
150    SwitchID max_switch_id = 0;
151    for (LinkMap::const_iterator i = m_link_map.begin();
152         i != m_link_map.end(); ++i) {
153        std::pair<int, int> src_dest = (*i).first;
154        max_switch_id = max(max_switch_id, src_dest.first);
155        max_switch_id = max(max_switch_id, src_dest.second);
156    }
157
158    // Initialize weight, latency, and inter switched vectors
159    Matrix topology_weights;
160    int num_switches = max_switch_id+1;
161    topology_weights.resize(num_switches);
162    m_component_latencies.resize(num_switches);
163    m_component_inter_switches.resize(num_switches);
164
165    for (int i = 0; i < topology_weights.size(); i++) {
166        topology_weights[i].resize(num_switches);
167        m_component_latencies[i].resize(num_switches);
168        m_component_inter_switches[i].resize(num_switches);
169
170        for (int j = 0; j < topology_weights[i].size(); j++) {
171            topology_weights[i][j] = INFINITE_LATENCY;
172
173            // initialize to invalid values
174            m_component_latencies[i][j] = -1;
175
176            // initially assume direct connections / no intermediate
177            // switches between components
178            m_component_inter_switches[i][j] = 0;
179        }
180    }
181
182    // Set identity weights to zero
183    for (int i = 0; i < topology_weights.size(); i++) {
184        topology_weights[i][i] = 0;
185    }
186
187    // Fill in the topology weights and bandwidth multipliers
188    for (LinkMap::const_iterator i = m_link_map.begin();
189         i != m_link_map.end(); ++i) {
190        std::pair<int, int> src_dest = (*i).first;
191        BasicLink* link = (*i).second.link;
192        int src = src_dest.first;
193        int dst = src_dest.second;
194        m_component_latencies[src][dst] = link->m_latency;
195        topology_weights[src][dst] = link->m_weight;
196    }
197
198    // Walk topology and hookup the links
199    Matrix dist = shortest_path(topology_weights, m_component_latencies,
200        m_component_inter_switches);
201    for (int i = 0; i < topology_weights.size(); i++) {
202        for (int j = 0; j < topology_weights[i].size(); j++) {
203            int weight = topology_weights[i][j];
204            if (weight > 0 && weight != INFINITE_LATENCY) {
205                NetDest destination_set = shortest_path_to_node(i, j,
206                                                     topology_weights, dist);
207                makeLink(net, i, j, destination_set, isReconfiguration);
208            }
209        }
210    }
211}
212
213void
214Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
215                  LinkDirection dir)
216{
217    assert(src <= m_number_of_switches+m_nodes+m_nodes);
218    assert(dest <= m_number_of_switches+m_nodes+m_nodes);
219
220    std::pair<int, int> src_dest_pair;
221    LinkEntry link_entry;
222
223    src_dest_pair.first = src;
224    src_dest_pair.second = dest;
225    link_entry.direction = dir;
226    link_entry.link = link;
227    m_link_map[src_dest_pair] = link_entry;
228}
229
230void
231Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
232                   const NetDest& routing_table_entry, bool isReconfiguration)
233{
234    // Make sure we're not trying to connect two end-point nodes
235    // directly together
236    assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
237
238    std::pair<int, int> src_dest;
239    LinkEntry link_entry;
240
241    if (src < m_nodes) {
242        src_dest.first = src;
243        src_dest.second = dest;
244        link_entry = m_link_map[src_dest];
245        net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
246                        link_entry.direction,
247                        routing_table_entry,
248                        isReconfiguration);
249    } else if (dest < 2*m_nodes) {
250        assert(dest >= m_nodes);
251        NodeID node = dest - m_nodes;
252        src_dest.first = src;
253        src_dest.second = dest;
254        link_entry = m_link_map[src_dest];
255        net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
256                         link_entry.direction,
257                         routing_table_entry,
258                         isReconfiguration);
259    } else {
260        assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
261        src_dest.first = src;
262        src_dest.second = dest;
263        link_entry = m_link_map[src_dest];
264        net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
265                              link_entry.link, link_entry.direction,
266                              routing_table_entry, isReconfiguration);
267    }
268}
269
270void
271Topology::printStats(std::ostream& out) const
272{
273    for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
274        m_controller_vector[cntrl]->printStats(out);
275    }
276}
277
278void
279Topology::clearStats()
280{
281    for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
282        m_controller_vector[cntrl]->clearStats();
283    }
284}
285
286// The following all-pairs shortest path algorithm is based on the
287// discussion from Cormen et al., Chapter 26.1.
288void
289extend_shortest_path(Matrix& current_dist, Matrix& latencies,
290    Matrix& inter_switches)
291{
292    bool change = true;
293    int nodes = current_dist.size();
294
295    while (change) {
296        change = false;
297        for (int i = 0; i < nodes; i++) {
298            for (int j = 0; j < nodes; j++) {
299                int minimum = current_dist[i][j];
300                int previous_minimum = minimum;
301                int intermediate_switch = -1;
302                for (int k = 0; k < nodes; k++) {
303                    minimum = min(minimum,
304                        current_dist[i][k] + current_dist[k][j]);
305                    if (previous_minimum != minimum) {
306                        intermediate_switch = k;
307                        inter_switches[i][j] =
308                            inter_switches[i][k] +
309                            inter_switches[k][j] + 1;
310                    }
311                    previous_minimum = minimum;
312                }
313                if (current_dist[i][j] != minimum) {
314                    change = true;
315                    current_dist[i][j] = minimum;
316                    assert(intermediate_switch >= 0);
317                    assert(intermediate_switch < latencies[i].size());
318                    latencies[i][j] = latencies[i][intermediate_switch] +
319                        latencies[intermediate_switch][j];
320                }
321            }
322        }
323    }
324}
325
326Matrix
327shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
328{
329    Matrix dist = weights;
330    extend_shortest_path(dist, latencies, inter_switches);
331    return dist;
332}
333
334bool
335link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
336    const Matrix& weights, const Matrix& dist)
337{
338    return weights[src][next] + dist[next][final] == dist[src][final];
339}
340
341NetDest
342shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
343    const Matrix& dist)
344{
345    NetDest result;
346    int d = 0;
347    int machines;
348    int max_machines;
349
350    machines = MachineType_NUM;
351    max_machines = MachineType_base_number(MachineType_NUM);
352
353    for (int m = 0; m < machines; m++) {
354        for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
355            // we use "d+max_machines" below since the "destination"
356            // switches for the machines are numbered
357            // [MachineType_base_number(MachineType_NUM)...
358            //  2*MachineType_base_number(MachineType_NUM)-1] for the
359            // component network
360            if (link_is_shortest_path_to_node(src, next, d + max_machines,
361                    weights, dist)) {
362                MachineID mach = {(MachineType)m, i};
363                result.add(mach);
364            }
365            d++;
366        }
367    }
368
369    DPRINTF(RubyNetwork, "Returning shortest path\n"
370            "(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
371            "src: %d, next: %d, result: %s\n",
372            (src-(2*max_machines)), (next-(2*max_machines)),
373            src, next, result);
374
375    return result;
376}
377
378Topology *
379TopologyParams::create()
380{
381    return new Topology(this);
382}
383
384