MessageBuffer.hh revision 7567
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * Unordered buffer of messages that can be inserted such
31 * that they can be dequeued after a given delta time has expired.
32 */
33
34#ifndef __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__
35#define __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__
36
37#include <algorithm>
38#include <functional>
39#include <iostream>
40#include <vector>
41#include <string>
42
43#include "mem/ruby/buffers/MessageBufferNode.hh"
44#include "mem/ruby/common/Consumer.hh"
45#include "mem/ruby/common/Global.hh"
46#include "mem/ruby/eventqueue/RubyEventQueue.hh"
47#include "mem/ruby/slicc_interface/Message.hh"
48#include "mem/ruby/common/Address.hh"
49
50class MessageBuffer
51{
52  public:
53    MessageBuffer(const std::string &name = "");
54
55    static void printConfig(std::ostream& out) {}
56    void
57    setRecycleLatency(int recycle_latency)
58    {
59        m_recycle_latency = recycle_latency;
60    }
61
62    void reanalyzeMessages(const Address& addr);
63    void stallMessage(const Address& addr);
64
65    // TRUE if head of queue timestamp <= SystemTime
66    bool
67    isReady() const
68    {
69        return ((m_prio_heap.size() > 0) &&
70                (m_prio_heap.front().m_time <= g_eventQueue_ptr->getTime()));
71    }
72
73    void
74    delayHead()
75    {
76        MessageBufferNode node = m_prio_heap.front();
77        std::pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
78                      std::greater<MessageBufferNode>());
79        m_prio_heap.pop_back();
80        enqueue(node.m_msgptr, 1);
81    }
82
83    bool areNSlotsAvailable(int n);
84    int getPriority() { return m_priority_rank; }
85    void setPriority(int rank) { m_priority_rank = rank; }
86    void setConsumer(Consumer* consumer_ptr)
87    {
88        ASSERT(m_consumer_ptr == NULL);
89        m_consumer_ptr = consumer_ptr;
90    }
91
92    void setDescription(const std::string& name) { m_name = name; }
93    std::string getDescription() { return m_name;}
94
95    Consumer* getConsumer() { return m_consumer_ptr; }
96
97    const Message* peekAtHeadOfQueue() const;
98    const Message* peek() const { return peekAtHeadOfQueue(); }
99    const MsgPtr getMsgPtrCopy() const;
100
101    const MsgPtr&
102    peekMsgPtr() const
103    {
104        assert(isReady());
105        return m_prio_heap.front().m_msgptr;
106    }
107
108    const MsgPtr&
109    peekMsgPtrEvenIfNotReady() const
110    {
111        return m_prio_heap.front().m_msgptr;
112    }
113
114    void enqueue(MsgPtr message) { enqueue(message, 1); }
115    void enqueue(MsgPtr message, Time delta);
116    //  void enqueueAbsolute(const MsgPtr& message, Time absolute_time);
117    int dequeue_getDelayCycles(MsgPtr& message);  // returns delay
118                                                  // cycles of the
119                                                  // message
120    void dequeue(MsgPtr& message);
121    int dequeue_getDelayCycles();  // returns delay cycles of the message
122    void dequeue() { pop(); }
123    void pop();
124    void recycle();
125    bool isEmpty() const { return m_prio_heap.size() == 0; }
126
127    void
128    setOrdering(bool order)
129    {
130        m_strict_fifo = order;
131        m_ordering_set = true;
132    }
133    void resize(int size) { m_max_size = size; }
134    int getSize();
135    void setRandomization(bool random_flag) { m_randomization = random_flag; }
136
137    void clear();
138
139    void print(std::ostream& out) const;
140    void printStats(std::ostream& out);
141    void clearStats() { m_not_avail_count = 0; m_msg_counter = 0; }
142
143  private:
144    //added by SS
145    int m_recycle_latency;
146
147    // Private Methods
148    int setAndReturnDelayCycles(MsgPtr message);
149
150    // Private copy constructor and assignment operator
151    MessageBuffer(const MessageBuffer& obj);
152    MessageBuffer& operator=(const MessageBuffer& obj);
153
154    // Data Members (m_ prefix)
155    Consumer* m_consumer_ptr;  // Consumer to signal a wakeup(), can be NULL
156    std::vector<MessageBufferNode> m_prio_heap;
157
158    typedef m5::hash_map< Address, std::list<MsgPtr> > StallMsgMapType;
159    typedef std::vector<MsgPtr>::iterator MsgListIter;
160
161    StallMsgMapType m_stall_msg_map;
162    std::string m_name;
163
164    int m_max_size;
165    int m_size;
166
167    Time m_time_last_time_size_checked;
168    int m_size_last_time_size_checked;
169
170    // variables used so enqueues appear to happen imediately, while
171    // pop happen the next cycle
172    Time m_time_last_time_enqueue;
173    Time m_time_last_time_pop;
174    int m_size_at_cycle_start;
175    int m_msgs_this_cycle;
176
177    int m_not_avail_count;  // count the # of times I didn't have N
178                            // slots available
179    uint64 m_msg_counter;
180    int m_priority_rank;
181    bool m_strict_fifo;
182    bool m_ordering_set;
183    bool m_randomization;
184    Time m_last_arrival_time;
185};
186
187inline std::ostream&
188operator<<(std::ostream& out, const MessageBuffer& obj)
189{
190    obj.print(out);
191    out << std::flush;
192    return out;
193}
194
195#endif // __MEM_RUBY_BUFFERS_MESSAGEBUFFER_HH__
196