MessageBuffer.cc revision 12334:e0ab29a34764
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "mem/ruby/network/MessageBuffer.hh"
30
31#include <cassert>
32
33#include "base/cprintf.hh"
34#include "base/logging.hh"
35#include "base/random.hh"
36#include "base/stl_helpers.hh"
37#include "debug/RubyQueue.hh"
38#include "mem/ruby/system/RubySystem.hh"
39
40using namespace std;
41using m5::stl_helpers::operator<<;
42
43MessageBuffer::MessageBuffer(const Params *p)
44    : SimObject(p), m_stall_map_size(0),
45    m_max_size(p->buffer_size), m_time_last_time_size_checked(0),
46    m_time_last_time_enqueue(0), m_time_last_time_pop(0),
47    m_last_arrival_time(0), m_strict_fifo(p->ordered),
48    m_randomization(p->randomization)
49{
50    m_msg_counter = 0;
51    m_consumer = NULL;
52    m_size_last_time_size_checked = 0;
53    m_size_at_cycle_start = 0;
54    m_msgs_this_cycle = 0;
55    m_priority_rank = 0;
56
57    m_stall_msg_map.clear();
58    m_input_link_id = 0;
59    m_vnet_id = 0;
60
61    m_buf_msgs = 0;
62    m_stall_time = 0;
63
64    m_dequeue_callback = nullptr;
65}
66
67unsigned int
68MessageBuffer::getSize(Tick curTime)
69{
70    if (m_time_last_time_size_checked != curTime) {
71        m_time_last_time_size_checked = curTime;
72        m_size_last_time_size_checked = m_prio_heap.size();
73    }
74
75    return m_size_last_time_size_checked;
76}
77
78bool
79MessageBuffer::areNSlotsAvailable(unsigned int n, Tick current_time)
80{
81
82    // fast path when message buffers have infinite size
83    if (m_max_size == 0) {
84        return true;
85    }
86
87    // determine the correct size for the current cycle
88    // pop operations shouldn't effect the network's visible size
89    // until schd cycle, but enqueue operations effect the visible
90    // size immediately
91    unsigned int current_size = 0;
92
93    if (m_time_last_time_pop < current_time) {
94        // no pops this cycle - heap size is correct
95        current_size = m_prio_heap.size();
96    } else {
97        if (m_time_last_time_enqueue < current_time) {
98            // no enqueues this cycle - m_size_at_cycle_start is correct
99            current_size = m_size_at_cycle_start;
100        } else {
101            // both pops and enqueues occured this cycle - add new
102            // enqueued msgs to m_size_at_cycle_start
103            current_size = m_size_at_cycle_start + m_msgs_this_cycle;
104        }
105    }
106
107    // now compare the new size with our max size
108    if (current_size + m_stall_map_size + n <= m_max_size) {
109        return true;
110    } else {
111        DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
112                "m_max_size: %d\n",
113                n, current_size, m_prio_heap.size(), m_max_size);
114        m_not_avail_count++;
115        return false;
116    }
117}
118
119const Message*
120MessageBuffer::peek() const
121{
122    DPRINTF(RubyQueue, "Peeking at head of queue.\n");
123    const Message* msg_ptr = m_prio_heap.front().get();
124    assert(msg_ptr);
125
126    DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
127    return msg_ptr;
128}
129
130// FIXME - move me somewhere else
131Tick
132random_time()
133{
134    Tick time = 1;
135    time += random_mt.random(0, 3);  // [0...3]
136    if (random_mt.random(0, 7) == 0) {  // 1 in 8 chance
137        time += 100 + random_mt.random(1, 15); // 100 + [1...15]
138    }
139    return time;
140}
141
142void
143MessageBuffer::enqueue(MsgPtr message, Tick current_time, Tick delta)
144{
145    // record current time incase we have a pop that also adjusts my size
146    if (m_time_last_time_enqueue < current_time) {
147        m_msgs_this_cycle = 0;  // first msg this cycle
148        m_time_last_time_enqueue = current_time;
149    }
150
151    m_msg_counter++;
152    m_msgs_this_cycle++;
153
154    // Calculate the arrival time of the message, that is, the first
155    // cycle the message can be dequeued.
156    assert(delta > 0);
157    Tick arrival_time = 0;
158
159    if (!RubySystem::getRandomization() || !m_randomization) {
160        // No randomization
161        arrival_time = current_time + delta;
162    } else {
163        // Randomization - ignore delta
164        if (m_strict_fifo) {
165            if (m_last_arrival_time < current_time) {
166                m_last_arrival_time = current_time;
167            }
168            arrival_time = m_last_arrival_time + random_time();
169        } else {
170            arrival_time = current_time + random_time();
171        }
172    }
173
174    // Check the arrival time
175    assert(arrival_time > current_time);
176    if (m_strict_fifo) {
177        if (arrival_time < m_last_arrival_time) {
178            panic("FIFO ordering violated: %s name: %s current time: %d "
179                  "delta: %d arrival_time: %d last arrival_time: %d\n",
180                  *this, name(), current_time, delta, arrival_time,
181                  m_last_arrival_time);
182        }
183    }
184
185    // If running a cache trace, don't worry about the last arrival checks
186    if (!RubySystem::getWarmupEnabled()) {
187        m_last_arrival_time = arrival_time;
188    }
189
190    // compute the delay cycles and set enqueue time
191    Message* msg_ptr = message.get();
192    assert(msg_ptr != NULL);
193
194    assert(current_time >= msg_ptr->getLastEnqueueTime() &&
195           "ensure we aren't dequeued early");
196
197    msg_ptr->updateDelayedTicks(current_time);
198    msg_ptr->setLastEnqueueTime(arrival_time);
199    msg_ptr->setMsgCounter(m_msg_counter);
200
201    // Insert the message into the priority heap
202    m_prio_heap.push_back(message);
203    push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
204    // Increment the number of messages statistic
205    m_buf_msgs++;
206
207    DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
208            arrival_time, *(message.get()));
209
210    // Schedule the wakeup
211    assert(m_consumer != NULL);
212    m_consumer->scheduleEventAbsolute(arrival_time);
213    m_consumer->storeEventInfo(m_vnet_id);
214}
215
216Tick
217MessageBuffer::dequeue(Tick current_time, bool decrement_messages)
218{
219    DPRINTF(RubyQueue, "Popping\n");
220    assert(isReady(current_time));
221
222    // get MsgPtr of the message about to be dequeued
223    MsgPtr message = m_prio_heap.front();
224
225    // get the delay cycles
226    message->updateDelayedTicks(current_time);
227    Tick delay = message->getDelayedTicks();
228
229    m_stall_time = curTick() - message->getTime();
230
231    // record previous size and time so the current buffer size isn't
232    // adjusted until schd cycle
233    if (m_time_last_time_pop < current_time) {
234        m_size_at_cycle_start = m_prio_heap.size();
235        m_time_last_time_pop = current_time;
236    }
237
238    pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
239    m_prio_heap.pop_back();
240    if (decrement_messages) {
241        // If the message will be removed from the queue, decrement the
242        // number of message in the queue.
243        m_buf_msgs--;
244    }
245
246    // if a dequeue callback was requested, call it now
247    if (m_dequeue_callback) {
248        m_dequeue_callback();
249    }
250
251    return delay;
252}
253
254void
255MessageBuffer::registerDequeueCallback(std::function<void()> callback)
256{
257    m_dequeue_callback = callback;
258}
259
260void
261MessageBuffer::unregisterDequeueCallback()
262{
263    m_dequeue_callback = nullptr;
264}
265
266void
267MessageBuffer::clear()
268{
269    m_prio_heap.clear();
270
271    m_msg_counter = 0;
272    m_time_last_time_enqueue = 0;
273    m_time_last_time_pop = 0;
274    m_size_at_cycle_start = 0;
275    m_msgs_this_cycle = 0;
276}
277
278void
279MessageBuffer::recycle(Tick current_time, Tick recycle_latency)
280{
281    DPRINTF(RubyQueue, "Recycling.\n");
282    assert(isReady(current_time));
283    MsgPtr node = m_prio_heap.front();
284    pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
285
286    Tick future_time = current_time + recycle_latency;
287    node->setLastEnqueueTime(future_time);
288
289    m_prio_heap.back() = node;
290    push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
291    m_consumer->scheduleEventAbsolute(future_time);
292}
293
294void
295MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick schdTick)
296{
297    while (!lt.empty()) {
298        m_msg_counter++;
299        MsgPtr m = lt.front();
300        m->setLastEnqueueTime(schdTick);
301        m->setMsgCounter(m_msg_counter);
302
303        m_prio_heap.push_back(m);
304        push_heap(m_prio_heap.begin(), m_prio_heap.end(),
305                  greater<MsgPtr>());
306
307        m_consumer->scheduleEventAbsolute(schdTick);
308        lt.pop_front();
309    }
310}
311
312void
313MessageBuffer::reanalyzeMessages(Addr addr, Tick current_time)
314{
315    DPRINTF(RubyQueue, "ReanalyzeMessages %#x\n", addr);
316    assert(m_stall_msg_map.count(addr) > 0);
317
318    //
319    // Put all stalled messages associated with this address back on the
320    // prio heap.  The reanalyzeList call will make sure the consumer is
321    // scheduled for the current cycle so that the previously stalled messages
322    // will be observed before any younger messages that may arrive this cycle
323    //
324    m_stall_map_size -= m_stall_msg_map[addr].size();
325    assert(m_stall_map_size >= 0);
326    reanalyzeList(m_stall_msg_map[addr], current_time);
327    m_stall_msg_map.erase(addr);
328}
329
330void
331MessageBuffer::reanalyzeAllMessages(Tick current_time)
332{
333    DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
334
335    //
336    // Put all stalled messages associated with this address back on the
337    // prio heap.  The reanalyzeList call will make sure the consumer is
338    // scheduled for the current cycle so that the previously stalled messages
339    // will be observed before any younger messages that may arrive this cycle.
340    //
341    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
342         map_iter != m_stall_msg_map.end(); ++map_iter) {
343        m_stall_map_size -= map_iter->second.size();
344        assert(m_stall_map_size >= 0);
345        reanalyzeList(map_iter->second, current_time);
346    }
347    m_stall_msg_map.clear();
348}
349
350void
351MessageBuffer::stallMessage(Addr addr, Tick current_time)
352{
353    DPRINTF(RubyQueue, "Stalling due to %#x\n", addr);
354    assert(isReady(current_time));
355    assert(getOffset(addr) == 0);
356    MsgPtr message = m_prio_heap.front();
357
358    // Since the message will just be moved to stall map, indicate that the
359    // buffer should not decrement the m_buf_msgs statistic
360    dequeue(current_time, false);
361
362    //
363    // Note: no event is scheduled to analyze the map at a later time.
364    // Instead the controller is responsible to call reanalyzeMessages when
365    // these addresses change state.
366    //
367    (m_stall_msg_map[addr]).push_back(message);
368    m_stall_map_size++;
369    m_stall_count++;
370}
371
372void
373MessageBuffer::print(ostream& out) const
374{
375    ccprintf(out, "[MessageBuffer: ");
376    if (m_consumer != NULL) {
377        ccprintf(out, " consumer-yes ");
378    }
379
380    vector<MsgPtr> copy(m_prio_heap);
381    sort_heap(copy.begin(), copy.end(), greater<MsgPtr>());
382    ccprintf(out, "%s] %s", copy, name());
383}
384
385bool
386MessageBuffer::isReady(Tick current_time) const
387{
388    return ((m_prio_heap.size() > 0) &&
389        (m_prio_heap.front()->getLastEnqueueTime() <= current_time));
390}
391
392void
393MessageBuffer::regStats()
394{
395    m_not_avail_count
396        .name(name() + ".not_avail_count")
397        .desc("Number of times this buffer did not have N slots available")
398        .flags(Stats::nozero);
399
400    m_buf_msgs
401        .name(name() + ".avg_buf_msgs")
402        .desc("Average number of messages in buffer")
403        .flags(Stats::nozero);
404
405    m_stall_count
406        .name(name() + ".num_msg_stalls")
407        .desc("Number of times messages were stalled")
408        .flags(Stats::nozero);
409
410    m_occupancy
411        .name(name() + ".avg_buf_occ")
412        .desc("Average occupancy of buffer capacity")
413        .flags(Stats::nozero);
414
415    m_stall_time
416        .name(name() + ".avg_stall_time")
417        .desc("Average number of cycles messages are stalled in this MB")
418        .flags(Stats::nozero);
419
420    if (m_max_size > 0) {
421        m_occupancy = m_buf_msgs / m_max_size;
422    } else {
423        m_occupancy = 0;
424    }
425}
426
427uint32_t
428MessageBuffer::functionalWrite(Packet *pkt)
429{
430    uint32_t num_functional_writes = 0;
431
432    // Check the priority heap and write any messages that may
433    // correspond to the address in the packet.
434    for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
435        Message *msg = m_prio_heap[i].get();
436        if (msg->functionalWrite(pkt)) {
437            num_functional_writes++;
438        }
439    }
440
441    // Check the stall queue and write any messages that may
442    // correspond to the address in the packet.
443    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
444         map_iter != m_stall_msg_map.end();
445         ++map_iter) {
446
447        for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
448            it != (map_iter->second).end(); ++it) {
449
450            Message *msg = (*it).get();
451            if (msg->functionalWrite(pkt)) {
452                num_functional_writes++;
453            }
454        }
455    }
456
457    return num_functional_writes;
458}
459
460MessageBuffer *
461MessageBufferParams::create()
462{
463    return new MessageBuffer(this);
464}
465