MessageBuffer.cc revision 11732:e15e445c21a6
1/*
2 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cassert>
30
31#include "base/cprintf.hh"
32#include "base/misc.hh"
33#include "base/random.hh"
34#include "base/stl_helpers.hh"
35#include "debug/RubyQueue.hh"
36#include "mem/ruby/network/MessageBuffer.hh"
37#include "mem/ruby/system/RubySystem.hh"
38
39using namespace std;
40using m5::stl_helpers::operator<<;
41
42MessageBuffer::MessageBuffer(const Params *p)
43    : SimObject(p),
44    m_max_size(p->buffer_size), m_time_last_time_size_checked(0),
45    m_time_last_time_enqueue(0), m_time_last_time_pop(0),
46    m_last_arrival_time(0), m_strict_fifo(p->ordered),
47    m_randomization(p->randomization)
48{
49    m_msg_counter = 0;
50    m_consumer = NULL;
51    m_size_last_time_size_checked = 0;
52    m_size_at_cycle_start = 0;
53    m_msgs_this_cycle = 0;
54    m_priority_rank = 0;
55
56    m_stall_msg_map.clear();
57    m_input_link_id = 0;
58    m_vnet_id = 0;
59}
60
61unsigned int
62MessageBuffer::getSize(Tick curTime)
63{
64    if (m_time_last_time_size_checked != curTime) {
65        m_time_last_time_size_checked = curTime;
66        m_size_last_time_size_checked = m_prio_heap.size();
67    }
68
69    return m_size_last_time_size_checked;
70}
71
72bool
73MessageBuffer::areNSlotsAvailable(unsigned int n, Tick current_time)
74{
75
76    // fast path when message buffers have infinite size
77    if (m_max_size == 0) {
78        return true;
79    }
80
81    // determine the correct size for the current cycle
82    // pop operations shouldn't effect the network's visible size
83    // until schd cycle, but enqueue operations effect the visible
84    // size immediately
85    unsigned int current_size = 0;
86
87    if (m_time_last_time_pop < current_time) {
88        // no pops this cycle - heap size is correct
89        current_size = m_prio_heap.size();
90    } else {
91        if (m_time_last_time_enqueue < current_time) {
92            // no enqueues this cycle - m_size_at_cycle_start is correct
93            current_size = m_size_at_cycle_start;
94        } else {
95            // both pops and enqueues occured this cycle - add new
96            // enqueued msgs to m_size_at_cycle_start
97            current_size = m_size_at_cycle_start + m_msgs_this_cycle;
98        }
99    }
100
101    // now compare the new size with our max size
102    if (current_size + n <= m_max_size) {
103        return true;
104    } else {
105        DPRINTF(RubyQueue, "n: %d, current_size: %d, heap size: %d, "
106                "m_max_size: %d\n",
107                n, current_size, m_prio_heap.size(), m_max_size);
108        m_not_avail_count++;
109        return false;
110    }
111}
112
113const Message*
114MessageBuffer::peek() const
115{
116    DPRINTF(RubyQueue, "Peeking at head of queue.\n");
117    const Message* msg_ptr = m_prio_heap.front().get();
118    assert(msg_ptr);
119
120    DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
121    return msg_ptr;
122}
123
124// FIXME - move me somewhere else
125Tick
126random_time()
127{
128    Tick time = 1;
129    time += random_mt.random(0, 3);  // [0...3]
130    if (random_mt.random(0, 7) == 0) {  // 1 in 8 chance
131        time += 100 + random_mt.random(1, 15); // 100 + [1...15]
132    }
133    return time;
134}
135
136void
137MessageBuffer::enqueue(MsgPtr message, Tick current_time, Tick delta)
138{
139    // record current time incase we have a pop that also adjusts my size
140    if (m_time_last_time_enqueue < current_time) {
141        m_msgs_this_cycle = 0;  // first msg this cycle
142        m_time_last_time_enqueue = current_time;
143    }
144
145    m_msg_counter++;
146    m_msgs_this_cycle++;
147
148    // Calculate the arrival time of the message, that is, the first
149    // cycle the message can be dequeued.
150    assert(delta > 0);
151    Tick arrival_time = 0;
152
153    if (!RubySystem::getRandomization() || !m_randomization) {
154        // No randomization
155        arrival_time = current_time + delta;
156    } else {
157        // Randomization - ignore delta
158        if (m_strict_fifo) {
159            if (m_last_arrival_time < current_time) {
160                m_last_arrival_time = current_time;
161            }
162            arrival_time = m_last_arrival_time + random_time();
163        } else {
164            arrival_time = current_time + random_time();
165        }
166    }
167
168    // Check the arrival time
169    assert(arrival_time > current_time);
170    if (m_strict_fifo) {
171        if (arrival_time < m_last_arrival_time) {
172            panic("FIFO ordering violated: %s name: %s current time: %d "
173                  "delta: %d arrival_time: %d last arrival_time: %d\n",
174                  *this, name(), current_time, delta, arrival_time,
175                  m_last_arrival_time);
176        }
177    }
178
179    // If running a cache trace, don't worry about the last arrival checks
180    if (!RubySystem::getWarmupEnabled()) {
181        m_last_arrival_time = arrival_time;
182    }
183
184    // compute the delay cycles and set enqueue time
185    Message* msg_ptr = message.get();
186    assert(msg_ptr != NULL);
187
188    assert(current_time >= msg_ptr->getLastEnqueueTime() &&
189           "ensure we aren't dequeued early");
190
191    msg_ptr->updateDelayedTicks(current_time);
192    msg_ptr->setLastEnqueueTime(arrival_time);
193    msg_ptr->setMsgCounter(m_msg_counter);
194
195    // Insert the message into the priority heap
196    m_prio_heap.push_back(message);
197    push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
198
199    DPRINTF(RubyQueue, "Enqueue arrival_time: %lld, Message: %s\n",
200            arrival_time, *(message.get()));
201
202    // Schedule the wakeup
203    assert(m_consumer != NULL);
204    m_consumer->scheduleEventAbsolute(arrival_time);
205    m_consumer->storeEventInfo(m_vnet_id);
206}
207
208Tick
209MessageBuffer::dequeue(Tick current_time)
210{
211    DPRINTF(RubyQueue, "Popping\n");
212    assert(isReady(current_time));
213
214    // get MsgPtr of the message about to be dequeued
215    MsgPtr message = m_prio_heap.front();
216
217    // get the delay cycles
218    message->updateDelayedTicks(current_time);
219    Tick delay = message->getDelayedTicks();
220
221    // record previous size and time so the current buffer size isn't
222    // adjusted until schd cycle
223    if (m_time_last_time_pop < current_time) {
224        m_size_at_cycle_start = m_prio_heap.size();
225        m_time_last_time_pop = current_time;
226    }
227
228    pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
229    m_prio_heap.pop_back();
230
231    return delay;
232}
233
234void
235MessageBuffer::clear()
236{
237    m_prio_heap.clear();
238
239    m_msg_counter = 0;
240    m_time_last_time_enqueue = 0;
241    m_time_last_time_pop = 0;
242    m_size_at_cycle_start = 0;
243    m_msgs_this_cycle = 0;
244}
245
246void
247MessageBuffer::recycle(Tick current_time, Tick recycle_latency)
248{
249    DPRINTF(RubyQueue, "Recycling.\n");
250    assert(isReady(current_time));
251    MsgPtr node = m_prio_heap.front();
252    pop_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
253
254    Tick future_time = current_time + recycle_latency;
255    node->setLastEnqueueTime(future_time);
256
257    m_prio_heap.back() = node;
258    push_heap(m_prio_heap.begin(), m_prio_heap.end(), greater<MsgPtr>());
259    m_consumer->scheduleEventAbsolute(future_time);
260}
261
262void
263MessageBuffer::reanalyzeList(list<MsgPtr> &lt, Tick schdTick)
264{
265    while (!lt.empty()) {
266        m_msg_counter++;
267        MsgPtr m = lt.front();
268        m->setLastEnqueueTime(schdTick);
269        m->setMsgCounter(m_msg_counter);
270
271        m_prio_heap.push_back(m);
272        push_heap(m_prio_heap.begin(), m_prio_heap.end(),
273                  greater<MsgPtr>());
274
275        m_consumer->scheduleEventAbsolute(schdTick);
276        lt.pop_front();
277    }
278}
279
280void
281MessageBuffer::reanalyzeMessages(Addr addr, Tick current_time)
282{
283    DPRINTF(RubyQueue, "ReanalyzeMessages %#x\n", addr);
284    assert(m_stall_msg_map.count(addr) > 0);
285
286    //
287    // Put all stalled messages associated with this address back on the
288    // prio heap.  The reanalyzeList call will make sure the consumer is
289    // scheduled for the current cycle so that the previously stalled messages
290    // will be observed before any younger messages that may arrive this cycle
291    //
292    reanalyzeList(m_stall_msg_map[addr], current_time);
293    m_stall_msg_map.erase(addr);
294}
295
296void
297MessageBuffer::reanalyzeAllMessages(Tick current_time)
298{
299    DPRINTF(RubyQueue, "ReanalyzeAllMessages\n");
300
301    //
302    // Put all stalled messages associated with this address back on the
303    // prio heap.  The reanalyzeList call will make sure the consumer is
304    // scheduled for the current cycle so that the previously stalled messages
305    // will be observed before any younger messages that may arrive this cycle.
306    //
307    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
308         map_iter != m_stall_msg_map.end(); ++map_iter) {
309        reanalyzeList(map_iter->second, current_time);
310    }
311    m_stall_msg_map.clear();
312}
313
314void
315MessageBuffer::stallMessage(Addr addr, Tick current_time)
316{
317    DPRINTF(RubyQueue, "Stalling due to %#x\n", addr);
318    assert(isReady(current_time));
319    assert(getOffset(addr) == 0);
320    MsgPtr message = m_prio_heap.front();
321
322    dequeue(current_time);
323
324    //
325    // Note: no event is scheduled to analyze the map at a later time.
326    // Instead the controller is responsible to call reanalyzeMessages when
327    // these addresses change state.
328    //
329    (m_stall_msg_map[addr]).push_back(message);
330}
331
332void
333MessageBuffer::print(ostream& out) const
334{
335    ccprintf(out, "[MessageBuffer: ");
336    if (m_consumer != NULL) {
337        ccprintf(out, " consumer-yes ");
338    }
339
340    vector<MsgPtr> copy(m_prio_heap);
341    sort_heap(copy.begin(), copy.end(), greater<MsgPtr>());
342    ccprintf(out, "%s] %s", copy, name());
343}
344
345bool
346MessageBuffer::isReady(Tick current_time) const
347{
348    return ((m_prio_heap.size() > 0) &&
349        (m_prio_heap.front()->getLastEnqueueTime() <= current_time));
350}
351
352void
353MessageBuffer::regStats()
354{
355    m_not_avail_count
356        .name(name() + ".not_avail_count")
357        .desc("Number of times this buffer did not have N slots available")
358        .flags(Stats::nozero);
359}
360
361uint32_t
362MessageBuffer::functionalWrite(Packet *pkt)
363{
364    uint32_t num_functional_writes = 0;
365
366    // Check the priority heap and write any messages that may
367    // correspond to the address in the packet.
368    for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
369        Message *msg = m_prio_heap[i].get();
370        if (msg->functionalWrite(pkt)) {
371            num_functional_writes++;
372        }
373    }
374
375    // Check the stall queue and write any messages that may
376    // correspond to the address in the packet.
377    for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
378         map_iter != m_stall_msg_map.end();
379         ++map_iter) {
380
381        for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
382            it != (map_iter->second).end(); ++it) {
383
384            Message *msg = (*it).get();
385            if (msg->functionalWrite(pkt)) {
386                num_functional_writes++;
387            }
388        }
389    }
390
391    return num_functional_writes;
392}
393
394MessageBuffer *
395MessageBufferParams::create()
396{
397    return new MessageBuffer(this);
398}
399