packet.hh revision 13228:c7257ea8d84a
1/*
2 * Copyright (c) 2012-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2006 The Regents of The University of Michigan
15 * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ron Dreslinski
42 *          Steve Reinhardt
43 *          Ali Saidi
44 *          Andreas Hansson
45 *          Nikos Nikoleris
46 */
47
48/**
49 * @file
50 * Declaration of the Packet class.
51 */
52
53#ifndef __MEM_PACKET_HH__
54#define __MEM_PACKET_HH__
55
56#include <bitset>
57#include <cassert>
58#include <list>
59
60#include "base/cast.hh"
61#include "base/compiler.hh"
62#include "base/flags.hh"
63#include "base/logging.hh"
64#include "base/printable.hh"
65#include "base/types.hh"
66#include "mem/request.hh"
67#include "sim/core.hh"
68
69class Packet;
70typedef Packet *PacketPtr;
71typedef uint8_t* PacketDataPtr;
72typedef std::list<PacketPtr> PacketList;
73typedef uint64_t PacketId;
74
75class MemCmd
76{
77    friend class Packet;
78
79  public:
80    /**
81     * List of all commands associated with a packet.
82     */
83    enum Command
84    {
85        InvalidCmd,
86        ReadReq,
87        ReadResp,
88        ReadRespWithInvalidate,
89        WriteReq,
90        WriteResp,
91        WritebackDirty,
92        WritebackClean,
93        WriteClean,            // writes dirty data below without evicting
94        CleanEvict,
95        SoftPFReq,
96        HardPFReq,
97        SoftPFResp,
98        HardPFResp,
99        WriteLineReq,
100        UpgradeReq,
101        SCUpgradeReq,           // Special "weak" upgrade for StoreCond
102        UpgradeResp,
103        SCUpgradeFailReq,       // Failed SCUpgradeReq in MSHR (never sent)
104        UpgradeFailResp,        // Valid for SCUpgradeReq only
105        ReadExReq,
106        ReadExResp,
107        ReadCleanReq,
108        ReadSharedReq,
109        LoadLockedReq,
110        StoreCondReq,
111        StoreCondFailReq,       // Failed StoreCondReq in MSHR (never sent)
112        StoreCondResp,
113        SwapReq,
114        SwapResp,
115        MessageReq,
116        MessageResp,
117        MemFenceReq,
118        MemFenceResp,
119        CleanSharedReq,
120        CleanSharedResp,
121        CleanInvalidReq,
122        CleanInvalidResp,
123        // Error responses
124        // @TODO these should be classified as responses rather than
125        // requests; coding them as requests initially for backwards
126        // compatibility
127        InvalidDestError,  // packet dest field invalid
128        BadAddressError,   // memory address invalid
129        FunctionalReadError, // unable to fulfill functional read
130        FunctionalWriteError, // unable to fulfill functional write
131        // Fake simulator-only commands
132        PrintReq,       // Print state matching address
133        FlushReq,      //request for a cache flush
134        InvalidateReq,   // request for address to be invalidated
135        InvalidateResp,
136        NUM_MEM_CMDS
137    };
138
139  private:
140    /**
141     * List of command attributes.
142     */
143    enum Attribute
144    {
145        IsRead,         //!< Data flows from responder to requester
146        IsWrite,        //!< Data flows from requester to responder
147        IsUpgrade,
148        IsInvalidate,
149        IsClean,        //!< Cleans any existing dirty blocks
150        NeedsWritable,  //!< Requires writable copy to complete in-cache
151        IsRequest,      //!< Issued by requester
152        IsResponse,     //!< Issue by responder
153        NeedsResponse,  //!< Requester needs response from target
154        IsEviction,
155        IsSWPrefetch,
156        IsHWPrefetch,
157        IsLlsc,         //!< Alpha/MIPS LL or SC access
158        HasData,        //!< There is an associated payload
159        IsError,        //!< Error response
160        IsPrint,        //!< Print state matching address (for debugging)
161        IsFlush,        //!< Flush the address from caches
162        FromCache,      //!< Request originated from a caching agent
163        NUM_COMMAND_ATTRIBUTES
164    };
165
166    /**
167     * Structure that defines attributes and other data associated
168     * with a Command.
169     */
170    struct CommandInfo
171    {
172        /// Set of attribute flags.
173        const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
174        /// Corresponding response for requests; InvalidCmd if no
175        /// response is applicable.
176        const Command response;
177        /// String representation (for printing)
178        const std::string str;
179    };
180
181    /// Array to map Command enum to associated info.
182    static const CommandInfo commandInfo[];
183
184  private:
185
186    Command cmd;
187
188    bool
189    testCmdAttrib(MemCmd::Attribute attrib) const
190    {
191        return commandInfo[cmd].attributes[attrib] != 0;
192    }
193
194  public:
195
196    bool isRead() const            { return testCmdAttrib(IsRead); }
197    bool isWrite() const           { return testCmdAttrib(IsWrite); }
198    bool isUpgrade() const         { return testCmdAttrib(IsUpgrade); }
199    bool isRequest() const         { return testCmdAttrib(IsRequest); }
200    bool isResponse() const        { return testCmdAttrib(IsResponse); }
201    bool needsWritable() const     { return testCmdAttrib(NeedsWritable); }
202    bool needsResponse() const     { return testCmdAttrib(NeedsResponse); }
203    bool isInvalidate() const      { return testCmdAttrib(IsInvalidate); }
204    bool isEviction() const        { return testCmdAttrib(IsEviction); }
205    bool isClean() const           { return testCmdAttrib(IsClean); }
206    bool fromCache() const         { return testCmdAttrib(FromCache); }
207
208    /**
209     * A writeback is an eviction that carries data.
210     */
211    bool isWriteback() const       { return testCmdAttrib(IsEviction) &&
212                                            testCmdAttrib(HasData); }
213
214    /**
215     * Check if this particular packet type carries payload data. Note
216     * that this does not reflect if the data pointer of the packet is
217     * valid or not.
218     */
219    bool hasData() const        { return testCmdAttrib(HasData); }
220    bool isLLSC() const         { return testCmdAttrib(IsLlsc); }
221    bool isSWPrefetch() const   { return testCmdAttrib(IsSWPrefetch); }
222    bool isHWPrefetch() const   { return testCmdAttrib(IsHWPrefetch); }
223    bool isPrefetch() const     { return testCmdAttrib(IsSWPrefetch) ||
224                                         testCmdAttrib(IsHWPrefetch); }
225    bool isError() const        { return testCmdAttrib(IsError); }
226    bool isPrint() const        { return testCmdAttrib(IsPrint); }
227    bool isFlush() const        { return testCmdAttrib(IsFlush); }
228
229    Command
230    responseCommand() const
231    {
232        return commandInfo[cmd].response;
233    }
234
235    /// Return the string to a cmd given by idx.
236    const std::string &toString() const { return commandInfo[cmd].str; }
237    int toInt() const { return (int)cmd; }
238
239    MemCmd(Command _cmd) : cmd(_cmd) { }
240    MemCmd(int _cmd) : cmd((Command)_cmd) { }
241    MemCmd() : cmd(InvalidCmd) { }
242
243    bool operator==(MemCmd c2) const { return (cmd == c2.cmd); }
244    bool operator!=(MemCmd c2) const { return (cmd != c2.cmd); }
245};
246
247/**
248 * A Packet is used to encapsulate a transfer between two objects in
249 * the memory system (e.g., the L1 and L2 cache).  (In contrast, a
250 * single Request travels all the way from the requester to the
251 * ultimate destination and back, possibly being conveyed by several
252 * different Packets along the way.)
253 */
254class Packet : public Printable
255{
256  public:
257    typedef uint32_t FlagsType;
258    typedef ::Flags<FlagsType> Flags;
259
260  private:
261
262    enum : FlagsType {
263        // Flags to transfer across when copying a packet
264        COPY_FLAGS             = 0x0000003F,
265
266        // Does this packet have sharers (which means it should not be
267        // considered writable) or not. See setHasSharers below.
268        HAS_SHARERS            = 0x00000001,
269
270        // Special control flags
271        /// Special timing-mode atomic snoop for multi-level coherence.
272        EXPRESS_SNOOP          = 0x00000002,
273
274        /// Allow a responding cache to inform the cache hierarchy
275        /// that it had a writable copy before responding. See
276        /// setResponderHadWritable below.
277        RESPONDER_HAD_WRITABLE = 0x00000004,
278
279        // Snoop co-ordination flag to indicate that a cache is
280        // responding to a snoop. See setCacheResponding below.
281        CACHE_RESPONDING       = 0x00000008,
282
283        // The writeback/writeclean should be propagated further
284        // downstream by the receiver
285        WRITE_THROUGH          = 0x00000010,
286
287        // Response co-ordination flag for cache maintenance
288        // operations
289        SATISFIED              = 0x00000020,
290
291        /// Are the 'addr' and 'size' fields valid?
292        VALID_ADDR             = 0x00000100,
293        VALID_SIZE             = 0x00000200,
294
295        /// Is the data pointer set to a value that shouldn't be freed
296        /// when the packet is destroyed?
297        STATIC_DATA            = 0x00001000,
298        /// The data pointer points to a value that should be freed when
299        /// the packet is destroyed. The pointer is assumed to be pointing
300        /// to an array, and delete [] is consequently called
301        DYNAMIC_DATA           = 0x00002000,
302
303        /// suppress the error if this packet encounters a functional
304        /// access failure.
305        SUPPRESS_FUNC_ERROR    = 0x00008000,
306
307        // Signal block present to squash prefetch and cache evict packets
308        // through express snoop flag
309        BLOCK_CACHED          = 0x00010000
310    };
311
312    Flags flags;
313
314  public:
315    typedef MemCmd::Command Command;
316
317    /// The command field of the packet.
318    MemCmd cmd;
319
320    const PacketId id;
321
322    /// A pointer to the original request.
323    RequestPtr req;
324
325  private:
326   /**
327    * A pointer to the data being transferred. It can be different
328    * sizes at each level of the hierarchy so it belongs to the
329    * packet, not request. This may or may not be populated when a
330    * responder receives the packet. If not populated memory should
331    * be allocated.
332    */
333    PacketDataPtr data;
334
335    /// The address of the request.  This address could be virtual or
336    /// physical, depending on the system configuration.
337    Addr addr;
338
339    /// True if the request targets the secure memory space.
340    bool _isSecure;
341
342    /// The size of the request or transfer.
343    unsigned size;
344
345    /**
346     * Track the bytes found that satisfy a functional read.
347     */
348    std::vector<bool> bytesValid;
349
350    // Quality of Service priority value
351    uint8_t _qosValue;
352
353  public:
354
355    /**
356     * The extra delay from seeing the packet until the header is
357     * transmitted. This delay is used to communicate the crossbar
358     * forwarding latency to the neighbouring object (e.g. a cache)
359     * that actually makes the packet wait. As the delay is relative,
360     * a 32-bit unsigned should be sufficient.
361     */
362    uint32_t headerDelay;
363
364    /**
365     * Keep track of the extra delay incurred by snooping upwards
366     * before sending a request down the memory system. This is used
367     * by the coherent crossbar to account for the additional request
368     * delay.
369     */
370    uint32_t snoopDelay;
371
372    /**
373     * The extra pipelining delay from seeing the packet until the end of
374     * payload is transmitted by the component that provided it (if
375     * any). This includes the header delay. Similar to the header
376     * delay, this is used to make up for the fact that the
377     * crossbar does not make the packet wait. As the delay is
378     * relative, a 32-bit unsigned should be sufficient.
379     */
380    uint32_t payloadDelay;
381
382    /**
383     * A virtual base opaque structure used to hold state associated
384     * with the packet (e.g., an MSHR), specific to a MemObject that
385     * sees the packet. A pointer to this state is returned in the
386     * packet's response so that the MemObject in question can quickly
387     * look up the state needed to process it. A specific subclass
388     * would be derived from this to carry state specific to a
389     * particular sending device.
390     *
391     * As multiple MemObjects may add their SenderState throughout the
392     * memory system, the SenderStates create a stack, where a
393     * MemObject can add a new Senderstate, as long as the
394     * predecessing SenderState is restored when the response comes
395     * back. For this reason, the predecessor should always be
396     * populated with the current SenderState of a packet before
397     * modifying the senderState field in the request packet.
398     */
399    struct SenderState
400    {
401        SenderState* predecessor;
402        SenderState() : predecessor(NULL) {}
403        virtual ~SenderState() {}
404    };
405
406    /**
407     * Object used to maintain state of a PrintReq.  The senderState
408     * field of a PrintReq should always be of this type.
409     */
410    class PrintReqState : public SenderState
411    {
412      private:
413        /**
414         * An entry in the label stack.
415         */
416        struct LabelStackEntry
417        {
418            const std::string label;
419            std::string *prefix;
420            bool labelPrinted;
421            LabelStackEntry(const std::string &_label, std::string *_prefix);
422        };
423
424        typedef std::list<LabelStackEntry> LabelStack;
425        LabelStack labelStack;
426
427        std::string *curPrefixPtr;
428
429      public:
430        std::ostream &os;
431        const int verbosity;
432
433        PrintReqState(std::ostream &os, int verbosity = 0);
434        ~PrintReqState();
435
436        /**
437         * Returns the current line prefix.
438         */
439        const std::string &curPrefix() { return *curPrefixPtr; }
440
441        /**
442         * Push a label onto the label stack, and prepend the given
443         * prefix string onto the current prefix.  Labels will only be
444         * printed if an object within the label's scope is printed.
445         */
446        void pushLabel(const std::string &lbl,
447                       const std::string &prefix = "  ");
448
449        /**
450         * Pop a label off the label stack.
451         */
452        void popLabel();
453
454        /**
455         * Print all of the pending unprinted labels on the
456         * stack. Called by printObj(), so normally not called by
457         * users unless bypassing printObj().
458         */
459        void printLabels();
460
461        /**
462         * Print a Printable object to os, because it matched the
463         * address on a PrintReq.
464         */
465        void printObj(Printable *obj);
466    };
467
468    /**
469     * This packet's sender state.  Devices should use dynamic_cast<>
470     * to cast to the state appropriate to the sender.  The intent of
471     * this variable is to allow a device to attach extra information
472     * to a request. A response packet must return the sender state
473     * that was attached to the original request (even if a new packet
474     * is created).
475     */
476    SenderState *senderState;
477
478    /**
479     * Push a new sender state to the packet and make the current
480     * sender state the predecessor of the new one. This should be
481     * prefered over direct manipulation of the senderState member
482     * variable.
483     *
484     * @param sender_state SenderState to push at the top of the stack
485     */
486    void pushSenderState(SenderState *sender_state);
487
488    /**
489     * Pop the top of the state stack and return a pointer to it. This
490     * assumes the current sender state is not NULL. This should be
491     * preferred over direct manipulation of the senderState member
492     * variable.
493     *
494     * @return The current top of the stack
495     */
496    SenderState *popSenderState();
497
498    /**
499     * Go through the sender state stack and return the first instance
500     * that is of type T (as determined by a dynamic_cast). If there
501     * is no sender state of type T, NULL is returned.
502     *
503     * @return The topmost state of type T
504     */
505    template <typename T>
506    T * findNextSenderState() const
507    {
508        T *t = NULL;
509        SenderState* sender_state = senderState;
510        while (t == NULL && sender_state != NULL) {
511            t = dynamic_cast<T*>(sender_state);
512            sender_state = sender_state->predecessor;
513        }
514        return t;
515    }
516
517    /// Return the string name of the cmd field (for debugging and
518    /// tracing).
519    const std::string &cmdString() const { return cmd.toString(); }
520
521    /// Return the index of this command.
522    inline int cmdToIndex() const { return cmd.toInt(); }
523
524    bool isRead() const              { return cmd.isRead(); }
525    bool isWrite() const             { return cmd.isWrite(); }
526    bool isUpgrade()  const          { return cmd.isUpgrade(); }
527    bool isRequest() const           { return cmd.isRequest(); }
528    bool isResponse() const          { return cmd.isResponse(); }
529    bool needsWritable() const
530    {
531        // we should never check if a response needsWritable, the
532        // request has this flag, and for a response we should rather
533        // look at the hasSharers flag (if not set, the response is to
534        // be considered writable)
535        assert(isRequest());
536        return cmd.needsWritable();
537    }
538    bool needsResponse() const       { return cmd.needsResponse(); }
539    bool isInvalidate() const        { return cmd.isInvalidate(); }
540    bool isEviction() const          { return cmd.isEviction(); }
541    bool isClean() const             { return cmd.isClean(); }
542    bool fromCache() const           { return cmd.fromCache(); }
543    bool isWriteback() const         { return cmd.isWriteback(); }
544    bool hasData() const             { return cmd.hasData(); }
545    bool hasRespData() const
546    {
547        MemCmd resp_cmd = cmd.responseCommand();
548        return resp_cmd.hasData();
549    }
550    bool isLLSC() const              { return cmd.isLLSC(); }
551    bool isError() const             { return cmd.isError(); }
552    bool isPrint() const             { return cmd.isPrint(); }
553    bool isFlush() const             { return cmd.isFlush(); }
554
555    //@{
556    /// Snoop flags
557    /**
558     * Set the cacheResponding flag. This is used by the caches to
559     * signal another cache that they are responding to a request. A
560     * cache will only respond to snoops if it has the line in either
561     * Modified or Owned state. Note that on snoop hits we always pass
562     * the line as Modified and never Owned. In the case of an Owned
563     * line we proceed to invalidate all other copies.
564     *
565     * On a cache fill (see Cache::handleFill), we check hasSharers
566     * first, ignoring the cacheResponding flag if hasSharers is set.
567     * A line is consequently allocated as:
568     *
569     * hasSharers cacheResponding state
570     * true       false           Shared
571     * true       true            Shared
572     * false      false           Exclusive
573     * false      true            Modified
574     */
575    void setCacheResponding()
576    {
577        assert(isRequest());
578        assert(!flags.isSet(CACHE_RESPONDING));
579        flags.set(CACHE_RESPONDING);
580    }
581    bool cacheResponding() const { return flags.isSet(CACHE_RESPONDING); }
582    /**
583     * On fills, the hasSharers flag is used by the caches in
584     * combination with the cacheResponding flag, as clarified
585     * above. If the hasSharers flag is not set, the packet is passing
586     * writable. Thus, a response from a memory passes the line as
587     * writable by default.
588     *
589     * The hasSharers flag is also used by upstream caches to inform a
590     * downstream cache that they have the block (by calling
591     * setHasSharers on snoop request packets that hit in upstream
592     * cachs tags or MSHRs). If the snoop packet has sharers, a
593     * downstream cache is prevented from passing a dirty line upwards
594     * if it was not explicitly asked for a writable copy. See
595     * Cache::satisfyCpuSideRequest.
596     *
597     * The hasSharers flag is also used on writebacks, in
598     * combination with the WritbackClean or WritebackDirty commands,
599     * to allocate the block downstream either as:
600     *
601     * command        hasSharers state
602     * WritebackDirty false      Modified
603     * WritebackDirty true       Owned
604     * WritebackClean false      Exclusive
605     * WritebackClean true       Shared
606     */
607    void setHasSharers()    { flags.set(HAS_SHARERS); }
608    bool hasSharers() const { return flags.isSet(HAS_SHARERS); }
609    //@}
610
611    /**
612     * The express snoop flag is used for two purposes. Firstly, it is
613     * used to bypass flow control for normal (non-snoop) requests
614     * going downstream in the memory system. In cases where a cache
615     * is responding to a snoop from another cache (it had a dirty
616     * line), but the line is not writable (and there are possibly
617     * other copies), the express snoop flag is set by the downstream
618     * cache to invalidate all other copies in zero time. Secondly,
619     * the express snoop flag is also set to be able to distinguish
620     * snoop packets that came from a downstream cache, rather than
621     * snoop packets from neighbouring caches.
622     */
623    void setExpressSnoop()      { flags.set(EXPRESS_SNOOP); }
624    bool isExpressSnoop() const { return flags.isSet(EXPRESS_SNOOP); }
625
626    /**
627     * On responding to a snoop request (which only happens for
628     * Modified or Owned lines), make sure that we can transform an
629     * Owned response to a Modified one. If this flag is not set, the
630     * responding cache had the line in the Owned state, and there are
631     * possibly other Shared copies in the memory system. A downstream
632     * cache helps in orchestrating the invalidation of these copies
633     * by sending out the appropriate express snoops.
634     */
635    void setResponderHadWritable()
636    {
637        assert(cacheResponding());
638        assert(!responderHadWritable());
639        flags.set(RESPONDER_HAD_WRITABLE);
640    }
641    bool responderHadWritable() const
642    { return flags.isSet(RESPONDER_HAD_WRITABLE); }
643
644    /**
645     * A writeback/writeclean cmd gets propagated further downstream
646     * by the receiver when the flag is set.
647     */
648    void setWriteThrough()
649    {
650        assert(cmd.isWrite() &&
651               (cmd.isEviction() || cmd == MemCmd::WriteClean));
652        flags.set(WRITE_THROUGH);
653    }
654    void clearWriteThrough() { flags.clear(WRITE_THROUGH); }
655    bool writeThrough() const { return flags.isSet(WRITE_THROUGH); }
656
657    /**
658     * Set when a request hits in a cache and the cache is not going
659     * to respond. This is used by the crossbar to coordinate
660     * responses for cache maintenance operations.
661     */
662    void setSatisfied()
663    {
664        assert(cmd.isClean());
665        assert(!flags.isSet(SATISFIED));
666        flags.set(SATISFIED);
667    }
668    bool satisfied() const { return flags.isSet(SATISFIED); }
669
670    void setSuppressFuncError()     { flags.set(SUPPRESS_FUNC_ERROR); }
671    bool suppressFuncError() const  { return flags.isSet(SUPPRESS_FUNC_ERROR); }
672    void setBlockCached()          { flags.set(BLOCK_CACHED); }
673    bool isBlockCached() const     { return flags.isSet(BLOCK_CACHED); }
674    void clearBlockCached()        { flags.clear(BLOCK_CACHED); }
675
676    /**
677     * QoS Value getter
678     * Returns 0 if QoS value was never set (constructor default).
679     *
680     * @return QoS priority value of the packet
681     */
682    inline uint8_t qosValue() const { return _qosValue; }
683
684    /**
685     * QoS Value setter
686     * Interface for setting QoS priority value of the packet.
687     *
688     * @param qos_value QoS priority value
689     */
690    inline void qosValue(const uint8_t qos_value)
691    { _qosValue = qos_value; }
692
693    inline MasterID masterId() const { return req->masterId(); }
694
695    // Network error conditions... encapsulate them as methods since
696    // their encoding keeps changing (from result field to command
697    // field, etc.)
698    void
699    setBadAddress()
700    {
701        assert(isResponse());
702        cmd = MemCmd::BadAddressError;
703    }
704
705    void copyError(Packet *pkt) { assert(pkt->isError()); cmd = pkt->cmd; }
706
707    Addr getAddr() const { assert(flags.isSet(VALID_ADDR)); return addr; }
708    /**
709     * Update the address of this packet mid-transaction. This is used
710     * by the address mapper to change an already set address to a new
711     * one based on the system configuration. It is intended to remap
712     * an existing address, so it asserts that the current address is
713     * valid.
714     */
715    void setAddr(Addr _addr) { assert(flags.isSet(VALID_ADDR)); addr = _addr; }
716
717    unsigned getSize() const  { assert(flags.isSet(VALID_SIZE)); return size; }
718
719    Addr getOffset(unsigned int blk_size) const
720    {
721        return getAddr() & Addr(blk_size - 1);
722    }
723
724    Addr getBlockAddr(unsigned int blk_size) const
725    {
726        return getAddr() & ~(Addr(blk_size - 1));
727    }
728
729    bool isSecure() const
730    {
731        assert(flags.isSet(VALID_ADDR));
732        return _isSecure;
733    }
734
735    /**
736     * Accessor function to atomic op.
737     */
738    AtomicOpFunctor *getAtomicOp() const { return req->getAtomicOpFunctor(); }
739    bool isAtomicOp() const { return req->isAtomic(); }
740
741    /**
742     * It has been determined that the SC packet should successfully update
743     * memory. Therefore, convert this SC packet to a normal write.
744     */
745    void
746    convertScToWrite()
747    {
748        assert(isLLSC());
749        assert(isWrite());
750        cmd = MemCmd::WriteReq;
751    }
752
753    /**
754     * When ruby is in use, Ruby will monitor the cache line and the
755     * phys memory should treat LL ops as normal reads.
756     */
757    void
758    convertLlToRead()
759    {
760        assert(isLLSC());
761        assert(isRead());
762        cmd = MemCmd::ReadReq;
763    }
764
765    /**
766     * Constructor. Note that a Request object must be constructed
767     * first, but the Requests's physical address and size fields need
768     * not be valid. The command must be supplied.
769     */
770    Packet(const RequestPtr &_req, MemCmd _cmd)
771        :  cmd(_cmd), id((PacketId)_req.get()), req(_req),
772           data(nullptr), addr(0), _isSecure(false), size(0),
773           _qosValue(0), headerDelay(0), snoopDelay(0),
774           payloadDelay(0), senderState(NULL)
775    {
776        if (req->hasPaddr()) {
777            addr = req->getPaddr();
778            flags.set(VALID_ADDR);
779            _isSecure = req->isSecure();
780        }
781        if (req->hasSize()) {
782            size = req->getSize();
783            flags.set(VALID_SIZE);
784        }
785    }
786
787    /**
788     * Alternate constructor if you are trying to create a packet with
789     * a request that is for a whole block, not the address from the
790     * req.  this allows for overriding the size/addr of the req.
791     */
792    Packet(const RequestPtr &_req, MemCmd _cmd, int _blkSize, PacketId _id = 0)
793        :  cmd(_cmd), id(_id ? _id : (PacketId)_req.get()), req(_req),
794           data(nullptr), addr(0), _isSecure(false),
795           _qosValue(0), headerDelay(0),
796           snoopDelay(0), payloadDelay(0), senderState(NULL)
797    {
798        if (req->hasPaddr()) {
799            addr = req->getPaddr() & ~(_blkSize - 1);
800            flags.set(VALID_ADDR);
801            _isSecure = req->isSecure();
802        }
803        size = _blkSize;
804        flags.set(VALID_SIZE);
805    }
806
807    /**
808     * Alternate constructor for copying a packet.  Copy all fields
809     * *except* if the original packet's data was dynamic, don't copy
810     * that, as we can't guarantee that the new packet's lifetime is
811     * less than that of the original packet.  In this case the new
812     * packet should allocate its own data.
813     */
814    Packet(const PacketPtr pkt, bool clear_flags, bool alloc_data)
815        :  cmd(pkt->cmd), id(pkt->id), req(pkt->req),
816           data(nullptr),
817           addr(pkt->addr), _isSecure(pkt->_isSecure), size(pkt->size),
818           bytesValid(pkt->bytesValid),
819           _qosValue(pkt->qosValue()),
820           headerDelay(pkt->headerDelay),
821           snoopDelay(0),
822           payloadDelay(pkt->payloadDelay),
823           senderState(pkt->senderState)
824    {
825        if (!clear_flags)
826            flags.set(pkt->flags & COPY_FLAGS);
827
828        flags.set(pkt->flags & (VALID_ADDR|VALID_SIZE));
829
830        // should we allocate space for data, or not, the express
831        // snoops do not need to carry any data as they only serve to
832        // co-ordinate state changes
833        if (alloc_data) {
834            // even if asked to allocate data, if the original packet
835            // holds static data, then the sender will not be doing
836            // any memcpy on receiving the response, thus we simply
837            // carry the pointer forward
838            if (pkt->flags.isSet(STATIC_DATA)) {
839                data = pkt->data;
840                flags.set(STATIC_DATA);
841            } else {
842                allocate();
843            }
844        }
845    }
846
847    /**
848     * Generate the appropriate read MemCmd based on the Request flags.
849     */
850    static MemCmd
851    makeReadCmd(const RequestPtr &req)
852    {
853        if (req->isLLSC())
854            return MemCmd::LoadLockedReq;
855        else if (req->isPrefetch())
856            return MemCmd::SoftPFReq;
857        else
858            return MemCmd::ReadReq;
859    }
860
861    /**
862     * Generate the appropriate write MemCmd based on the Request flags.
863     */
864    static MemCmd
865    makeWriteCmd(const RequestPtr &req)
866    {
867        if (req->isLLSC())
868            return MemCmd::StoreCondReq;
869        else if (req->isSwap() || req->isAtomic())
870            return MemCmd::SwapReq;
871        else if (req->isCacheInvalidate()) {
872          return req->isCacheClean() ? MemCmd::CleanInvalidReq :
873              MemCmd::InvalidateReq;
874        } else if (req->isCacheClean()) {
875            return MemCmd::CleanSharedReq;
876        } else
877            return MemCmd::WriteReq;
878    }
879
880    /**
881     * Constructor-like methods that return Packets based on Request objects.
882     * Fine-tune the MemCmd type if it's not a vanilla read or write.
883     */
884    static PacketPtr
885    createRead(const RequestPtr &req)
886    {
887        return new Packet(req, makeReadCmd(req));
888    }
889
890    static PacketPtr
891    createWrite(const RequestPtr &req)
892    {
893        return new Packet(req, makeWriteCmd(req));
894    }
895
896    /**
897     * clean up packet variables
898     */
899    ~Packet()
900    {
901        deleteData();
902    }
903
904    /**
905     * Take a request packet and modify it in place to be suitable for
906     * returning as a response to that request.
907     */
908    void
909    makeResponse()
910    {
911        assert(needsResponse());
912        assert(isRequest());
913        cmd = cmd.responseCommand();
914
915        // responses are never express, even if the snoop that
916        // triggered them was
917        flags.clear(EXPRESS_SNOOP);
918    }
919
920    void
921    makeAtomicResponse()
922    {
923        makeResponse();
924    }
925
926    void
927    makeTimingResponse()
928    {
929        makeResponse();
930    }
931
932    void
933    setFunctionalResponseStatus(bool success)
934    {
935        if (!success) {
936            if (isWrite()) {
937                cmd = MemCmd::FunctionalWriteError;
938            } else {
939                cmd = MemCmd::FunctionalReadError;
940            }
941        }
942    }
943
944    void
945    setSize(unsigned size)
946    {
947        assert(!flags.isSet(VALID_SIZE));
948
949        this->size = size;
950        flags.set(VALID_SIZE);
951    }
952
953
954  public:
955    /**
956     * @{
957     * @name Data accessor mehtods
958     */
959
960    /**
961     * Set the data pointer to the following value that should not be
962     * freed. Static data allows us to do a single memcpy even if
963     * multiple packets are required to get from source to destination
964     * and back. In essence the pointer is set calling dataStatic on
965     * the original packet, and whenever this packet is copied and
966     * forwarded the same pointer is passed on. When a packet
967     * eventually reaches the destination holding the data, it is
968     * copied once into the location originally set. On the way back
969     * to the source, no copies are necessary.
970     */
971    template <typename T>
972    void
973    dataStatic(T *p)
974    {
975        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
976        data = (PacketDataPtr)p;
977        flags.set(STATIC_DATA);
978    }
979
980    /**
981     * Set the data pointer to the following value that should not be
982     * freed. This version of the function allows the pointer passed
983     * to us to be const. To avoid issues down the line we cast the
984     * constness away, the alternative would be to keep both a const
985     * and non-const data pointer and cleverly choose between
986     * them. Note that this is only allowed for static data.
987     */
988    template <typename T>
989    void
990    dataStaticConst(const T *p)
991    {
992        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
993        data = const_cast<PacketDataPtr>(p);
994        flags.set(STATIC_DATA);
995    }
996
997    /**
998     * Set the data pointer to a value that should have delete []
999     * called on it. Dynamic data is local to this packet, and as the
1000     * packet travels from source to destination, forwarded packets
1001     * will allocate their own data. When a packet reaches the final
1002     * destination it will populate the dynamic data of that specific
1003     * packet, and on the way back towards the source, memcpy will be
1004     * invoked in every step where a new packet was created e.g. in
1005     * the caches. Ultimately when the response reaches the source a
1006     * final memcpy is needed to extract the data from the packet
1007     * before it is deallocated.
1008     */
1009    template <typename T>
1010    void
1011    dataDynamic(T *p)
1012    {
1013        assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1014        data = (PacketDataPtr)p;
1015        flags.set(DYNAMIC_DATA);
1016    }
1017
1018    /**
1019     * get a pointer to the data ptr.
1020     */
1021    template <typename T>
1022    T*
1023    getPtr()
1024    {
1025        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
1026        return (T*)data;
1027    }
1028
1029    template <typename T>
1030    const T*
1031    getConstPtr() const
1032    {
1033        assert(flags.isSet(STATIC_DATA|DYNAMIC_DATA));
1034        return (const T*)data;
1035    }
1036
1037    /**
1038     * Get the data in the packet byte swapped from big endian to
1039     * host endian.
1040     */
1041    template <typename T>
1042    T getBE() const;
1043
1044    /**
1045     * Get the data in the packet byte swapped from little endian to
1046     * host endian.
1047     */
1048    template <typename T>
1049    T getLE() const;
1050
1051    /**
1052     * Get the data in the packet byte swapped from the specified
1053     * endianness.
1054     */
1055    template <typename T>
1056    T get(ByteOrder endian) const;
1057
1058    /**
1059     * Get the data in the packet byte swapped from guest to host
1060     * endian.
1061     */
1062    template <typename T>
1063    T get() const;
1064
1065    /** Set the value in the data pointer to v as big endian. */
1066    template <typename T>
1067    void setBE(T v);
1068
1069    /** Set the value in the data pointer to v as little endian. */
1070    template <typename T>
1071    void setLE(T v);
1072
1073    /**
1074     * Set the value in the data pointer to v using the specified
1075     * endianness.
1076     */
1077    template <typename T>
1078    void set(T v, ByteOrder endian);
1079
1080#if THE_ISA != NULL_ISA
1081    /** Set the value in the data pointer to v as guest endian. */
1082    template <typename T>
1083    void set(T v);
1084#endif
1085
1086
1087    /**
1088     * Get the data in the packet byte swapped from the specified
1089     * endianness and zero-extended to 64 bits.
1090     */
1091    uint64_t getUintX(ByteOrder endian) const;
1092
1093    /**
1094     * Set the value in the word w after truncating it to the length
1095     * of the packet and then byteswapping it to the desired
1096     * endianness.
1097     */
1098    void setUintX(uint64_t w, ByteOrder endian);
1099
1100    /**
1101     * Copy data into the packet from the provided pointer.
1102     */
1103    void
1104    setData(const uint8_t *p)
1105    {
1106        // we should never be copying data onto itself, which means we
1107        // must idenfity packets with static data, as they carry the
1108        // same pointer from source to destination and back
1109        assert(p != getPtr<uint8_t>() || flags.isSet(STATIC_DATA));
1110
1111        if (p != getPtr<uint8_t>())
1112            // for packet with allocated dynamic data, we copy data from
1113            // one to the other, e.g. a forwarded response to a response
1114            std::memcpy(getPtr<uint8_t>(), p, getSize());
1115    }
1116
1117    /**
1118     * Copy data into the packet from the provided block pointer,
1119     * which is aligned to the given block size.
1120     */
1121    void
1122    setDataFromBlock(const uint8_t *blk_data, int blkSize)
1123    {
1124        setData(blk_data + getOffset(blkSize));
1125    }
1126
1127    /**
1128     * Copy data from the packet to the memory at the provided pointer.
1129     * @param p Pointer to which data will be copied.
1130     */
1131    void
1132    writeData(uint8_t *p) const
1133    {
1134        std::memcpy(p, getConstPtr<uint8_t>(), getSize());
1135    }
1136
1137    /**
1138     * Copy data from the packet to the provided block pointer, which
1139     * is aligned to the given block size.
1140     * @param blk_data Pointer to block to which data will be copied.
1141     * @param blkSize Block size in bytes.
1142     */
1143    void
1144    writeDataToBlock(uint8_t *blk_data, int blkSize) const
1145    {
1146        writeData(blk_data + getOffset(blkSize));
1147    }
1148
1149    /**
1150     * delete the data pointed to in the data pointer. Ok to call to
1151     * matter how data was allocted.
1152     */
1153    void
1154    deleteData()
1155    {
1156        if (flags.isSet(DYNAMIC_DATA))
1157            delete [] data;
1158
1159        flags.clear(STATIC_DATA|DYNAMIC_DATA);
1160        data = NULL;
1161    }
1162
1163    /** Allocate memory for the packet. */
1164    void
1165    allocate()
1166    {
1167        // if either this command or the response command has a data
1168        // payload, actually allocate space
1169        if (hasData() || hasRespData()) {
1170            assert(flags.noneSet(STATIC_DATA|DYNAMIC_DATA));
1171            flags.set(DYNAMIC_DATA);
1172            data = new uint8_t[getSize()];
1173        }
1174    }
1175
1176    /** @} */
1177
1178    /** Get the data in the packet without byte swapping. */
1179    template <typename T>
1180    T getRaw() const;
1181
1182    /** Set the value in the data pointer to v without byte swapping. */
1183    template <typename T>
1184    void setRaw(T v);
1185
1186  public:
1187    /**
1188     * Check a functional request against a memory value stored in
1189     * another packet (i.e. an in-transit request or
1190     * response). Returns true if the current packet is a read, and
1191     * the other packet provides the data, which is then copied to the
1192     * current packet. If the current packet is a write, and the other
1193     * packet intersects this one, then we update the data
1194     * accordingly.
1195     */
1196    bool
1197    trySatisfyFunctional(PacketPtr other)
1198    {
1199        // all packets that are carrying a payload should have a valid
1200        // data pointer
1201        return trySatisfyFunctional(other, other->getAddr(), other->isSecure(),
1202                                    other->getSize(),
1203                                    other->hasData() ?
1204                                    other->getPtr<uint8_t>() : NULL);
1205    }
1206
1207    /**
1208     * Does the request need to check for cached copies of the same block
1209     * in the memory hierarchy above.
1210     **/
1211    bool
1212    mustCheckAbove() const
1213    {
1214        return cmd == MemCmd::HardPFReq || isEviction();
1215    }
1216
1217    /**
1218     * Is this packet a clean eviction, including both actual clean
1219     * evict packets, but also clean writebacks.
1220     */
1221    bool
1222    isCleanEviction() const
1223    {
1224        return cmd == MemCmd::CleanEvict || cmd == MemCmd::WritebackClean;
1225    }
1226
1227    /**
1228     * Check a functional request against a memory value represented
1229     * by a base/size pair and an associated data array. If the
1230     * current packet is a read, it may be satisfied by the memory
1231     * value. If the current packet is a write, it may update the
1232     * memory value.
1233     */
1234    bool
1235    trySatisfyFunctional(Printable *obj, Addr base, bool is_secure, int size,
1236                         uint8_t *_data);
1237
1238    /**
1239     * Push label for PrintReq (safe to call unconditionally).
1240     */
1241    void
1242    pushLabel(const std::string &lbl)
1243    {
1244        if (isPrint())
1245            safe_cast<PrintReqState*>(senderState)->pushLabel(lbl);
1246    }
1247
1248    /**
1249     * Pop label for PrintReq (safe to call unconditionally).
1250     */
1251    void
1252    popLabel()
1253    {
1254        if (isPrint())
1255            safe_cast<PrintReqState*>(senderState)->popLabel();
1256    }
1257
1258    void print(std::ostream &o, int verbosity = 0,
1259               const std::string &prefix = "") const;
1260
1261    /**
1262     * A no-args wrapper of print(std::ostream...)
1263     * meant to be invoked from DPRINTFs
1264     * avoiding string overheads in fast mode
1265     * @return string with the request's type and start<->end addresses
1266     */
1267    std::string print() const;
1268};
1269
1270#endif //__MEM_PACKET_HH
1271